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Abstract We derive asymptotic freedom of gluons in terms of the renormalized SU (3) Yang–Mills Hamil-
tonian in the Fock space.Namely,we use the renormalization group procedure for effective particles to calculate
the three-gluon interaction term in the front-form Yang–Mills Hamiltonian using a perturbative expansion in
powers of g up to third order. The resulting three-gluon vertex is a function of the scale parameter s that has
an interpretation of the size of effective gluons. The corresponding Hamiltonian running coupling constant
exhibits asymptotic freedom, and the corresponding Hamiltonian β-function coincides with the one obtained
in an earlier calculation using a different generator.

1 Introduction

The renormalization group procedure for effective particles (RGPEP) has been developed during the last
years [1–3] as a non-perturbative tool for constructing bound-states in quantum chromodynamics (QCD) [4].
It introduces the concept of effective particles, which differ from the bare or canonical ones, by having size
s, corresponding to the momentum scale λ = 1/s. Creation and annihilation of effective particles in the Fock
space are described by the action of effective particle operators, a†s and as , on states built from the vacuum state
|0〉 using a†s ; bare particle operators, a†0 and a0, appearing in the canonical Hamiltonian, create and annihilate
pointlike particles (with size s = 0).

We are interested in calculating the evolution of quark and gluon quantum states, describing their dynamics
and studying their binding. In a single formulation, the sought effective Hamiltonian must provide a means for
the constituent-like behavior of quarks and gluons in hadrons with the measured quantum numbers, and also
an explanation for the short-distance phenomena of weakly interacting pointlike partons.

In this work, we apply the RGPEP to interacting gluons in the absence of quarks. We will demonstrate that
the RGPEP passes the test of describing asymptotic freedom, which is a precondition for any approach aiming
at using QCD, especially for tackling nonperturbative issues, such as the ones that emerge when one allows
effective gluons to have masses [4].

We start from the regularized canonical Hamiltonian for quantum Yang–Mills field in the Fock space,
obtained from the corresponding Lagrangian density. We use the RGPEP to introduce effective particles and
calculate a family of effective Hamiltonians characterized by a scale or size parameter s. These Fock-space
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Hamiltonians depend on the effective-particle size parameter in an asymptotically free way: the coupling
constant in a three-gluon interaction term vanishes with the inverse of ln(1/s).

In the following, we summarize the procedure, which is general and can be applied to any other quantum
field theory. For a more extended and detailed explanation, we refer the reader to Ref. [3].

2 Renormalization Group Procedure for Effective Particles

2.1 Initial Hamiltonian

We derive the canonical Hamiltonian for Yang–Mills theories from the Lagrangian density:

L = −1

2
tr FμνFμν, (1)

where Fμν = ∂μAν − ∂ν Aμ + ig[Aμ, Aν], Aμ = Aaμta , [ta, tb] = i f abctc, which leads to the energy–
momentum tensor,

T μν = −Faμα∂ν Aa
α + gμνFaαβFa

αβ/4. (2)

We choose the front-form (FF) of dynamics [5] which consists of setting the quantization surface on the
hyperplane x+ = x0 + x3 = 0. Using the gauge A+ = 0, the Lagrange equations lead to the condition

A− = 1

∂+ 2 ∂⊥A⊥ − 2

∂+ 2 ig [∂+A⊥, A⊥] , (3)

so that the only degrees of freedom are the fields A⊥.
Integration of T +− over the front x+ = 0 leads to the FF energy of the constrained gluon field:

P− = 1

2

∫
dx−d2x⊥T +− |x+=0 . (4)

This operator contains a series of products of 2nd, 3rd or 4th powers of the field Aμ or their derivatives. The
energy momentum tensor T +− can be written as

T +− = HA2 + HA3 + HA4 + H[∂AA]2 , (5)

where [6,7]

HA2 = −1

2
A⊥a(∂⊥)2A⊥a, (6)

HA3 = g i∂αA
a
β [Aα, Aβ ]a, (7)

HA4 = −1

4
g2 [Aα, Aβ ]a[Aα, Aβ ]a, (8)

H[∂AA]2 = 1

2
g2 [i∂+A⊥, A⊥]a 1

(i∂+)2
[i∂+A⊥, A⊥]a . (9)

The quantum canonical Hamiltonian is obtained by replacing the field Aμ by the quantum field operator

Âμ =
∑
σc

∫
[k]

