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Abstract An α–n–n three-cluster model of the 6He nucleus is studied by solving the Faddeev equations, where
the cluster potential between α and n takes into account the Pauli exclusion correction, using the Fish-Bone
Optical Model (Schmid in Z Phys A 297:105, 1980). The resulting binding energy of the ground state (0+) is
0.831 MeV and the resonance energy of the first excited state (2+), 0.60−i0.012 MeV, is extracted from the
three-cluster break-up threshold. These theoretical values are in reasonable agreement with the experimental
data: 0.973 MeV and 0.824−i0.056 MeV, respectively. In order to investigate the structure of these states, we
calculate the angle density matrix for the � n1αn2 angle in the triangle formed by the three clusters. The angle
density matrix of the ground state has two peaks and the configuration of 0+ wave function corresponding to
the peaks constitutes a mixture of an acute-angled triangle structure and an obtuse-angled one. This finding is
consistent with the former result from a variational approach (Hagino and Sagawa in Phys Rev C 72:044321,
2005). On the other hand, in the case of 2+ state only a single peak is obtained.

1 Introduction

Recently, neutron rich nuclei have been vigorously measured at RIKEN and GSI. The 6He nucleus plays a
special role in these investigations, because its neutron halo skin structure can be easily attributed to the picture
that it consists of the α core and weakly correlated two neutrons. This three-cluster system was investigated
within the Faddeev framework by Eskandarian and Afnan [3], however, their investigation was restricted to
the isospin T = 1 in 6Li and neglected the Coulomb force.

In this paper we employ the Fish-Bone Optical Model (FBOM) [1] to the α–n potential. Using the Orthog-
onality Condition Model (OCM) [4], one aims to remove Pauli forbidden states (PFS) from the cluster wave
function. Still, despite the fact that OCM is applied [5] to the three-alpha cluster model of 12C nucleus, some
spurious states corresponding to the PFS were observed. On the other hand, not only the PFS but also the
almost PFS (APFS) are correctly treated in the FBOM [1]. It was shown in [6] that the three-cluster calculation
with the FBOM potential does not lead to such spurious states at all. The potential was expanded in a separable
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form by Unitary Interpolation Method [7]. A new parametrization of the FBOM of the α–n potential appeared
recently [8], however, we employ here the original version [7]. We follow the calculation of the former work
[3] and obtain the wave function from the FBOM potential.

In following Sects. 2 and 3 we will explain the cluster potentials of α–n and n–n, and the Faddeev three-
body equations. Results for the binding energies, the components of the wave function and the expectation
values of the potential for the ground state 0+, are discussed in Sect. 4. We use an additional scheme (Complex
Energy Method [9]) for the resonance state 2+.

In Sect. 5, in order to investigate the inner structure of the wave function, we calculate an angle density
matrix which was introduced by Hagino and Sagawa [2]. They used various Hamiltonians which were made
with a density-dependent contact interaction by fitting the corresponding differential cross section of the
subsystem [10]. However, their variational calculation displayed spurious states (deeply bound s states) [10]
below their ground states. Thus we study wave functions obtained from different Hamiltonians and compare
our predictions with the angle density matrices given in literature. Summary will be given in Sect. 6.

2 The α–n Interaction

The potentials in our study have a separable form. The Unitary Interpolation Method [7] is applied to the
Fish-Bone Optical Model of the α–n interaction [1]. This potential is restricted to low partial waves: l j = S1/2,
P3/2 and P1/2, where l and j denote the angular momentum and the total angular momentum, respectively.
The potential V sep(p, p′) has a following form;

V sep
l j

(p, p′) =
∑

m,n

gl j ,m(p)Λ
l j
m,ngl j ,n(p

′) (1)

with the form factor gl j ,m(p):

gl j ,m(p) =
∑

ν

α
l j
ν,mu

l j
ν (p), (2)

where Λ
l j
m,n and α

l j
ν,m are the coupling constants and the coefficients of the expansion into the harmonic

oscillator functions u
l j
ν (p) with the principal quantum number ν, respectively. The separable form satisfies the

modified Lippmann-Schwinger equation:

