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Abstract We investigate renormalization group limit cycleswithin the similarity renormalization group (SRG)
and discuss their signatures in the evolved interaction. A quantitative method to detect limit cycles in the
interaction and to extract their period is proposed. Several SRG generators are compared regarding their
suitability for this purpose. As a test case, we consider the limit cycle of the inverse square potential.

1 Introduction

Few-body systems with resonant interactions have universal properties independent of the details of the inter-
action at short distances [1]. If the scattering length a is much larger than the range of the interaction r0, the
Efimov effect can occur [2]: there is a geometric spectrum of three-body bound states with an accumulation
of states at threshold. For identical bosons in the unitary limit, the Efimov spectrum satisfies the geometric
scaling relation

E (n)
3

E (n+1)
3

= (
eπ/s0

)2
, (1)

where s0 = 1.00624 . . . is a transcendental number. In general, the value of s0 depends on the symmetries
of the three-body system, the number of interacting pairs, and the masses of the particles involved, but the
form of the spectrum (1) is universal. The invariance of the spectrum under discrete scale transformations with
the preferred scaling factor squared e2π/s0 ≈ (22.7)2 can be understood as the consequence of a three-body
interaction H governed by a renormalization group (RG) limit cycle [3–6]. The coupling constant H(Λ) is
then a periodic function of ln(Λ)with period π/s0 whereΛ is an ultraviolet cutoff in momentum space used to
regulate the theory at short distances. More generally, the limit cycle will be manifest in observables through
their log-periodic dependence on the scattering length or other control parameters of the system [1]. The
period of this log-periodic behavior is again determined by the discrete scaling factor which is the key quantity
determining the properties of the limit cycle.

The universal Efimov spectrum and related higher-body bound states have been observed in ultracold
atomic gases in a variety of experiments with different atom species [7–9]. In heteronuclear mixtures the
scaling factors can be significantly smaller than for ideal bosons. For example, in a mixture of 6Li and 133Cs
atoms, the ratio of subsequent 133Cs–133Cs–6Li bound states is predicted to be (4.88)2. Such heteronuclear
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Efimov states have recently been observed in experiment and the prediction of the scaling factor was confirmed
[10,11]. Finally, we note that the Efimov effect also provides a universal binding mechanism for S-wave states
in weakly-bound nuclei. However, an observation of the discrete scaling relation between different states in one
nucleus has proven elusive to date since the known S-wave halo nuclei have no excited states. (See Ref. [12]
for a review.)

Here, we investigate the manifestation of RG limit cycles in the similarity renormalization group (SRG).
The SRG was developed independently by Wegner [13] and by Glazek and Wilson [14,15]. In recent years, it
has become a standard tool to soften nuclear interactions for improved convergence in many-body calculations
[16,17]. The SRG generates a continuous series of unitary transformations of the Hamiltonian from the
evolutionwith a flow parameter s. As the RGflow evolves, the interaction is typically softened at the expense of
introducing induced many-body forces. Ideally, the evolution is carried out to a value s such that the interaction
is softend enough to achieve convergence in many-body calculations without generating large contributions
from induced many-body forces. Recent advances in SRG technology have, e.g., allowed to extend ab initio
calculations to P-shell nuclei [18] or perturbative neutron matter calculations with consistent three-body forces
[19]. The success of SRG methods in nuclear physics motivates our study of the manifestation of RG limit
cycles within the SRG.

The emphasis of this work is on formulating criteria for detecting a limit cycle in the evolved interaction.1

In particular, we study the numerical extraction of the discrete scaling factor. A long term goal of our work is
the derivation of the limit cycle in the pionless EFT for the nuclear three-body system. While it is generally
assumed that the pionless EFT in which the Efimov effect and corresponding limit cycle are manifest appears
as the low-energy limit of a more fundamental chiral EFT with explicit pions, no explicit derivation has ever
been given. Our work provides a first step towards this goal. As a test case, we investigate the attractive
inverse square potential which is known to have an exact limit cycle beyond a critical coupling strength. For
convenience, we will use natural units with h̄ = m = 1 in the following.

