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Abstract The Schrödinger-like equation written in terms of the displacement operator is solved analytically
for a inverse square plus Coulomb-like potential. Starting from the newHamiltonian, the effects of the spatially
dependent mass on the bound states and normalized wave functions of the “usual” inverse square plus Coulomb
interaction are discussed.

1 Introduction

It has been argued that the divergences appearing in field theories can be removed with the idea of noncom-
mutativity and this can be done by using a universal invariant length parameter. This approach has became
a central idea in the physical and mathematical points of view [1,2]. Within the quantum mechanics, the
noncommutative coordinates written by the terms of minimum length scale lead to some modifications in
position-momentum commutators [3,4]. This yields an extended Hamiltonian having a position-dependent
mass term in kinetic part with some ambiguity parameters α, β, δ satisfying α +β + δ = 1, and a Schrödinger
equation with effective mass [5–7].

Recently, Filho and co-workers have analysed a quantum system with position-dependent mass by using
a different approach where they suggest a displacement operator given by

Tγ (dx)|x >= |x + dx + γ xdx >, (1)

where γ is a real constant describing the mixing between the displacement and the original position state. This
operator transforms a well-localized state around x to another well-localized state around x + (1 + γ x)dx
while all other physical properties remain unchanged [8]. This operator is written explicitly as

Tγ (dx) = I − i

h̄
p̂γ dx, (2)

where p̂γ corresponds to the generalized linear momentum operator. The commutator between p̂γ and x̂
operator is written as by [x̂, p̂γ ] = (1 + γ x)i h̄ which gives a generalized uncertainty relation

�x�pγ ≥ (1 + γ < x >)
h̄

2
, (3)
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The generalized momentum operator can be given as [8]

p̂γ |α >= −i h̄(1 + γ x)
d

dx
|α >, (4)

and the corresponding deformed derivative is written as Dγ = (1 + γ x) d
dx where p̂γ = −i h̄Dγ . In Ref. [9],

the generalized momentum operator is written in Hermitian form which enables us to write the Hamiltonian
of the system as a Hermitian operator.

The time-dependent form of the equation for a particle moving in a potential field V (x) is written as stated
by Filho et al. [10]

{
i h̄

∂

∂t
+ h̄2

2m
(1 + γ x)

[
(1 + γ x)

∂2

∂x2
+ γ

∂

∂x

]
− V (x)

}
�(x, t) = 0, (5)

If we consider the time-independent Hamiltonian operator to be H = p̂2γ /2m + V (x), we assume the wave

function as �(x, t) = φ(x)e−i Et/h̄ , and obtain the following Schrödinger-like equation for a single particle

[
− h̄2

2m
D2

γ − E + V (x)

]
φ(x) = 0, (6)

or [
2

m(x)

d2

dx2
+ d

dx

(
1

m(x)

)
d

dx
+ 4

h̄2
[E − V (x)]

]
φ(x) = 0, (7)

with m(x) = m(1 + γ x)−2. In Refs. [8,9], the authors have tested their ideas for a free particle, and a
particle moving in a one-dimensional infinite well of length L . They have obtained analytical solutions for
the above systems. They have discussed the expectation values of the position, and the normalization of the
wave functions. In Ref. [8], the authors have also studied the dependence of the transmission and tunnelling
probability on parameter γ for a particle subjected to a potential barrier with height V0 > 0. In Ref. [11],
the general bound state solutions and the corresponding normalized wave functions have been discussed for a
potential function including a quartic and a quadratic term. In the present work, starting from the Schrödinger-
like equation given in Eq. (7), we will search the analytical solutions for a particle moving in an inverse square
plus Coulomb-like potential of the form

V (x) = A

x2
− B

x
,

Our aim is to find the bound states and to see the effect of the parameter γ on the energy eigenvalues. We will
also find the wave functions with their normalization constants.