τ
l j
mn(E2) = Λ

l j
mn +

∑

s,t

Λ
l j
ms

∞∫

0

gl j ,s(p)gl j ,t (p)

E2 − p2/2μ
p2dp τ

l j
tn(E2), (3)

where E2 is the center of mass energy of the α–n two-body system. The propagator τ
l j
mn is substituted into the

Faddeev equation (Eq. (9)) in the next section. The ranks of the matrices Λ and τ are 3, 2 and 2 for S1/2, P3/2
and P1/2, respectively.

The FBOM potential treats correctly the Pauli exclusion principle among the two clusters [1]. In particular,

the coupling constant Λ in Eq. (1) with respect to the PFS is prepared to produce a huge repulsion (Λ
S1/2
11 =

99981.8816 MeV)[7]. In Figs. 1, 2, and 3 we demonstrate the form factors gl j ,n(p) for each partial wave. For
instance, the form factor gS1/2,1(p) corresponds to a PFS [7].

For the sake of the comparison with the former study [3] we keep the same n–n potential, with Eskandarian
and Afnan’s form factor given as a simple rank 1 Yamaguchi type:

gl j ,1(p) = pl
(
p2 + β2

l j

)l+1 . (4)
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Fig. 1 Form factors gl j ,m(p) for S1/2 of the α–n potential. The solid, dashed and short-dashed lines are for rank m = 1, 2 and
3, respectively
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Fig. 2 Form factors gl j ,m(p) for P3/2 of the α–n potential. The solid and dashed lines are for rank m = 1 and 2, respectively

3 Three-Body Formalism

The separable method of the three-body Faddeev formalism was introduced in the textbook of Afnan and
Thomas [11] in detail. Also the representation of the α–n–n system follows the formalism which was prepared
for the similar case of α–α–Λ system [12]. Therefore, we refer the reader to [12] for details and restrict
ourselves to a very brief description of our formalism.

We denote the set of z-components for the three particles’ spins (σ1, σ2, σ3) by d = (d1, d2, d3). Then the
free three-body state in Faddeev particle channel i is given by |piqidi 〉, where pi and qi are the two (relative)
Jacobi momentum vectors, respectively. This state vector is represented by usual couplings of the orbital
angular momenta and spins. We introduce a standard spin-angular-momentum coupling scheme σ j +σk = si ,
si + li = ji , ji + σi = Ki , and Ki + Li = J , where J is the total angular momentum of the system with the
corresponding z-component M . Here we can define a state channel Ni corresponding to the particle channel i :

Ni ≡ [{((li si ) jiσi )Ki Li }]. (5)
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Fig. 3 Form factors gl j ,m(p) for P1/2 of the α–n potential. The lines are the same as in Fig. 2

Therefore, we have

|piqid〉 =
∑

li si ji Ki Li J

|piqi (li si ) ji Ki Li J 〉
∑

Mli Msi M ji MKi MLi M

×〈σ j d jσkdk |si Msi 〉〈l j Ml j si Msi | ji M ji 〉〈 ji M jiσi di |KiMKi 〉
×〈KiMKi Li MLi |JM〉Yli Mli

(p̂i )YLi MLi
(q̂i )

=
∑

Ni

|piqi Ni 〉〈Ni |p̂i q̂id〉. (6)

The wave function � Jπ
consists of three Faddeev components ψ Jπ

i , (i = 1, 2 and 3),

� Jπ = ψ Jπ

1 + ψ Jπ

2 + ψ Jπ

3 , (7)

while the Faddeev component is represented in the partial-wave basis:

