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Abstract In this article, we have presented the approximate solution of theDirac equationwithmultiparameter
exponential-type potential in (D + 1) dimensions within the framework of spin and pseudospin symmetries.
We have used the supersymmetric quantum mechanics formalism to obtain the energy eigenvalues and the
corresponding wave function in terms of the Jacobi polynomials. We have discussed in details the special cases
of this potential which is consistent with those found in the literature.

1 Introduction

For many years the Dirac equation has been a subject of interest to study relativistic spin-1/2 fermions in
nuclear and particle physics. The problem in this case, just as that of linear Schrödinger equation, appears as
an ordinary second-order differential equation, which has been extensively discussed in the literature by various
analytical and numerical techniques. The supersymmetry quantum mechanics (SUSYQM) and the concept of
shape invariance in physics [1] are one of the most useful methods which help the authors to study the solvable
potential models in both relativistic and non-relativistic quantum mechanics [2]. The concept of SUSYQM
allows one to determine the eigenfunctions and eigenvalues analytically for solvable potentials model using
algebraic operator formulation without solving the Schrödinger-like differential equation by standard series
method [3]. The concept of SUSYQM was first introduced by Witten [1] for the first time as the simplest
supersymmetric model of the quantum field theory. The supersymmetry predicts the degenerate super partner
a state corresponding to every physical particle state of the theory [4]. The relativistic Dirac equation which
describes the motion of spin-1/2 particle has been used successfully in solving many physical problems of
nuclear and high-energy physics [5–10]. For about 40years ago, to explain the phenomena of quasi-degeneracy
between single-nucleon states in heavy nuclei, pseudospin symmetry was put forward in nuclear physics [11].
In three dimension, these degenerative single-nucleon states are (n, l, j = l+ 1

2 ) and (n−1, l+2, j = l+ 3
2 ),

where n, l and j are the radial, orbital and total angular quantum numbers of the single nucleon respecti-
vely. The states (ñ = n − 1, l̃ = l + 1, j̃ = l̃ ± 1

2 ) are considered as the doublet structures, where l̃ and
s̃ = 1

2 are the pseudo-orbital angular momentum and the pseudospin quantum numbers respectively. In relati-
visticmean field theory, it is observed that one of the characteristics is that an attractive scalar potential S(r) and
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a repulsive vector potential V (r) are nearly equal in magnitude but different in sign [12]. Ginocchio shows
that the near equality V (r) + S(r) ∼ 0, leads to pseudospin symmetry in nuclei (see Ref. [13] and related
references [14–16]). Within the framework of the Dirac theory, the spin symmetry occurs when the difference
of the potential between the repulsive Lorentz vector potential V (r) and attractive Lorentz scalar potential S(r)
is a constant, that is, �(r) = V (r) − S(r) = const [13]. Meng et al. [17] have proved that exact pseudospin
symmetry occurs in the Dirac equation when d�(r)

dr = 0, �(r) = V (r) + S(r) = const . However, in order
to investigate the nuclear shell model, the study of spin and pseudospin symmetries of the Dirac equation
have become an important area of research in nuclear physics [18–20]. These symmetries have been used
successfully to explain the feature of deformed nuclei [20], superdeformation and establish an effective shell-
model coupling scheme [21]. Different techniques have been employed for dealing with the Dirac equation
with themotivated potentials. Suchmethods includeNikiforov–Uvraov (NU)method [22], asymptotic iteration
method (AIM) [23], shape invariance and SUSYQM [24,25], factorization method [26] and others. However,
the recent advances in the search for the solutions of Dirac equation with physical potential models will lead
to the discovery of a new phenomenon in addition to the spin and pseudopsin symmetry discover many years
ago in the nuclei of atom in the Dirac theory. The investigated potentials include Coulomb potentials [27],
Manning–Rosen potential [28], Deng–Fan potential [29], Mobius potential [30], shifted Hulthen potential [31]
and others [32]. Recently, Garcia-Martinez [33] proposed solvable multiparameter exponential-type potential
of the form (see Fig. 1)

V (r) = Ae−2ηr

1 − e−2ηr + Be−2ηr

(
1 − e−2ηr

)2 + Ce−4ηr

(
1 − e−2ηr

)2 (1)

where A, B and C are potential parameters, and η is the screening parameter. The choice of the A, B and C
parameters lead to specific exponential-type potentials [34].