2 SRG Basics

We start with a brief review of the basic properties of the SRG. A more detailed discussion can be found in
Refs. [17,20].

The SRG generates a continuous series of unitary transformations on the Hamiltonian governed by a flow
parameter s:

H(s) = U (s)H(s = 0)U (s)† = T + V (s), (2)

where U (s) is a unitary operator. Often the kinetic energy is left unchanged per definition, such that the
SRG generates an evolution of the interaction potential V . Defining the anti-Hermitian operator η(s) =
( d
dsU (s))U (s)† = [G(s), H(s)], the evolution equation for the Hamiltonian can be written as

dH(s)

ds
= [[G(s), H(s)], H(s)] , (3)

where the Hermitian operator G(s) is called the generator of the SRG transformation. The generatorG is often
taken independent of s. A frequent choice for G is the kinetic energy T . In this case, the differential equation
can be written as

dV

ds
= 2TVT − VTT − TTV + TVV + VVT − 2VTV. (4)

If we consider a two-body system with identical particles, we can write the flow equation for the two-body
interaction V2 in the space of relative momenta as

d

ds
〈p|V2|q〉 = −(p2 − q2)2 〈p|V2|q〉 +

∫ ∞

0

d3k

(2π)3
(p2 + q2 − 2k2)〈p|V2|k〉〈k|V2|q〉. (5)

The evolution of partial waves decouple in the two-body system, thus Eq. (5) holds for every partial wave. In
this representation one can recognize a major characteristic of the SRG with the T generator. Clearly, the SRG
transformation has a fixed point if H(s) commutes with T , i.e. H(s) is diagonal.

1 We note that a limit cycle will also be manifest in physical observables through universal scaling relations [1].
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For weak interactions, the second term in Eq. (5) can be neglected and the solution is simply

〈p|V2(s)|q〉 = 〈p|V2(0)|q〉 exp(−s(p2 − q2)2). (6)

All non-diagonal matrix elements approach zero during the evolution and thus a decoupling between low-
energy and high-energy matrix elements is achieved. Although the second term in Eq. (5) typically can not be
neglected, the suppression of non-diagonal matrix elements is a dominant part of the full SRG evolution using
the T generator. The approximate expression (6) also suggests to interpret

λ ≡ s−1/4 (7)

as an effectivemomentum cutoff. Thus the evolution starts at s = 0 corresponding to λ = ∞ and as s increases,
the effective momentum cutoff λ is lowered.

In this work, we also use two alternative generators, which are functions of the kinetic energy. They were
introduced by Li, Anderson, and Furnstahl with the aim to obtain a more efficient evolution which is crucial
for identifying limit cycles [21]. We refer to them as exponential generator, Ge, and inverse generator, Gi :

Ge = −σ 2 exp(−T/σ 2),

Gi = −σ 2

1 + T/σ 2 , (8)

where σ is an arbitrary parameter with dimensions of momentum. Both generators have a power series expan-
sion in T . For small momenta q � σ , they approach T up to a constant which cancels out in η. So depending
on the parameter σ , there is a separation into a low-energy region, where the two generators behave like the
T generator and a high-energy region, where the SRG evolution is suppressed. A detailed discussion of these
generators can be found in Ref. [21].

Since σ has dimensions of momentum, the translation of s to an effective momentum cutoff is more subtle
than for the T generator. The solutions to the analog of Eq. (5) for these generators in the weak interaction
limit are

〈p|V2(s)|q〉 = 〈p|V2(0)|q〉 exp[−sσ 2(q2 − p2)(e−p2/σ 2 − e−q2/σ 2
)], for Ge, (9)

and

〈p|V2(s)|q〉 = 〈p|V2(0)|q〉 exp
[
−sσ 2(q2 − p2)

(
1

1 + p2/σ 2 − 1

1 + q2/σ 2

)]
for Gi . (10)

Thus the effective momentum cutoff is λ ∼ σ−1s−1/2. The constant σ is irrelevant for the parametric depen-
dence on s. Setting it to one, we define the effective momentum cutoff

λa ≡ s−1/2 (11)

for the exponential and inverse generators fromEq. (8). This will have important consequences when extracting
limit cycle periods from the evolved interaction below.