ψ Jπ

i (pi ,qi ) =
〈
piqid|ψ Jπ

i

〉

=
∑

Ni

∑

m,n

1

E − p2
i /2μi − q2

i /2νi
gli (Ni )
m (pi )τ

li (Ni )
m,n (E − q2

i /2νi ) f
Jπ

Ni ,n(qi )〈Ni |p̂i q̂id〉, (8)

where f J
π

Ni ,n
is called the reduced wave function and it satisfies the Amado–Lovelace–Mitra equations;

f J
π

Ni ,n(qi ) =
3∑

k=1

∑

Nk ,m,t

∞∫

0

Z Jπ

Ni ,Nk ,n,m(qi , qk; E)τ
lk (Nk )
m,t (E − q2

k /2νk)

× f J
π

Nk ,t (qk)q
2
k dqk/2π2. (9)

Here μi and νi denote the reduced masses of two-body and three-body system [12]. In practical numerical
calculations we introduce discretization grids with integral points so the integral kernel becomes a matrix and
Eq. (9) is turned into an eigenvalue problem:

[Z(E)][τ ]f = η f, (10)
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where the eigenvalue η is required to be 1, when the three-body energy E coincides with the binding energy
E = Eb. The integral kernel Z(E) in Eq. (9) is given as

Z Jπ

Ni N j
(qi , q j ; E) = (1 − δi j )q

li
i q

l j
j

(li+l j+Li+L j )/2∑

L=0

FL
Ni N j

(qi , q j )
∑

a,b

ALab
Ni N j

(q j/qi )
b−a (11)

with

FL
Ni N j

(qi , q j ; E) = 1

2

1∫

−1

gNi (pi )gN j (p j )p
−li
i p

−l j
j PL(cos θ)

E − q2
i /2mi − q2

j /2m j − (qi + q j )2/2mk
d cos θ, (12)

where PL is the Legendre polynomial and the coefficient ALab
Ni N j

in Eq. (9) is the recoupling coefficient
introduced in the textbook of Afnan and Thomas [11]. Note that in our former paper [12] important information
about the phase of the recoupling coefficients is provided.

Later we need the modified wave function F Jπ

Nim
(qi ) which is defined as

F Jπ

Nim(qi ) ≡
∑

n

τ li (Ni )
mn (E − q2

i /2νi ) f
Jπ

Ni n(qi ). (13)

4 Calculation and Results

Partial wave approximation for the 2-cluster potential is taken into account only up to p-wave in the α–n
subsystem and 1S0 in n–n one. The ground bound state 0+ of the 6He nucleus consists of seven state channels,
as shown in Table 1. The particle channels (subsystem clusters)spectator=(αn2)n1, (n1α)n2 and (n1n2)α are
labelled 1, 2 and 3, respectively. The numerical integrals are carried out using the Gauss–Legendre method and
the same grid points are employed to solve the Faddeev equation (10) by the Gauss–Seidel method, where the
size of the discretized matrix is about (3 × 7 × rank × number of integral points)2. Table 2 shows the binding
energies of our model and the ones obtained in the former study [3]. For the sake of comparison, the other
binding energies calculated with several different schemes and potentials are demonstrated in Table 2. The
calculations of Refs. [13,14] take explicitly the PFS between α–n into account but in the form of the APFS.

Although the FBOM binding energy of the ground state is closer to the experimental value than the other
predictions, it can be hardly argued that the Hamiltonian reached a high degree of accuracy; there is definitely
room for improvement. From ab initio Green’s Function Monte Carlo calculations [17] it is known that a
contribution from the three-nucleon force is required (�Eα= 4.30 MeV) in order to construct a properly bound

Table 1 The channels for the ground state Jπ = 0+

Angular momentum\particle channel 1,2 1,2 1,2 3

L 0 1 1 0
K 0 1 1 0
j 1/2 3/2 1/2 0
l 0 1 1 0
s 1/2 1/2 1/2 0
Label of the state channel S1/2 P3/2 P1/2

1S0

Table 2 The calculated binding energies Eb and the resonance ones E1 compared with the other model calculation and the
experimental data in MeV