In this work, we intend to use SUSYQMmethod to solve the Dirac equation for scalar and vector multipa-
rameter exponential potential with pseudospin and spin symmetries. Because of the generality of the problem,
we have considered Dirac equation in D dimension. In this case we can study the problem in special cases
such as 1D, 2D and 3D space. Furthermore, recently in many research lines of theoretical physics the models
in which the spacetime has more dimensions than the four dimensions observable in our daily experience have
been studied extensively. The most analyzed models are those related to string theory [35]. Also the scrutiny
of the properties and solutions of higher dimensional general relativity has attracted a lot of attention (see Ref.
[36] and references therein). In several of these research lines we need to know the classical properties of the
higher dimensional spacetimes to examine different phenomena. Therefore the investigation of these classical
properties is an active research field.

Fig. 1 The plot of the multiparameter exponential potential for A = 100, B = −50 and C = −50
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2 The Dirac Equation in (D+ 1)-Dimensions for Spin and Pseudospin Symmetries

The Dirac equation in D + 1 dimensions can be written as [36,37]

i
D∑

μ=0

γ μ
(
∂μ + ieAμ

)
ψ(x, t) = Mψ(x, t) (2)

where M is the mass of the particle, and D + 1 matrices γμ satisfy the anticommutative relations:

γ μγ ν + γ νγ μ = 2ημν1 (3)

with

ημν = ημν =
{

δμν when μ = 0
−δμν when μ �= 0 (4)

In the special case where only A0 of Aμ is nonvanishing and spherically symmetric (eA0 = V (r),
Aa = 0when a �= 0), the Hamiltonian H (x) of the system is expressed as

i∂0ψ(x, t) = H(x)ψ(x, t), H(x) =
∑

c=1

γ 0γ c pc + V (r) + γ 0M (5)

pc = −i∂c = −i
∂

∂Xc
, c ∈ [1, D] (6)

It is known that the spinor wave functions as well as those for the total angular momentum are different for
D = 2N + 1 and D = 2N . In the case of SO (2N+1) (when D = 2N + 1) we can define

γ 0 = σ3 × 1, γ a = (iσ2) × αa a ∈ [1, 2N + 1] (7)

with the Pauli matrix σa , the 2N -dimensional unit matrix 1 and the (2N+1) matrices αa satisfying the following
anticommutative relations:

αbαa + αaαb = 2δab1, b, a = 1, 2, . . . , (2N + 1) (8)

The dimensions of αamatrices are 2N . Thus the spinor operator Sab becomes a block matrix

Sab = 1 × S̄ab, S̄ab = −i
αaαb

2
(9)

The relation between Sab and S̄ab is very similar to that between the spinor operators for the Dirac spinors and
for the Pauli spinors. The operator κ becomes

κ = σ3 × κ̄, κ̄ = −i
∑

a<b

αaαbLab + D − 1

2
(10)

In the presence of attractive scalar potential S(r), repulsive vector potential V (r) and the rest mass m in the
relativistic unit h̄ = c = 1 the (D + 1)-dimensional Dirac equation within is written as,

Hψ(r) = Enκψ(r), (11)

where

H =
n∑

j=1

α̂ j p j + β̂ [m + S(r)] + V (r), (12)

Enκ denotes the relativistic energy,
{
α̂ j

}
and β̂ are the Dirac matrices satisfying anti-commutation relations

α̂ j α̂k + α̂k α̂ j = 2δ jk

(
1 0
0 1

)
,

α̂ j β̂ + β̂α̂ j = 0, (13)

α̂2
j = β̂2 =

(
1 0
0 1

)
,
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and

pj = −i
∂

∂x j
, 1 ≤ j ≤ D. (14)

We define the orbital angular momentum operator L jk , the spinor operator Ŝ jk and the total angular
momentum operators Ĵ jk as follows

L jk = i x j
∂

∂xk
− i xk

∂

∂x j
, S jk = i α̂ j α̂k/2, J jk = L jk + S jk,

L2 =
D∑

j≺k

L2
jk, S2 =

D∑

j≺k

S2jk, J 2 =
D∑

j≺k

J 2jk . 1 ≤ j ≺ k ≤ D.

