
Few-Body Syst (2015) 56:801–807
DOI 10.1007/s00601-015-0971-2

Francesco Ancilotto · Maurizio Rossi · Luca Salasnich · Flavio Toigo

Quenched Dynamics of the Momentum Distribution
of the Unitary Bose Gas

Received: 22 January 2015 / Accepted: 7 March 2015 / Published online: 22 March 2015
© Springer-Verlag Wien 2015

Abstract We study the quenched dynamics of themomentum distribution of a unitary Bose gas under isotropic
harmonic confinement within a time-dependent density functional approach based on our recently calculated
Monte Carlo bulk equation of state. In our calculations the inter-atomic s-wave scattering length of the trapped
bosons is suddenly increased to a very large value and the real-time evolution of the system is studied. Prompted
by the very recent experimental data of 85Rb atoms at unitarity (Makotyn et al. in Nat Phys 10:116, 2014) we
focus on the momentum distribution as a function of time. Our results suggest that at low momenta, a quasi-
stationary momentum distribution is reached after a long transient, contrary to what found experimentally for
large momenta which equilibrate on a time scale shorter than the one for three body losses.

1 Introduction

Recent experiments claim to have achieved a metastable degenerate gas of ultracold and dilute bosonic atoms
with infinite s-wave scattering length [1–4]. This is the so-called unitary Bose gas, which is characterized
by remarkably simple universal laws arising from scale invariance [5]. While the unitary Fermi gas has been
largely investigated both experimentally and theoretically [6], its bosonic counterpart has been only marginally
theoretically addressed [7–14] because generally considered as experimentally inaccessible [15] due to the
dominant three-body losses at very large values of the scattering length.

By using aMonte Carlo (MC) approach [14] we have recently investigated the zero-temperature properties
of a dilute homogeneous Bose gas by tuning the interaction strength of the two-body potential to achieve
arbitrary positive values of the s-wave scattering length as , while avoiding the formation of the self-bound
clusters present in the ground-state [14]. More recently, the MC equation of state has been the key ingredient
of a local density approximation (LDA) [16] to the energy density functional to be used in density functional
theory (DFT). Remarkably, the density profiles of a unitary Bose gas in a harmonic trap calculated with DFT
using such functional compare verywell with theMCones. In addition, by using a time-dependent formulation,
we have also investigated the excitation frequencies as a function of the scattering length. Interestingly, the
calculated values for the monopole breathing mode, which reproduce the expected limiting values of the ideal
and unitary regimes, exhibit a non-monotonous behavior as as varies [16].
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Unfortunately, the experimental data on the unitary Bose gas [1–4] to compare with are quite scarce, and
they do not provide an easy tool for validating theoretical approaches. The most suitable data in this sense are
the time-resolved measurements of the momentum distribution n(k, t) of a Bose-condensed gas quenched at
unitarity (sudden increase of as to a very large value) provided by the very recent experiment of Makotyn et
al. [4]. The main result coming from Ref. [4] is that, for k ≥ kB = (6π2n)1/3 where n is the atom number
density, n(k, t) evolves to a quasi-steady-state distribution on a time scale shorter than the one characterizing
three-body losses. We thus try to reproduce the observed phenomenon by solving a nonlinear Schrödinger
equation (NLSE) obtained from time-dependent DFT (TDDFT) with our LDA functional, based on the MC
equation of state and where we have introduced a dissipative term to take into account three-body losses, whose
role is relevant during the quenched dynamics [17]. We must notice however, that we expect our single orbital
TDDFT to be fully reliable only at low momenta, where the collective long-wavelength dynamics dominates.
Therefore our analysis will be confined to low momenta, in a range not directly comparable with the one
studied experimentally. The results we find, are therefore complementary to those of Makotyn et al. [4] and
suggest that, as expected, while the system equilibrates locally in a short time as found by experiments, it takes
a very long time to reach quasi equilibrium all over the trap.