2 Analytical Solutions

In order to study the effects of displacament operator on the results of the present problem, we change the
variable to z = 1 + γ x , and write the above potential function into Eq. (7) giving

d2φ(z)

dz2
+ 1

z

dφ(z)

dz
+

[
a1
z2

+ a2
z(1 − z)

+ a3
(1 − z)2

]
φ(z) = 0, (8)

where

a1 = M[E − γ (Aγ + B)], (9a)

a2 = −γ M(2Aγ + B), (9b)

a3 = −AMγ 2, (9c)

with M = 2m/γ 2h̄2.
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The transformation on the wave function such as φ(z) = z p(1− z)qψ(z) gives a second order differential
equation

z(1 − z)
d2ψ(z)

dz2
+ [1 + 2p − (1 + 2p + 2q)z]

dψ(z)

dz
+ (a2 − 2pq − q)ψ(z) = 0, (10)

which could be a hypergeometric differential equation if the parameters used in the equation satisfy [12–14]

p2 = M[γ (Aγ + B) − E]; q = 1

2

[
1 ±

√
1 + 4AMγ 2

]
, (11)

Comparing with the hypergeometric differential equation as following

y(1 − y)
d2ω

dy2
+ [c − (a + b + 1)y]dω

dy
− abω = 0, (12)

we obtain the solution of Eq. (9) as

ψ(z) ∼ 2F1(a, b; c; z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k! , (13)

where 2F1(a, b; c; z) is the hypergeometric function and (a)k is Pochhammer symbol [12–14]. The new
parameters in 2F1(a, b; c; z) should be

a = p + q − i
√
ME ; b = p + q + i

√
ME ; c = 1 + 2

√
M[γ (Aγ + B) − E] , (14)

The mathematical solutions of Eq. (8) is written as

φ(z) = Nzp(1 − z)q 2F1(a, b; c; z) . (15)

where the normalization constant N is obtained below. We now obtain the energy eigenvalues of the system
in the next section.

2.1 Energy Spectrum

In order to obtain a physical solution for the wave functions, the parameter a in 2F1(a, b; c; z) should be
a = −n (n = 0, 1, 2, . . .) which is the quantization rule of the system and gives us the energy eigenvalues as

E(n, γ, A, B) = −1

4

⎡
⎣ γ h̄√

2m

(
n + 1

2
+ 1

2

√
1 + 8Am

h̄2

)
−

√
2m

h̄

Aγ + B

n + 1
2 + 1

2

√
1 + 8Am

h̄2

⎤
⎦
2

,

(16)

Firstly, we want to compare our results analytically for the case of “constant” mass. To achieve this aim, we
introduce the principal quantum number as N = n + 1. In this case, the energy eigenvalues are written as

E(N , γ, A, B) = −1

4

⎡
⎣ γ h̄

2
√
2m

(
2N − 1 +

√
1 + 8Am

h̄2

)
− 2

√
2m

h̄

Aγ + B

2N − 1 +
√
1 + 8Am

h̄2

⎤
⎦
2

,

(17)

We obtain the following from the last equation

E(N , 0, A, B) = −1

4

⎡
⎣2

√
2m

h̄

B

2N − 1 +
√
1 + 8Am

h̄2

⎤
⎦
2

, (18)
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Table 1 Energy eigenvalues for the inverse square plus Coulomb-like potential

n γ = 0 γ = 0.1 γ = 0.5 γ = 1.0

0 0.051710 0.058521 0.082237 0.111846
1 0.153947 0.172279 0.241986 0.328809
2 0.254787 0.284476 0.399400 0.542203
3 0.354256 0.395141 0.554523 0.752090
4 0.452378 0.504302 0.707395 0.958530
5 0.549178 0.611985 0.858054 0.958530

Table 2 Energy eigenvalues (−E) for the Coulomb-like potential (B = 5)

n γ = 0 γ = 0.1 γ = 0.5 γ = 1.0

0 12.5000 12.2513 11.2813 10.1250
1 3.12500 2.88000 2.00000 1.12500
2 1.38889 1.15014 0.42014 0.01389
3 0.78125 0.55125 0.03125 0.28125
4 0.50000 0.28125 0.03125 –
5 0.34722 0.14222 0.22222 –

which is exactly the same with Eq. (15) given in Ref. [15]. Equation (17) gives the result for “usual” Coulomb-
like potential for the case of “constant” mass

E(N , 0, 0, B) = −2m

h̄2
B2

4N 2 , (19)

which is the same with Eq. (27) obtained in Ref. [15]. It is suitable now to give the result for the Coulomb-like
potential for the case where the mass depends on spatially coordinate