3 Renormalization of the 1/R2-Potential

In the following, we discuss the quantum mechanical 1/R2 potential as a test case. This is a singular potential
which displays an exact limit cycle. We start by reviewing the renormalization of the 1/R2 potential in an
effective field theory framework. Here, the limit cycle becomes manifest in the behavior of a counter term.
We follow the discussion in Ref. [22] where further details can found. In the next section, we investigate the
1/R2 potential in the SRG framework and provide general criteria for isolating limit cycle behavior in the
interaction.

The 1/R2 potential can be written as

V (R) = c

R2 (12)

with R := |R| and c a coupling constant. For subcritical couplings c > − 1
4 , the potential is well behaved

and leads to a unique solution of the Schrödinger equation. For critical and supercritical values c ≤ − 1
4 ,
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however, the potential is singular and displays a limit cycle. In this case, it is useful to define a parameter ν

that characterizes the period of the limit cycle via ν :=
√

−c − 1
4 ,

The momentum-space representation of the potential can be defined via a Fourier transform in D dimen-
sions,

V (Q) = lim
D→3

∫
dDR eiQ·R V (R) = 2π2c

Q
, (13)

where Q is the momentum transfer [22].
In the following, we consider only S-waves. For the momentum space matrix elements of the S-wave

projected potential, we get

V (p, q) = 2π2c

(
θ(p − q)

p
+ θ(q − p)

q

)
, (14)

where q(p) are the incoming (outgoing) momenta. The physical observables can be obtained from the
Lippmann–Schwinger equation

tE (p, k) = V (p, k) + 1

2π2

∫ Λ

0

dq q2

E − q2 + iε
V (p, q)tE (q, k), (15)

where E = k2 is the total energy and the scattering phase shifts are given by

k cot δ = ik − 4π

tE (k, k)|E=k2
. (16)

The bound states are given by the solutions of the corresponding homogeneous equation. As discussed in [22],
Eq. (15) has no unique solution for Λ → ∞ if c < − 1

4 and requires renormalization. We regulate Eq. (15)
with a sharp momentum cutoff Λ and absorb the cutoff dependence by introducing a momentum independent
counterterm δV (Λ).

V (p, q) ⇒ V (p, q) + δV (Λ) = 2π2c

(
θ(p − q)

p
+ θ(q − p)

q
+ H(Λ)

Λ

)
. (17)

Demanding invariance of the zero-energy solution under changes of Λ, one finds

H(Λ) = 1 − 2ν tan(ν ln(Λ/Λ∗))
1 + 2ν tan(ν ln(Λ/Λ∗))

= 1 − 4ν2 ln(Λ/Λ∗) + · · · , (18)

where Λ∗ is a low-energy constant. Including this counterterm in Eq. (15) keeps all low-energy observables
fixed when Λ is varied. One can immediately see that the counterterm H(Λ) displays a limit cycle with a
preferred scaling factor exp(π/ν) since tan is a periodic function with period π . If the cutoff Λ is changed by
multiples of exp(π/ν), the counterterm returns to the same value.

The bound state spectrum satisfies a geometrical scaling relation analog to the Efimov case,

E (n)

E (n+1)
= e2π/ν, (19)

and presents an ideal test case for the application of SRG methods to limit cycles. In the following section, we
will investigate the limit cycle in the inverse square potential using the SRG framework.