(15)

For a spherically symmetric potential, the total angular momentum operator J jk and spin-orbit operator

K̂ = −β̂
(
J 2 − L2 − S2 + (D−1)

2

)
commute with the Dirac Hamiltonian. Thus, for a given total angular

momentum j , the eigenvalues of K̂ are κ = −
(
j + (D−2)

2

)
, for aligned spin j = l+ 1

2 and, κ =
(
j + (D−2)

2

)

for unaligned spin j = l − 1
2 , respectively. In the hyper-spherical coordinates [26,37], we have

x1 = r cos θ1,

xα = r sin θ1 . . . sin θα−1 cosφ, 2 ≤ α ≤ D − 1, (16)

xD = r sin θ1 . . . sin θD−2 sin φ,

and the volume element defined over the configuration space is

D∏

j=1

dx j = r D−1drd�, (17)

where

d� =
D−1∏

j=1

(sin θ j )
j−1dθ j (18)

and 0 ≤ r ≤ ∞, 0 ≤ θk ≤ π for k = 1, 2, . . . , D − 2, 0 ≤ φ ≤ 2π . Thus, the wave functions in the
hyper-spherical coordinates with the hyper-radial quantum number n and spin-orbit quantum number κ can be
written as

ψnκ(r, �D) = r
−

(
D−1
2

) (
Fnκ(r) Y l

jm(�D)

iGnκ(r) Y l̃
jm(�D)

)

, (19)

where Fnκ(r) andGnκ(r) are the radial wave functions of the upper and lower spinors, respectively. In Eq. (19),

Y l
jm(�D) and Y l̃

jm(�D) denote the hyper-spherical harmonics coupled to the total angular momentum j . The
orbital angular momentum of the quasi-spin symmetry limit and the pseudo-orbital angular momentum of the
quasi-pseudospin symmetry limit are respectively denoted by l and l̃. Substitution of Eq. (19) into Eq. (11) as
well as using Eq. (12), give

(
d

dr
+ κ

r

)
Fnκ(r) = (M + Enκ − �(r))Gnκ(r) (20)

(
d

dr
− κ

r

)
Gnκ(r) = (M − Enκ + �(r)) Fnκ(r) (21)

where �(r) = V (r) − S(r), �(r) = V (r) + S(r) with κ = ± (2l+D−1)
2 .
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Eliminating one component in favor of the other, we recover the decouples equations

{
d2

dr2
− κ(κ + 1)

r2
− [M + Enκ − �(r)] [M − Enκ + �(r)] +

d�(r)
dr

( d
dr + κ

r

)

[M + Enκ − �(r)]

}

Fnκ(r) = 0, (22)

{
d2

dr2
− κ(κ − 1)

r2
− [M + Enκ − �(r)] [M − Enκ + �(r)] +

d
dr �(r)

( d
dr − κ

r

)

[M − Enκ + �(r)]

}

Gnκ(r) = 0. (23)

The radial wave functions have to vanish at the origin and tend to zero for extremely large r values. At this
stage, we take �(r) or �(r) as the multiparameter potential. Before proceeding further, it should be clearly
mentioned that Eqs. (22) and (23) can be only exactly solved for κ = 0,−1 and κ = 0, 1, respectively.

2.1 Pseudospin Symmetry for the Multiparameter Potential

We take the difference in the potentials as

�(r) = Ae−2ηr
(
1 − e−2ηr

) + Be−2ηr

(
1 − e−2ηr

)2 + Ce−4ηr

(
1 − e−2ηr

)2 (24)

and the spin orbit coupling term as [37] (see Fig. 2)

1

r2
≈ 4η2e−2ηr

(
1 − e−2ηr

)2 (25)

1

r2
≈ 4η2e−ηr

(
1 − e−2ηr

)2 (26)

Substituting Eqs. (24–26) into Eq. (23) and after a little algebraic with absolute care, we obtain the second
order Schrödinger-like equation