[
tcεμ

kσakσce
−ikx + tcεμ∗

kσ a
†
kσce

ikx
]
x+=0

, (10)

where [k] = θ(k+)dk+d2k⊥/(16π3k+), the polarization four-vector is defined as ε
μ
kσ = (ε+

kσ = 0, ε−
kσ =

2k⊥ε⊥
σ /k+, ε⊥

σ ) and the indices σ and c denote spin and color quantum numbers, respectively. The creation
and annihilation operators satisfy the commutation relations

[
akσc, a

†
k′σ ′c′

]
= k+δ̃(k − k′) δσσ ′

δcc
′
, [akσc, ak′σ ′c′] =

[
a†kσc, a

†
k′σ ′c′

]
= 0, (11)

with δ̃(p) = 16π3δ(p+)δ(p1)δ(p2).
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The canonical Hamiltonian is divergent and needs regularization. At every interaction term, every creation
and annihilation operator in the canonical Hamiltonian is multiplied by a regulating factor1

rΔδ(κ
⊥, x) = exp(−κ⊥/Δ) xδθ(x − ε), (12)

where x is the relative momentum fraction xp/P = p+/P+, κ is the relative transverse momentum, κp/P =
p⊥ − x P⊥, and P is the total momentum in the term one considers. The regulating function prevents the
interaction terms from acting if the change of transverse momentum between gluons were to exceed Δ, or if
the change of longitudinal momentum fraction x were to be smaller than δ.

2.2 Derivation of the Effective Hamiltonian

The RGPEP transforms bare, or point-like creation and annihilation operators into effective ones [1]. Effective
particle operators of size s = t1/4 are related to bare ones by certain unitary transformation

at = Ut a0 U†
t . (13)

The fact that the Hamiltonian operator cannot be affected by this change requires,

Ht (at ) = H0(a0), (14)

which is equivalent to writing:

Ht (a0) = U†
t H0(a0)Ut . (15)

Differentiating both sides of (15) leads to the RGPEP equation:

H′
t (a0) = [Gt (a0),Ht (a0)], (16)

where Gt = −U†
t U ′

t , and therefore, Ut = T exp
(
− ∫ t

0 dτ Gτ

)
. T denotes ordering in τ . The RGPEP equa-

tion (16) is the engine of this procedure. It governs the evolution of effective particles with the scale parameter
t . It encodes the relation between pointlike quantum gluons appearing in the canonical Hamiltonian and the
effective, or constituent ones referred to by effective phenomenological models describing bound states.

We choose the generator to be the commutator Gt = [H f ,HPt ],2 whereH f is the non-interacting term of
the Hamiltonian and HPt is defined in terms of Ht .

Ht is a series of normal-ordered products of creation and annihilation operators,

Ht (a0) =
∞∑
n=2

∑
i1,i2,...,in

ct (i1, . . . , in) a
†
0i1

· · · a0in . (17)

HPt differs from Ht by the vertex total +-momentum factor,

HPt (a0) =
∞∑
n=2

∑
i1,i2,...,in

ct (i1, . . . , in)

(
1

2

n∑
k=1

p+
ik

)2

a†0i1 · · · a0in . (18)

The initial condition for the differential equation (16) is given by the regularized canonical Hamiltonian given
in Sect. 2.1 plus counterterms. More precisely, the initial condition is given by the physical fact that at very
small distances or very high energies, the regularized canonical Hamiltonian must be recovered and any
regularization dependence must be removed.

We solve the RGPEP equation (16) for the effective Hamiltonians using an expansion in powers of the
coupling constant g up to third order and we focus our studies on the structure of the three-gluon term [1,3].

1 Other regulating functions are available [3]. Finite dependence of the effective Hamiltonian on the small-x regularization
may be thought to be related to the vacuum state problem, the phenomena of symmetry breaking and confinement [4].

2 Other generators are also allowed but may lead to more complicated expressions [8]. Our choice is similar to Wegner’s [9].
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Fig. 1 Graphical representation of terms contributing to the effective three-gluon vertex (third-order expansion) [3]. Thin internal
lines correspond to intermediate bare gluons and thick external lines correspond to the creation and annihilation operators that
appear in the three-gluon FF Hamiltonian interaction term for effective gluons of size s. Dashed lines with transverse bars
represent the combined contributions of terms (8) and (9). The black dots indicate counterterms

3 The Three-Gluon Vertex

The third-order effective Hamiltonian expansion have the following structure:

Ht = H11,0,t + H11,g2,t + H21,g,t + H12,g,t + H31,g2,t + H13,g2,t + H22,g2,t + H21,g3,t + H12,g3,t .