4 1/R2 Potential and SRG

In this section,we consider the 1/R2 potential in the SRG framework. Since the SRG is a unitary transformation,
all observables stay constant during the evolution by definition. So in contrast to the explicit construction of
the counterterm in the effective field theory treatment of the previous subsection, we need to extract a signal for
the limit cycle from the evolved interaction. In order to define such a signal, we investigate the SRG evolution
of the 1/R2 potential for critical and subcritical couplings and different generators.

Before we proceed, we specify our units. One free length scale l0 is present in our framework. Therefore,
all dimensionful quantities are given in units of l0.
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Fig. 1 Evolution of the S-wave 1/R2 potential for the T generator with ν = 9 and initial cutoff Λ = 20 l−1
0 . V (k, k′, λ) is shown

for λ ≈ 21.09, 13.67, 8.86, 5.74, 3.72 and 2.41 in units of [1/ l0] from top left to bottom right

4.1 Qualitative Features

First, we consider the standard T generator for the SRG transformation. In Fig. 1, we show the evolution of
the potential for ν = 9 and an initial cutoff in Eq. (15) of Λ = 20 l−1

0 . Introducing this regulator is required
in order to insure that Eq. (15) has a unique solution.
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Fig. 2 S-wave 1/R2 potential evolved with the T generator to λ = 1 l−1
0 with initial Λ = 20 l−1

0 . The potential strengths are
c = −0.125, c = −0.25, c = −0.25 − 12 and c = −0.25 − 22 in the order from top left to bottom right

Changing the value of Λ corresponds to changing the short-distance behavior of the starting interaction.
We leave Λ fixed and investigate the dependence of the interaction on the SRG cutoff λ that is directly related
to the flow parameter s. Striking is the appearance of separated regions in the potential with positive and
negative sign. To make them clearly visible, we choose a rather small maximum value for the coloring of the
potential. As the evolution progresses, these regions are constantly emerging and vanishing while the total
number of regions increases. At the beginning of the evolution, two positive valued regions appear. During
the further progress more and more positive and negative regions emerge. The size of these structures also
decreases, which is related to the general suppression of off-diagonal matrix elements in the SRG evolution
for the T generator. In the last picture, one can clearly see the large number of small regions. We also note that
this behavior occurs on a logarithmic scale of the flow parameter s.

To confirm that the appearance of the oscillatory behavior is indeed related to the limit cycle, we have
evolved 1/R2 potentials with subcritical coupling c > − 1

4 where no limit cycle occurs and critical couplings
c ≤ − 1

4 where it is present. In Fig. 2, four potentials are depicted, which were all evolved to λ = 1 l−1
0 . All

parameters of the potentials except for the coupling constant c are kept constant. For c < − 1
4 , the scaling

factor is given by exp(π/ν) with ν =
√

−c − 1
4 . Thus, if c approaches the critical value − 1

4 the scaling
factor diverges. In Fig. 2, the evolved potentials beneath and at the critical value do not exhibit the oscillatory
behavior. Only the effective diagonalization of V from the SRG transformation is clearly visible. For ν = 1,
two separated regions with opposite signs are observable up to this point in the evolution and for ν = 2
several structures are already visible. This observation clearly supports our conjecture that the appearance of
the oscillatory features is related to the limit cycle.
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Fig. 3 Evolved 1/R2 potential with parameters ν = 9, Λ = 20 l−1
0 and σ = 2 l−1

0 for Ge and Gi . Left panel evolution with the
exponential generator Ge to λa ≈ 8.35 l−1

0 . Right panel evolution with the inverse generator Gi to λa ≈ 10.75 l−1
0

Next, we consider the inverse and exponential generators. We expect a similar qualitative signature of the
limit cycle. However, the alternative generators contain a free dimensionful parameter σ which divides the
potential into two different regions. For small momenta compared to σ , the exponential and inverse generators
reduce to the T generator. For large momenta, the generators approach zero and the evolution is suppressed.
As an example, we have plotted the evolved potential for ν = 9, Λ = 20 l−1

0 , σ = 2 l−1
0 in Fig. 3 for both the

inverse and the exponential generator.
Notable is the fact that the oscillatory features become compressed in a rather small area in the k−k′ plane,

whose size depends on σ . We remark that the qualitative behavior of the exponential and inverse generators
are very similar. Thus, we will not distinguish their traits here. As for the standard T generator, the oscillatory
structures only appear if the coupling constant is supercritical.