−dG ps
n,κ (r)

dr2
+ Vef f (r)G

ps
n,κ = Ẽ ps

n,κG
ps
n,κ (27)

Fig. 2 1
r2

and its approximations for α = 0.01
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where,

Veff (r) = ρ
ps
1 e−4ηr + ρ

ps
2 e−2ηr

(
1 − e−2ηr

)2 (28)

ρ
ps
1 = (

M − E ps
n,κ + Cps

)
(A − C) (29)

ρ
ps
2 = 4η2κ(κ − 1) − (

M − E ps
n,κ + Cps

)
(A + B) (30)

Ẽ ps
n,κ = M2 − MEps

n,κ + MCps + MEps
n,κ − (E ps

n,κ )2 + E ps
n,κCps (31)

Using the concept of the SUSYQM [24,25], we proposed the superpotential of the form,

W (r) = Qps
1 e−2ηr

(
1 − e−2ηr

) + Qps
2 (32)

The superpotential W (r) satisfies the Riccatti equation,

W 2(r) ∓ W ′(r) = Veff (r) − Ẽ ps
0,κ (33)

Substituting Eq. (32) into Eq. (33), we obtained the following three set of relationship

Qps
1 = −η ± η

√

1 +
(
ρ
ps
1 + ρ

ps
2

)

η2
(34)

Qps
2 =

(
Qps

1

)2 − ρ
ps
1

2Qps
1

(35)

Ẽ0,κ = − (
Qps

2

)2
(36)

We can obtain the supersymmetric partner potentials as

V+(r) = Qps
1

(
Qps

1 − 2η
)
e−4ηr

(
1 − e−2ηr

)2 +
2Qps

1 (Qps
1 −ρ

ps
1 )e−2ηr

2Qps
1(

1 − e−2ηr
) +

(
Qps

1 − ρ
ps
1

2Qps
1

)2

(37)

V−(r) = Qps
1

(
Qps

1 + 2η
)
e−4ηr

(
1 − e−2ηr

)2 +
2Qps

1 (Qps
1 −ρ

ps
1 )e−2ηr

2Qps
1(

1 − e−2ηr
) +

(
Qps

1 − ρ
ps
1

2Qps
1

)2

(38)

The shape invariancy in this case holds via the mapping

an = f (a0) = a0 − 2nη = Q1 − 2nη. (39)

and therefore the residuals are

R(a1) =
(

(a0)2 − ρ
ps
1

2a0

)2

−
(

(a1)2 − ρ
ps
1

2a1

)2

, (40)

R(a2) =
(

(a1)2 − ρ
ps
1

2a1

)2

−
(

(a2)2 − ρ
ps
1

2a2

)2

, (41)

.

.

R(an) =
(

(an−1)
2 − ρ

ps
1

2an−1

)2

−
(

(an)2 − ρ
ps
1

2an

)2

(42)

The energy eigenvalues can be obtained as follows

Ẽ ps
n,κ = Ẽ−

n,κ + Ẽ0,κ , (43)
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where Ẽ−
n,κ are defined as follows:

Ẽ−
n,κ =

n∑

k=1

R(ak) =
(

(a0)2 − ρ
ps
1

2a0

)2

−
(

(an)2 − ρ
ps
1

2an

)2

, (44)

Using Eqs. (34–36) and (44), we obtain the complicated transcendental energy equation for the multipara-
meter exponential-type potential for the pseudopsin symmetry in the Dirac theory as,

M2 −MEps
n,κ + MCps +MEps

n,κ − (E ps
n,κ )2 +Cps E

ps
n,κ = −1

4

[(
M − E ps

n,κ + Cps
)
(A − C)

2η (n + σ)
− 2η (n + σ)

]2

(45)
where,

σ = 1

2

⎛

⎝1 +
√

1 +
(
4η2κ(κ − 1) − (

M − E ps
n,κ + Cps

)
(B + C)

)

η2

⎞

⎠ (46)