Model and Scheme Eb (0+) E1 (2+) = E(real part) − i�/2

Kukulin et al. [13] Variational −0.138 1.463
Zhukov et al. [14] Hyperspherical Harmonics, Faddeev −0.4
Suzuki [15] Cluster-orbital shell model −0.50
Eskandarian et al. [3] Model A, Faddeev calculation −0.56 0.95−i 0.15
Present works Pauli Corrected, Faddeev calculation −0.831 0.60−i 0.012
Exp. [16] – −0.973 0.824−i 0.056
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Table 3 Components of the state Jπ = 0+

Particle channel State channel Direct (%) Exchange (%) Total (%)

1,2 S1/2 1.5 −1.8 −0.3
1,2 P3/2 18.1 17.2 35.3
1,2 P1/2 0.5 1.0 1.5
3 1S0 21.3 5.7 27.0
Total – 61.5 38.5 100

Table 4 Expectation values of the potential for SC in Jπ = 0+

Particle channel State channel Direct (MeV) Exchange (MeV) Total (MeV)

1,2 S1/2 −0.4 −0.1 −0.5
1,2 P3/2 −6.2 −4.8 −11.0
1,2 P1/2 −0.1 −0.3 −0.4
3 1S0 −3.1 −2.4 −5.5
Total – −16.5 −12.8 −29.3

α particle. 1 Similarly, the contribution of the three-nucleon force is necessary (�E6He=5.48 MeV) to build
the 6He nucleus with the proper binding energy. A rough estimate of the contribution of the three-cluster force
in the α–n–n system can be the difference �E6He − �Eα = 1.18 MeV. However, the core nucleus α inside
6He might be very dense and the contribution of the three-nucleon force in the core could become larger. Our
cluster model does not treat such a core excitation.

Recently, we introduced a cluster model [18], which explicitly incorporated the core excitation for the
neutron rich nuclei 8He and 10He. In the case of 8He (10He) the core nucleus 6He (10He) has an excited state
2+ whose energy spectrum is close to the ground state one. In our present model the energy of the excitation
state of the core nucleus α is very far from the ground state one. Consequently, in the α–n–n system we could
see that the difference (�E6He − �Eα) of the three-cluster force originates mainly from the three-nucleon
force inside the core nucleus α.

The total wave function � is normalized by

1 =
〈
� Jπ |� Jπ

〉
=

3∑

i=1

〈
ψ Jπ

i |ψ Jπ

i

〉
+

6∑

i �= j

〈
ψ Jπ

i |ψ Jπ

j

〉
, (14)

where the first sum on the right-hand side is called the direct component and the second one comprises the
exchange components. These quantities are shown in Table 3 for the few considered state channels. We thus
observe that the wave function consists mainly of the P3/2 state channel (70.6 %=35.3 %×2) and the S1/2 state
channel is suppressed because of FBS and AFBS.

In addition to the wave function components, Table 4 shows the expectation values of the potential for the
state channel. These expectation values are defined as

〈
� Jπ |V |� Jπ

〉
=

3∑

i=1

〈
ψ Jπ

i |G−1
0 |ψ Jπ

i

〉
+

6∑

i �= j

〈
ψ Jπ

i |G−1
0 |ψ Jπ

j

〉
, (15)

where the first sum on the right-hand side gives the so-called direct expectation values and the second term
yields the exchange expectation values. These potential expectation values reveal a similar tendency to the
components of the wave function. It is clear that the largest contribution comes from the P3/2 partial wave.

Next we concentrate on the first excited state 2+. In this case we have 17 state channels as shown in Table
5. The integral kernel of the three-body Green’s function (G0) generates a singularity in the continuum state
region (E > 0) and a suitable method has to be used to deal with this type of the Faddeev equation. Our choice
is the Complex Energy Method (CEM) [9], recently successfully applied to several nuclear systems [19–21].
Using the CEM we obtain a FBOM resonance state 2+ and the result is shown in Table 2.