E(N , γ, 0, B) = 1

2
γ B − γ 2h̄2

32m
n′2 − 2m

h̄2
B2

n′2 . (20)

with n′ = 2N − 1.
Secondly, we summarize the numerical results in Table 1. In general, the numerical analyse for such

potentials are computed for diatomic molecules. So, we give the bound state energies for a diatomic molecule
(CO molecule) in eV where the parameter values used here are taken from Ref. [16] inserting a new quantity
E0 = h̄2/mr20 and, by comparing, we set the potential parameters as A = Der2e and B = 2Dere (De is the
dissociation energy and re is the equilibrium distance). By using Eq. (16), the binding energies are calculated
four different values of parameter γ to see the effect of position-dependent mass on energy levels of the
inverse square plus Coulomb-like potential. It is also seen in Table 1 that we give some numerical results for
the potential for the constant mass case (γ = 0). There is an increasingly contribution of the parameter γ
on the energy levels of the potential. Finally, we summarize some numerical energy eigenvalues obtaining
from Eq. (20) for the Coulomb-like potential (A = 0) for both two cases of γ �= 0 and γ = 0, respectively,
in Table 2. Here, our aim is just to giving an idea about the effect of parameter γ on the energy levels for
the Coulomb problem, the results are obtained in atomic units. It is seen that the contribution of parameter γ
increases while it’s value increases. In Tables, we use only the values for γ falling into the range [0, 1]. The
dependency of the energy eigenvalues on the displacement operator for the case where the γ -values greater
than one are given in Fig. 1. We plot the variation of energy eigenvalue only for ground states for the inverse
square plus Coulomb-like potential, and Coulomb-like potential, respectively, because the shape for the upper
energy levels are similar. It is observed that the results in Fig. 1 are consistent with the ones given in Tables.

2.2 Normalization

The wave functions should be satisfy
∫ +∞

−∞
|φ(z)|2dz = 1, (21)
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Fig. 1 The dependencies of energy eigenvalues for the inverse square plus Coulomb-like potential (left panel), and the Coulomb-
like potential (right panel) on mixing parameter γ . a Energy for inverse square plus Coulomb-like potential. b Energy for
Coulomb-like potential (−E)

By using the following identity for the hypergeometric functions for |z| → ∞ [14]

2F1(a, b; c; z) = �(b − a)�(c)

�(b)�(c − a)
(−z)−a + �(a − b)�(c)

�(a)�(c − b)
(−z)−b, (22)

Equation (21) is written as

2|N |2
∫ ∞

0
(z)2p(1 − z)2q

(
�1z

n + �2z
−(n+2p+2q)

)2
dz = 1, (23)

where

�1 = (−1)n
�(2n + 2p + 2q)�(1 + 2p)

�(n + 2p + 2q)�(1 + n + 2p)
; �2 = (−1)−(n+2p+2q) �(−2n − 2p − 2q)�(1 + 2p)

�(−n)�(1 − n − 2q)
,

(24)

By defining a new variable such as y = z/(1 + z) we can use the integral Eqs. [13,14]

∫ 1

0
tr−1(1 − t)r

′−1(1 − t x)−r−r ′
dt = B(r, r ′) 2F1(r + r ′, r; r + r ′; x), (25)

where B(a′, b′) is the Beta integral [12–14]. Using Eq. (25) gives us the normalization constant as

N = 1√
2

1√
I1 + I2 + I3

, (26)

where

I1 = �2
1B(1 + 2n + 2p,−1 − 2n − 2p − 2q) 2F1(−2q, 1 + 2n + 2p;−2q; 2),

I2 = 2�1�2B(1 − 2q,−1) 2F1(−2q, 1 − 2q;−2q; 2),
I3 = �2

2B(1 − 2n − 2p − 4q,−1 − 2n − 2p − 2q) 2F1(−2q, 1 − 2n − 2p − 2q;−2q; 2). (27)



702 A. Arda, R. Sever

3 Conclusion

Starting from the Schrödinger-like equation written in terms of the translation operator, we have analysed
the changes of the bound states of a inverse square plus Coulomb-like potential. We have computed the
corresponding normalized wave functions analytically. We have also given two tables, and a figure to see the
variation of the bound states according to the parameter γ . We have found that our analytical results obtained
for the bound states are in agreement with the ones obtained for the case where the mass is constant as γ → 0.
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