4.2 Discrete Scaling Factor

Next we focus on the question of how to extract the discrete scaling factor as the main characteristic of the limit
cycle from the evolved potential. To observe a log-periodic signal, we investigated several different strategies,
which we will discuss in the following.

First, we have investigated the possibility to isolate the oscillatory feature by projecting on the momentum
independent part of the evolved potential. Assuming that the short-range part of the evolved potential can be
expanded as

V (k, k′, λ) = C0(λ) + C2(λ)

2
(k2 + k′2) + · · · , (20)

we have investigated the possibility to extract the preferred scaling factor from the λ dependence of C0. In
particular, we considered the quantities

I1(λ) ≡
∫ ∫

d3k d3k′ V (k, k′, λ) and I2(λ) ≡
∫

d3k V (k, k, λ). (21)

I1(λ) is the projection of the evolved potential whereas I2(λ) is the projection of the diagonal part of the
evolved potential. In both cases, we were not able to detect any clear signals of the limit cycle.

Second, we examined the diagonal elements of the evolved potential V (p, p, s) in dependence of the flow
parameter. This is motivated by the diagonalizing factor exp(−s(p2 − q2)2) from Eq. (6). On the diagonal
of the potential matrix incoming and outgoing momenta are identical, so that the exponential function is one.
Hence, the diagonal elements are the only ones, which do not approach zero during the evolution. So, we
expect a log-periodic signal to be most prominent on the diagonal. A similar strategy was followed by Glazek
[23] in the analysis of a discrete model displaying a limit cycle.

T Generator We start with the standard T generator. In Fig. 4a a typical diagonal element is depicted in
dependence of the flow parameter. The diagonal elements show some irregular oscillations but a clear signature
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Fig. 4 a Diagonal element V (p, p, λ) in dependence of λ for p ≈ 0.84 l−1
0 . b V ′(p, p, λ) from Eq. (22) in dependence of λ for

p ≈ 0.84 l−1
0 . The parameters of the potential are ν = 9 and Λ = 20 l−1

0 . The evolution was carried out with the standard T
generator
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Fig. 5 Evolution of the diagonal elements V (p, p, λa) with ν = 11, Λ = 30 l−1
0 and σ = 0.05 l−1

0 . a Applied exponential
generator with p ≈ 1.19σ . b Applied inverse generator evolved with p ≈ 1.55σ

of the limit cycle period can not be extracted. This is also the case if we subtract the initial potential from the
evolved potential and multiply by λ in order to isolate the SRG analog of the counterterm H from Eq. (17)
above:

V ′(p, p, λ) = (V (p, p, λ) − V (p, p, λ = ∞)) · λ, where λ = s−1/4. (22)

In Fig. 4b, we show V ′(p, p, λ) from Eq. (22) for the same diagonal matrix element as in Fig. 4a. Again a
clear signature of the limit cycle period could not be extracted. This was also the case if different powers of λ
were used in Eq. (22).

AlternativeGeneratorsUsing the standard T generator only very few irregular oscillations can be observed.
Therefore, we try the same strategywith the exponential and inverse generators that allow for a further evolution
in s. Here, a completely different behavior is found if momenta of order σ are considered. In Fig. 5, we plot
a diagonal element with momentum p close to the parameter σ in dependence of the flow parameter for both
generators. One can now clearly see regular oscillations for both generators. The graphs look like a log-periodic
function multiplieded with another slowly-varying function.