1 In [17] the realistic Argonne V18 nucleon–nucleon potential and the Illinois-2 version of the three-nucleon force was used.
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Table 5 The state channels for the excited state Jπ = 2+

Angular momentum\particle channel 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 3

L 2 2 1 3 1 3 1 3 2
K 0 1 1 1 1 1 2 2 0
j 1/2 1/2 1/2 1/2 3/2 3/2 3/2 3/2 0
l 0 0 1 1 1 1 1 1 0
s 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 0

1n
2n

pαn1 pαn2

pαn1
pαn2

1n n

π/2 θ > π/2θ <

α
α

Acute−angled triangle Obtuse−angled triangle

Fig. 4 The acute-angled triangle and obtuse-angled triangle three-cluster α–n–n configurations in the 6He nucleus

5 The Angle Density Matrix

In order to investigate the inner structure of the wave function we calculate the angle density matrix ρ(θ),
which was introduced by Hagino Sagawa [2]:

ρ(θ) = 1

2π
〈�|δ(θ̃ − θ)|�〉 (16)

with

cos θ̃ = − pαn1 · pαn2∣∣pαn1

∣∣ ∣∣pαn2

∣∣ , (17)

where the vectorspαn1 andpαn2 are the relative momenta between the α–n. There are two typical configurations
of the three-body system in question. In the first case an acute-angled triangle (di-neutron) is formed and in the
second one an obtuse-angled triangle (cigar-like) shape arises. Figure 4 illustrates the definition of the angle
θ = � n1αn2.

Figure 5 shows the angle density matrix ρ(θ), which is normalized as

2π

π∫

0

ρ(θ) sin θdθ = 1. (18)

The solid (long-dashed) line in this figure shows the angle density matrix of the 0+ state obtained with the
FBOM and using the potential from [3]. The percentage contributions from the acute-angled and obtuse-
angled triangle configurations are integrated from θ = 0 to π/2. The resulting integrated contributions for
each configuration are shown in Table 6. In the case of FBOM potential the two configurations appear nearly
equally often in the three-body system. In the calculation with the potential from [3], the acute-angled triangle
configuration clearly dominates. Looking at Fig. 4 of [2] one can see that the corresponding result from
that work lies between our two predictions. It is very interesting to see that our result is consistent with the
prediction obtained using the variational approach, which is derived from a phenomenological single-particle
Hamiltonian [10].

We try to visualize the angle density matrix of the resonance state. Since the resonance state belongs to
the continuum, the norm of its wave function is not well defined. We thus replace the original wave functions
with approximate ones, which correspond to the eigenvalue η = 0.96 at E = 0.0 MeV. Figure 5 shows the
short-dashed (dotted) line of the angle density of the state 2+ obtained with the FBOM (Eskandarian–Afnan
[3]) potential. In both cases a single broad peak at θ ≈ 60◦ is visible.
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Fig. 5 The angle density matrix ρ(θ). The solid and long-dashed (short-dashed and dotted) lines are calculated from FBOM[7]
and Eskandarian–Afnan [3] potentials for the ground state 0+ (the excited state 2+), respectively

Table 6 Percentage contributions of the acute-angled triangle and obtuse-angled triangle configurations in the ground state

Potential\configuration Acute-angled triangle (%) Obtuse-angled triangle (%)

FBOM [7] 57.8 42.2
Eskandarian–Afnan [3] 72.3 27.7

6 Summary

We solved the Faddeev equation of the α–n–n model to obtain the ground state 0+ and the first excited state
2+ of the 6He nucleus. Using the Fish-Bone Optical Model [1] for α–n potential we get the binding energy
−0.831 MeV and the resonance energy of 0.60−i 0.012 MeV. These values compare rather well with the
experimental data: −0.973 MeV and 0.824−i 0.056 MeV, respectively. The partial wave P3/2 is the most
important component of the ground bound state, since its contribution amounts to 70.6 %. We calculated the
angle density matrices, which were introduced by Hagino and Sagawa [2], to study the structure of these wave
functions. The angle density matrix of 0+ has two peaks whose configurations are illustrated as an acute-angled
triangle and an obtuse-angled one. Our percentage contribution of the obtuse-angled triangle part is larger than
the one obtained from Eskandarian–Afnan because the Pauli exclusion correction is taken into account in our
α–n cluster potential. In addition, our angle density matrix and the one shown in [2] reveal a considerable
similarity. Contrary to the ground state, the angle density of the resonance state gives only a single peak.