The corresponding lower component of the wave function is obtain as follow

Gps
nκ(r) = N ps

nκ e
−2η

√
λ
ps
3 r

(1−e−2ηr )
1/2+

√
λ
ps
1 −λ

ps
2 +λ

ps
3 +1/4

P

(
2
√

λ
ps
3 ,2

√
λ
ps
1 −λ

ps
2 +κ

ps
3 +1/4

)

n (1−2e−2ηr ), (47)

with

λ
ps
1 = 1

4η2
(
ρ
ps
1 + (M + E ps

nκ )(M − E ps
nκ + Cps)

)
, (48)

λ
ps
2 = 1

4η2
(−ρ

ps
2 + 2(M + E ps

nκ )(M − E ps
nκ + Cps)

)
, (49)

λ
ps
3 = 1

4η2
(
(M + E ps

nκ )(M − E ps
nκ + Cps)

)
. (50)

where Nnκ is the normalization constant. For the upper component, we can simply use

F ps
nκ (r) = 1

M − E ps
nκ + Cps

(
d

dr
− κ

r
+U (r)

)
Gps

nκ(r). (51)

2.2 Spin Symmetry for the Multiparameter Potential

In the case of the spin symmetry, we take the difference in potential as the multiparameter exponential-type
potential. However, in order to avoid repetition the positive spin symmetry case can be obtained directly from
the pseudospin symmetric solution via the following transformations:

Gps
n,κ ↔ Fs

n,κ , V (r) → −V (r),

κ → κ + 1, E ps
n,κ → −Es

n,κ , Cps → −Cs (52)

Substituting Eq. (52) into Eq. (45) yields the energy equation for the spin symmetrywith themultiparameter
exponential potential as,

M2+MEs
n,κ −MCs−MEs

n,κ −(Es
n,κ )2+CsE

s
n,κ = −1

4

[(
M + Es

n,κ − Cs
)
(A − C)

2η (n + σ)
− 2η (n + σ)

]2

(53)

where,

σ = 1

2

⎛

⎝1 +
√

1 +
(
4η2κ(κ + 1) − (

M + Es
n,κ − Cs

)
(B + C)

)

η2

⎞

⎠ (54)
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The corresponding upper component of thewave function for themultiparameter exponential-type potential
becomes,

Fs
nκ(r) = Ds

nκe
−2η

√
αs
3r (1 − e−2ηr )1/2+

√
αs
1−αs

2+αs
3+1/4P

(
2
√

αs
3,2

√
αs
1−αs

2+αs
3+1/4

)

n (1 − 2e−2ηr ), (55)

with

αs
1 = 1

4η2
(
χ s
1 + (M − Es

nκ)(M + Es
nκ − Cs)

)
, (56)

αs
2 = 1

4η2
(−χ s

2 + 2(M − Es
nκ)(M + Es

nκ − Cs)
)
, (57)

αs
3 = 1

4η2
(
(M − Es

nκ)(M + Es
nκ − Cs)

)
. (58)

The lower component of the wave function can be obtained as follows:

Gs
nκ(r) = 1

M + Es
nκ − Cs

(
d

dr
+ κ

r
−U (r)

)
Fs
nκ(r). (59)

3 Discussions and Special Cases

In this section we will investigate the energy eigenvalues and corresponding eigenfunctions of the special cases
of the multiparameter exponential-type potential.

3.1 Hulthen Potential

The Hulthén potential is very important in atom and molecular fields [39]. This potential has been used to
explain the electronic properties of F-colour centre in alkali halides [38]. In this special case, we choose
B = C = 0, A = −Ze2δ, η = δ

2 , where δ is the screening parameter and the multiparameter exponential-type
potential turns into the Hulthen potential as,

V (r) = −Ze2δe−δr

1 − e−δr
(60)

From Eq. (45), we obtained the energy spectrum for Hulthen potential including Coulomb and Yukawa
tensor interactions within the framework of pseudopsin symmetry as,

M2 − MEps
n,κ + MCps + MEps

n,κ − (E ps
n,κ )2 + Cps E

ps
n,κ = −1

4

[

−
(
M − E ps

n,κ + Cps
)
Ze2δ

2η (n + σ)
− 2η (n + σ)

]2

(61)
where,

σ = 1

2

(
1 + √

1 + 4κ(κ − 1)
)