2 Method

On the basis of the DFT [18], a reliable energy functional of the local density n(r) for an inhomogeneous
system of interacting bosons at T = 0 is given by

E[n(r)] =
∫ {

h̄2

2m

(
∇√

n(r)
)2 + n(r) ε(n(r)) + n(r) U (r)

}
d3r, (1)

where the quantum-pressure gradient term takes into account effects due to density variations [19], ε(n(r)) is
the energy per atom of the homogeneous system with density equal to the local density and U (r) describes
the external confinement, which we assume to be an isotropic harmonic potential U (r) = 1

2mω2
Hr

2. The
values of ε(n) have been recently fitted to the results of a MC calculation [14] for a wide range of (positive)
values of the scattering length as characterizing the interparticle interaction. In the weakly interacting regime
(x ≡ as/r0 � 1, where r0 = (3/(4πn))1/3 is the average distance between bosons) the MC results for ε(n)

are very close to εLHY(n), the universal Bogoliubov prediction [20] εB(n) = h̄2
2m (6π2n)2/3 as corrected by

Lee, Huang and Yang (LHY) [21]. In the strong-coupling regime (x � 1), instead, MC data reach a plateau
and, in the unitarity limit (as → ∞), a finite and positive energy per particle is found, E/N = 0.70 εB(n).
The equation of state of the homogeneous system[14] from such MC calculation can be well interpolated as:

ε(n)

εB(n)
=

⎧⎪⎨
⎪⎩

fLHY(x) + a3x3 for x < 0.3

c7x7 + c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0 for 0.3 < x < 0.5

b0 + b1 tanh (b2/x − 1) for x > 0.5

(2)

with a3 = 0.21, b0 = 0.45, b1 = −0.33, b2 = 0.54, c0 = 4.75 , c1 = −99.72, c2 = 890.68, c3 = −4309.56,

c4 = 12268.41, c5 = −20488.00, c6 = 18568.27 and c7 = −7052.20 [22]. In (2), fLHY(x) =
(

4
3π2

)1/3
x[1+

128
15

√
π

√
3
4π x

3/2] is the LHY correction to the Bogoliubov prediction. Notice that in the deep weak-coupling

regime Eq. (1) reduces to the familiar Gross–Pitaevskii density functional [23,24] since ε(n) = EGPE(n, as) ≡
2π h̄2asn2/m.

In Ref. [16] we have shown that the energy functional (1) is very accurate in reproducing the MC sta-
tic density profiles of the inhomogeneous unitary Bose gas under harmonic confinement. The dynamics of
the system can be obtained by generalizing the energy functional (1) into a density-phase action functional
A[n(r, t), θ(r, t)], where θ(r, t) is the phase of a single-valued quantum-mechanical wave function represent-
ing the macroscopic wave function of the Bose–Einstein condensate of the superfluid [25], which is related to
the superfluid velocity v by the relation v = (h̄/m)∇θ [26]. Such a density-phase action functional is written
as

A[n(r, t), θ(r, t)] =
∫ {

T [n(r, t), θ(r, t)] − E[n(r, t)]
}
dt, (3)
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where

T [n(r, t), θ(r, t)] =
∫ {

−n(r, t)
(
h̄

∂θ(r, t)
∂t

+ h̄2

2m
(∇θ(r, t))2

)}
d3r (4)

is the kinetic Lagrangian of Popov [27], and E[n(r, t)] is given by Eq. (1) under the assumption of a time-
dependent local density. It is straightforward to derive the equations of superfluid hydrodynamics with a
quantum-pressure term [directly related to the von Weizsacker gradient term of Eq. (1)] by extremizing the
action functional (3) [28]. Moreover, introducing the wave function

Ψ (r, t) = √
n(r, t) eiθ(r,t) (5)

the equations of superfluid hydrodynamics can be re-written in terms of a nonlinear Schrödinger equation

i h̄
∂Ψ (r, t)

∂t
=

[
− h̄2∇2

2m
+U (r) + ∂(nε)

∂n

]
Ψ (r, t), (6)

which is the Euler–Lagrange equation obtained from the action functional (3) taking into account Eq. (5).
We stress that Eq. (6) can be alternatively obtained within TDDFT [18,29,30] in the LDA using a single

Kohn–Sham orbital to describe the degenerate boson system [16,28]. The computational approach based on
Eq. (6) has been adopted, for instance, to describe superfluid helium [31,32], ultracold bosonic atoms [16,28],
and also superfluid fermions in the BCS–BEC crossover [33,34].