As the natural extension of the present work, we plan to investigate the angle density matrices of other
neutron-rich nuclei.

Acknowledgments One of authors (H.K.) would like to thank H. Witała, J. Golak and R. Skibiński for fruitful discussions during
his stay at the Jagiellonian University in Kraków. The numerical calculations were partially performed on the interactive server
at RCNP, Osaka University, Japan, and on the supercomputer cluster of the JSC, Jülich, Germany.

Appendix

The angle density matrix was introduced in Sect. 5. It reads

ρ(θ) = 1

2π
〈�|δ(θ̃ − θ)|�〉 = 1

2π sin θ

∑

l̃

(2l̃ + 1)

2
Pl̃(cos θ)〈�|Pl̃(cos θ̃ )|�〉, (19)
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where the cosine of the angle θ̃ is written as

cos θ̃ = − pαn1 · pαn2∣∣pαn1

∣∣ ∣∣pαn2

∣∣

= ζq2
i + ζq2

j + (1 + ζ 2)qiq j x
√
q2
j + ζ 2q2

i + 2qiq jζ x
√
q2
i + ζ 2q2

j + 2qiq jζ x
(20)

with x = cos θqiq j = qi ·q j

|qi ||q j | and ζ = mn
mn+mα

.

On the other hand, the wave function is approximately represented by using the orthonormality of the UIM
form factor [7]

� Jπ

Ni
(pi , qi ) =

∑

n

gNi ,n(pi )
{
G0F

Jπ

Ni ,n(qi ) + f J
π

Ni ,n(qi )
}

, (21)

where f J
π

Ni ,n
(qi ) and F Jπ

Ni ,n
(qi ) are defined in Eqs. (8) and (13), respectively. We use both wave functions � Jπ

N1

and � Jπ

N2
to calculate the expectation values of the Legendre polynomial with the argument cos θ̃

〈�1|Pl̃(cos θ̃ )|�2〉 =
∞∫

0

q2
1dq1

∞∫

0

q2
2dq2

∑

N1,N2,n,k

{F Jπ

N1,n(q1)Z
l̃(2)
N1,N2,n,k(q1, q2)F

Jπ

N2,k(q2) + F Jπ

N1,n(q1)Z
l̃(1)
N1,N2,n,k(q1, q2) f

Jπ

N2,k(q2)

+ f J
π

N1,n(q1)Z
l̃(1)
N1,N2,n,k(q1, q2)F

Jπ

N2,k(q2) + f J
π

N1,n(q1)Z
l̃(0)
N1,N2,n,k(q1, q2) f

Jπ

N2,k(q2)} (22)

with

Zl̃(y)
Ni ,N j ,n,k(qi , q j ) ≡ i 〈gnGy

0 Pl̃(cos θ̃ )gk〉 j

= (1 − δi j )q
li
i q

l j
j

Lmax∑

L
FLl̃(y)
Ni ,N j

(qi , q j ; E)

li∑

a=0

l j∑

b=0

ALab
Ni ,N j

(q j/qi )
b−a (23)

and

FLl̃(y)
Ni ,N j

(qi , q j ; E) = 1

2

1∫

−1

gNi (pi )gN j (p j )p
−li
i p

−l j
j PL(x)Pl̃(cos θ̃ )

(E − q2
j /2mi − q2

j /2m j − (qi + q j )2/2mk)y
dx . (24)

The maximal value of l̃ is 5, which is sufficient to obtain converged results.
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