(62)

and the corresponding wave function becomes,

Gps
nκ(r) = N ps

nκ e
−δ

√
λ
ps
3 r

(1 − e−δr )
1/2+

√
λ
ps
1 −λ

ps
2 +λ

ps
3 +1/4

P

(
2
√

λ
ps
3 ,2

√
λ
ps
1 −λ

ps
2 +κ

ps
3 +1/4

)

n (1 − 2e−δr ), (63)

with

λ
ps
1 = 1

δ2

(− (
M − E ps

n,κ + Cps
)
Ze2δ + (M + E ps

nκ )(M − E ps
nκ + Cps)

)
, (64)

λ
ps
2 = 1

δ2

(− (
δ2κ(κ − 1) + (

M − E ps
n,κ + Cps

)
Ze2δ

) + 2(M + E ps
nκ )(M − E ps

nκ + Cps)
)
, (65)

λ
ps
3 = 1

δ2

(
(M + E ps

nκ )(M − E ps
nκ + Cps)

)
. (66)
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3.2 Manning–Rosen Potential

Manning–Rosen potential is one of the short range potential and it has been used to describe the diatomic
molecular vibration [28]. The special case of Manning–Rosen potential is obtained from the multiparameter
potential by considering, B = 0, A = − V0

b2
,C = α(α−1)

b2
and η = 1

2b . Thus, the Manning–Rosen potential
becomes,

V (r) = 1

b2

⎛

⎜
⎝

α(α − 1)e− 2r
b

(
1 − e− 2r

b

)2 − V0e− r
b

1 − e− r
b

⎞

⎟
⎠ (67)

Substituting these parameters into Eq. (45), we obtain the energy eigenvalues for the Manning–Rosen
follow:

M2 − MEps
n,κ + MCps + MEps

n,κ − (E ps
n,κ )2 + Cps E

ps
n,κ

= − 1

4b2

[
− (

M − E ps
n,κ + Cps

)
(V0 + α(α − 1))

(n + σ)
− (n + σ)

]2

(68)

where,

σ = 1

2

(
1 +

√
1 + 4κ(κ − 1) − 4α(α − 1)

(
M − E ps

n,κ + Cps
))

(69)

and the corresponding wave function becomes,

Gps
nκ(r) = N ps

nκ e
− 1

b

√
χ
ps
3 r

(1 − e− r
b )

1/2+
√

χ
ps
1 −χ

ps
2 +χ

ps
3 +1/4

P

(
2
√

χ
ps
3 ,2

√
χ
ps
1 −χ

ps
2 +χ

ps
3 +1/4

)

n (1 − 2e− r
b ), (70)

with

χ
ps
1 = b2

(

−
(
M − E ps

n,κ + Cps
)
(V0 + α(α − 1))

b2
+ (M + E ps

nκ )(M − E ps
nκ + Cps)

)

, (71)

χ
ps
2 = b2

(

−
(

1

b2
κ(κ − 1) +

(
M − E ps

n,κ + Cps
)
V0

b2

)

+ 2(M + E ps
nκ )(M − E ps

nκ + Cps)

)

, (72)

χ
ps
3 = b2

(
(M + E ps

nκ )(M − E ps
nκ + Cps)

)
. (73)

3.3 Eckart Potential

The Eckart potential is one of the solvable exponential-type potential in quantum mechanics since it has been
introduced by Eckart [40] in 1930. Eckart potential is one of most important potential model in physics and
chemical physics [40] and the bound state solution of the Dirac and Schrödinger equation and the scattering
states of this potential has been investigated in Refs. [41] and [42], respectively. The Eckart potential is obtained
from the multiparameter potential by setting A = −α, B = β,C = 0 and η = 2

a as,

V (r) = − αe− r
a

1 − e− r
a

+ βe− r
a

(
1 − e− r

a

)2 (74)

The energy equation and the corresponding wave function for the Eckart potential with the generalized
tensor equation becomes,

M2 − MEps
n,κ + MCps + MEps

n,κ − (E ps
n,κ )2 + Cps E

ps
n,κ = −1

4

[
− (

M − E ps
n,κ + Cps

)
α

(4/a) (n + σ)
− (4/a) (n + σ)

]2

(75)