In the dynamics of the unitary Bose gas three-body losses play a relevant dissipative role, especially close
or at unitarity. As done in previous applications of Eq. (6) [17], we model the effect of three-body losses by
adding a phenomenological dissipative term − i h̄L3

2 n2Ψ (with L3 = 9× 10−23 cm6/s [4]) in Eq. (6). Thus, the
dissipative NLSE we use for our numerical simulations is given by

i h̄
∂Ψ (r, t)

∂t
=

[
− h̄2∇2

2m
+U (r) + ∂(nε)

∂n
− i h̄L3

2
|Ψ (r, t)|4

]
Ψ (r, t). (7)

We have numerically solved Eq. (7) to obtain the real-time evolution closely simulating the experimental
conditions of Makotyn et al. [4]. Therefore we consider as initial configuration a cloud of N = 70,000 85Rb
atoms, confined in a spherical harmonic trap with frequency ωH = 10 Hz and scattering length as = 150 a0
(where a0 is the Bohr radius) prepared in its ground state by evolving in imaginary time Eq. (6) without the
dissipative term (i.e. with L3 = 0). Then we switch on the dissipative term (with L3 = 9 × 10−23 cm6/s),
increase the scattering length to a very high, but otherwise arbitrary, value as = 5× 105 a0, and let the system
evolve in real time for a time t . At such timewe analyze themomentumdistribution of the particles, as described
in the following. Notice that according to our calculated MC equation of state (2), the chosen value for as is
practically equivalent to as = +∞, i.e. it gives the same energy per atom as in the truly unitary limit [14].

3 Numerical Results

Due to the presence of the three-body recombination, whose rate increases as a4s , atoms are continuously
disappearing from the trap. At early times, t ≤ 350 µs, experimental data are compatible with an exponential
decay with a time constant of about 630 µs [4]. In our simulations the number of particles N in the trap suffers
a similar depletion, driven by the phenomenological dissipative term proportional to L3. The time-dependent
behavior of the total number of trapped atoms can be monitored by solving Eq. (7) and by computing

N (t) =
∫

|Ψ (r, t)|2 d3r. (8)

The obtained N (t) is shown in Fig. 1 and is compared to the experimental data of Ref. [4]. Our DFT results are
fairly comparable with the experimental points, where these are available. At variance with the experiment,
however, our calculated N (t) seems to be characterized by two different time scales: one, fast, driving the
first depletion of the atoms within the trap, that roughly covers the experimental data range (although a
slightly different behavior seems to characterize the experimental results, which might be due, e.g., to quantum
fluctuations which are absent in our mean-field description, and which might increase the rate of three-body
losses); and a second, much slower one, dictating the emptying of the trap at very large times. We find that,
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Fig. 1 Time evolution of the total number N of trapped 85Rb atoms in the unitary Bose gas. Solid line numerical integration of
the dissipative nonlinear Schrödinger equation (7). Filled squares experimental data from Ref. [4]

Fig. 2 Scaled average radius 〈r2〉1/2/aH of the 85Rb atomic cloud as a function of time t . Solid line numerical integration of the
dissipativeNLSE, Eq. (7).Dotted line numerical integration of the dissipativeGPE, i.e. Eq. (7) with ε(n) = EGPE(n). In both cases
the scattering length as is very large but finite: as = 5 × 105 a0, with a0 = 0.53 × 10−10 m the Bohr radius. The two horizontal
dashed lines give the experimentally-estimated average radius of the cloud up to the time t = 500 µs [4]. aH = √

h̄/(mωH ) is
the characteristic length of the harmonic confinement

in this second regime, a relevant number of atoms still populate the trap, and the depletion is much slower,
leading to an apparent stationary condition, as discussed in the following, and allowing for measurements of
properties that give the impression of being equilibrated.