(19)

The first and second subscripts indicate the number of creation and annihilation operators, respectively. The
third subscript labels the order in powers of g. Finally, the last label indicates the dependence on the scale
parameter t .

The initial condition at t = 0 has the form:

H0 = H11,0,0 + H11,g2,0 + H21,g,0 + H12,g,0 + H31,g2,0 + H13,g2,0 + H22,g2,0 + H21,g3,0 + H12,g3,0,

(20)

and consists of the regularized canonical Hamiltonian plus counterterms. The latter are calculated in such a
way that Ht remains finite when Δ → ∞. It is not possible to remove the small-x cutoff δ at these point.
However, this dependence will be of interest in higher-order calculations, since the small-x phenomena are
thought to be related to the vacuum-state behavior. The last step in the RGPEP is to replace bare creation and
annihilation operators by effective ones.

The three-gluon vertex and the running of the Hamiltonian coupling are encoded in the sum of first- and
third-order terms:

H(1+3),t = (H21,g,t + H12,g,t ) + (H21,g3,t + H12,g3,t ). (21)

The third-order solution requires the knowledge of the first and second-order solutions. The sum of all these
contributions has the form3 [3] (see Fig. 1):

H(1+3),t =
∑
123

∫
[123] δ̃(k1 + k2 − k3) f12t

[
Ỹ21 t (x1, κ

⊥
12, σ )a†1t a

†
2t a3t + Ỹ12 t (x1, κ

⊥
12, σ ) a†3t a2t a1t

]

(22)

where f12t = e−(k1+k2)4t is a form factor and Ỹ21 t (x1, κ⊥
12, σ ) is the object of our study. We define the

Hamiltonian coupling constant gt as the coefficient in front of the canonical color, spin and momentum
dependent factor Y123(x1, κ⊥

12, σ ) = i f c1c2c3[ε∗
1ε

∗
2 · ε3κ

⊥
12 − ε∗

1ε3 · ε∗
2κ

⊥
12

1
x2/3

− ε∗
2ε3 · ε∗

1κ
⊥
12

1
x1/3

] in the limit

κ⊥
12 → 0, for some value of x1 denoted by x0. So,

lim
κ⊥
12→0

Ỹt (x1, κ
⊥
12, σ ) = lim

κ⊥
12→0

[
ct (x1, κ

⊥
12)Y123(x1, κ

⊥
12, σ ) + g3T̃3 finite(x1, κ

⊥
12, σ )

]
(23)

3 The subscripts 1,2,3 refer to the gluon lines indicated in Fig. 1. So, e.g. κ⊥
12 = x2/3κ⊥

1/3 − x1/3κ⊥
2/3.
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where T̃3 finite(x1, κ⊥
12, σ ) is a finite part contained in the counterterm and does not contribute to the running

coupling,

lim
κ⊥
12→0

ct (x1, κ
⊥
12) = g + g3 lim

κ⊥
12→0

[
c3t (x1, κ

⊥
12) − c3t0(x1, κ

⊥
12)

]
. (24)

And assuming some value for g0 at some small t0, gt0 = g0,

gt ≡ ct (x1) = g0 + g30
[
c3t (x1) − c3t0(x1)

]
. (25)

We introduce now the momentum scale parameter λ = t−1/4. This yields,

gλ = g0 − g30
48π2 Nc 11 ln

λ

λ0
. (26)

Differentiation of the latter with respect to λ leads to

λ
d

dλ
gλ = β0g

3
λ, with β0 = −11Nc

48π2 . (27)

This result equals the asymptotic freedom result in Refs. [10,11], when one identifies λ with the momentum
scale of external gluon lines in Feynman diagrams. Our result also coincides with the expression obtained
in [8], where an analogous calculation were performed using a different generator.

4 Summary and Conclusion

We have applied the RGPEP to the quantum SU (3)Yang-Mills theory and extracted the running coupling from
the three-gluon-vertex term in the third-order effective Hamiltonian. The result turns out to be independent
of the choice of the generator, as it coincides with the one obtained in an analogous calculation performed
in [8], using a different generator. The present generator, however, leads to simpler equations than the older
one, which is desired and needed for our forthcoming forth-order calculations, required for any attempt at
description of physical systems using QCD [4]. The obtained running coupling is of the form that is familiar
from other formalism and renormalization schemes and passes the test of producing asymptotic freedom,
which any method aiming at solving QCD must past.
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