Gps
nκ(r) = N ps

nκ e
−2η

√
λ
ps
3 r

(1 − e−2ηr )
1/2+

√
λ
ps
1 −λ

ps
2 +λ

ps
3 +1/4

P

(
2
√

λ
ps
3 ,2

√
λ
ps
1 −λ

ps
2 +κ

ps
3 +1/4

)

n (1 − 2e−2ηr ), (76)
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where

σ = 1

2

⎛

⎝1 +
√

1 +
(
(4/a)2κ(κ − 1) − (

M − E ps
n,κ + Cps

)
β
)

(2/a)2

⎞

⎠ (77)

λ
ps
1 =

(a
4

)2 (− (
M − E ps

n,κ + Cps
)
α + (M + E ps

nκ )(M − E ps
nκ + Cps)

)
, (78)

λ
ps
2 =

(a
4

)2 (− (
(4/a)2κ(κ − 1) − (

M − E ps
n,κ + Cps

)
(β − α)

) + 2(M + E ps
nκ )(M − E ps

nκ + Cps)
)
, (79)

λ
ps
3 =

(a
4

)2 (
(M + E ps

nκ )(M − E ps
nκ + Cps)

)
. (80)

where Nnκ is the normalization constant.

3.4 Deng–Fan potential

The Deng–Fan potential [43,44] discovery more than 50years ago is the simplest modified form of Morse
potential and is related to theManning–Rosen and Eckart potentials. This potential is used to describe diatomic
molecular energy spectra and electromagnetic transition. It is usually regarded as the true inter nuclear potential
in diatomic molecules. In this case, the choice of A = −2bDe, B = 0,C = Deb2 and η = α

2 , where De is
the dissociation energy, turns the multiparameter exponential-type potential into the Deng–Fan potential from
Eq. (6) as [45]

V (r) = −2bDee−αr

1 − e−αr
+ Deb2e−2αr

(
1 − e−2αr

)2 (81)

Substituting these parameters into Eqs. (45) and (47), we obtain the energy spectrum and the corresponding
eigenfunction for the Deng–Fan potential in the Dirac theory as follow:

M2 − MEps
n,κ + MCps + MEps

n,κ − (E ps
n,κ )2 + Cps E

ps
n,κ

= −1

4

[
− (

M − E ps
n,κ + Cps

)
Deb(b + 2)

α (n + σ)
− α (n + σ)

]2

(82)

Gps
nκ(r) = N ps

nκ e
−2η

√
λ
ps
3 r

(1 − e−2ηr )
1/2+

√
λ
ps
1 −λ

ps
2 +λ

ps
3 +1/4

P

(
2
√

λ
ps
3 ,2

√
λ
ps
1 −λ

ps
2 +κ

ps
3 +1/4

)

n (1 − 2e−2ηr ), (83)

where,

σ = 1

2

⎛

⎝1 +
√

1 +
(
α2κ(κ − 1) − (

M − E ps
n,κ + Cps

)
Deb2

)

(α/2)2

⎞

⎠ (84)

and

λ
ps
1 = 1

α2

(− (
M − E ps

n,κ + Cps
)
Deb(b + 2) + (M + E ps

nκ )(M − E ps
nκ + Cps)

)
, (85)

λ
ps
2 = 1

α2

(− (
α2κ(κ − 1) + 2

(
M − E ps

n,κ + Cps
)
Deb

) + 2(M + E ps
nκ )(M − E ps

nκ + Cps)
)
, (86)

λ
ps
3 = 1

α2

(
(M + E ps

nκ )(M − E ps
nκ + Cps)

)
. (87)
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4 Conclusions

The approximate solution of the Dirac equation for mutiparameter exponential-type potential within the fra-
mework of spin and pseudospin symmetry limits is obtained using the supersymmetric quantum mechanics
formalism.We have obtained explicitly the energy levels in a closed form and the correspondingwave functions
expressed in terms of the Jacobi polynomials for this potential within the spin and pseudospin symmetry limits.
We deducedwell known potentials by adjusting the potential parameter of themultiparameter exponential-type
potential. The results of our work will find many applications in both nuclear, Hadron and high energy physics.
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