An example with explicit values is given in Table 1. The extracted distances between the maxima and
minima are constant to about 5%, except for the first few oscillations at large values of λa which is probably
caused by finite cutoff effects. The period depends on the strength of the initial potential ν. Larger values of
ν result in smaller periods. We find that the extracted periods are in good agreement with the exact formula
exp(π/ν). The agreement is better for larger values of ν, where more oscillations can be seen and the period
can be determined more accurately.

We will now elaborate on the appearance of the oscillations on the diagonal. To this effect, the diagonal
elements V (p, p, λa) are displayed in Fig. 6 as a function of λa for four different momenta. The clearest
oscillations can be extracted in the region p ≈ σ . For larger momenta, the amplitudes of the oscillations



Limit Cycles from the SRG 877

Table 1 Examples of extracted ratios λ
(i)
a /λ

(i+1)
a for the exponential generator, where the λ

(i)
a are the flow parameter values

of the maxima (minima) of V (p, p, λa) with p ≈ 1.19σ for ν = 11 and ν = 5. The parameter values are Λ = 30 l−1
0 and

σ = 0.05 l−1
0 . The exact scaling factors are exp(π/11) ≈ 1.33 and exp(π/5) ≈ 1.87

Oscillation ν = 11 ν = 5

Maxima Minima Maxima Minima
1 2.94 3.08 3.26 3.36
2 1.76 1.80 2.11 2.11
3 1.52 1.54 1.91 1.91
4 1.42 1.43 1.87 1.85
5 1.38 1.39 1.83 1.81
6 1.36 1.36 1.85 1.80
7 1.35 1.34 1.84 1.79
8 1.31 1.32 1.78
9 1.33 1.33
10 1.34 1.33
11 1.30 1.31
12 1.33 1.31
13 1.34 1.34
14 1.38 1.35
15 1.36 1.36
16 1.33 1.31
17 1.34
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Fig. 6 Diagonal elements V (p, p, λa) evolved with the inverse generator for four different momenta p with constants ν = 11,
Λ = 30 l−1

0 and σ = 0.05 l−1
0 : a p ≈ 0.96σ , b p ≈ 1.55σ , c p ≈ 2.68σ , d p ≈ 4.88σ

become smaller, cf. Fig. 6c, d. If p is even further increased, the oscillations disappear. Figure 6a demonstrates
that choosingmomenta smaller than σ leads to fewer oscillations on the diagonal. If p is even further decreased,
the number of oscillations with large amplitude is reduced and the graph resembles the diagonals of potentials
evolved with the T generator. This behavior is expected since the inverse and exponential generators reduce to
the standard T generator for small momenta p. We briefly return to Fig. 6b. For smaller λa , the amplitude of
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the oscillation decreases until no oscillation is visible anymore. The number of observable oscillations strongly
depends on σ . Typically, they can be seen until λ roughly equals σ .

In summary, we find a clear signal of the limit cycle in the λa dependence of V (p, p, λa) for p ∼ σ . In
this region, the evolution of the alternative generators is distinctively different from the standard T generator
but not heavily suppressed as for large p � σ . In practice, many oscillatory features are compressed in the
region p ∼ σ and thus can be distinguished from other effects of the evolution. They can be used to extract
the preferred scaling factor numerically.

5 Summary and Outlook

In this paper, we have investigated the renormalization group limit cycle of the quantum-mechanical 1/R2

potential within the similarity renormalization group framework. We showed that the period of the limit cycle
can be extracted from the λa dependence of the diagonal elements of the evolved interaction V (p, p, λa) if the
alternative generators in Eq. (8) with a dimensionful parameter σ are used. In the region p ∼ σ sufficiently
many oscillatory features are present, such that a numerical extraction of the preferred scaling factor is possible.
Here, we have determined the period simply by taking averages over the positions of minima and maxima
in V (p, p, λa). More elaborate statistical analysis schemes using Bayesian statistics can help to improve the
extraction of the period [24].

In the future, it will be interesting to apply our technique to the nuclear three-body system in order to derive
the limit cycle in the pionless EFT from a more fundamental chiral interaction with explicit pions. Work in
this direction is in progress.
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