The size of trapped cloud predicted on the basis of our DFT calculation is also in reasonable agreement
with the experimental data, given their uncertainty. In Fig. 2 we report the average radius of the bosonic cloud
as a function of time t . The solid line refers to the results obtained using the dissipative NLSE (7) with the
MC equation of state (2) and aS = 5 × 105 a0. They are fully compatible with the experimental findings [4]
reported as horizontal dashed lines in Fig. 2. For the sake of comparison, in Fig. 2 we also plot with a dotted
line the results for the same average radius, computed using the dissipative NLSE Eq. 6 with the same finite
scattering length as and the same three-body loss coefficient L3 as above, but with the energy density ε(n) from
the Gross–Pitaevskii equation of state instead than fromMC. The figure clearly shows that the radius obtained
within the GPE theory (dotted line) rapidly exits the experimental range as measured in the first 500µs [4]
and displays local oscillations due to interference effects in the outer part of the atomic cloud interacting with
the trap walls.
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Fig. 3 Momentum distributions n(k̃) of the bosonic cloud of 85Rb atoms obtained at increasing time steps by solving Eq. (7).
The narrowest distribution corresponds to t = 0 while the broadest one to t = 1000 µs. There are 37 distributions obtained
at increasing time steps Δt = 27.02 µs. The data are shown as a function of the reduced wave-vector k̃ ≡ k/kB , where
kB = (6π2n)1/3 and n is the density at the center of the trap

Given the solutionΨ (r, t) of the dissipative NLSE (7), the time dependent momentum distribution is easily
calculated as:

n(k, t) =
∣∣∣∣
∫

Ψ (r, t) exp (ik · r) d3r
∣∣∣∣
2

, (9)

In Fig. 3 we plot n(k̃, t) obtained at different times, up to a maximum value of 1 ms, with k̃ ≡ k/kB , where
kB = (6π2n)1/3 and n is the density at the center of the trap. Notice that in the figure we report n(k̃, t) at
low momenta (0 ≤ k̃ ≤ 0.3), because our single-orbital TDDFT is supposed to be fully reliable only at long
wavelengths. During the first 300 µs we observe an expansion of the cloud both in real and in momentum
spaces, and then a quasi-stationary momentum distribution seems to develop for larger times.

However, we must point out that at longer times (not shown in the figure) n(k̃, t) is still changing. This
could be ascribed to the fact that, due to the sudden quench of as to so high values, the bosonic cloud expands
until the wave-front interacts with the steeper part of the trap walls and is reflected back, letting the cloud to
shrink again at much larger times. Thus the momentum distribution first decreases (close to the turning point)
and then it increases again as the contraction of the cloud occurs.

To better clarify the time scales involved in the momentum changes, we plot in Fig. 4 the time evolution of
the number of atoms N (ki )with a given momentum ki for different values of ki during the first∼1ms after the
sudden quench. We note that the evolution of the distribution for these small momenta is not uniform, being
oscillatory first, with the amplitude of the oscillations extinguishing on a time scale of 700-800µs.

This is to be contrastedwithwhat found in the experiments of Ref. [4] for higher (k > kB) components in the
momentum distribution. There, a shorter time scale governs the saturation of the k-component, increasing from
about 100µs to about 300–400µs as k decreases from k/kB ∼1.2–1.3 to k/kB ∼0.8. Our results complement
these observations, in finding a still larger time-scale when k/kB ∼0.1–0.3. Our results can be compared also
with recent studies on the dynamics of n(k̃, t) after a sudden quench to very large value of as [35]. In particular,
calculations based on a bath approach [35] lead to a multistep equilibration process, where larger k modes
equilibrate faster (having a shorter relaxation time), the oscillations in n(k) are damped on intermediate times,
leading to an apparent equilibrated state, and the full equilibration is reached only on a much larger time scale,
when also the condensate attains its final time-independent state.

4 Conclusions

Wehave numerically investigated the quenched dynamics of aBose gas of 85Rb atoms under isotropic harmonic
confinement after the sudden increase of the s-wave scattering length from as = 150 a0 to 5 × 105 a0. To
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Fig. 4 Time evolution of the number of atoms N (ki ) with momentum ki (expressed in units of kB = (6π2n)1/3). The 5 curves
correspond to 5 values of ki : 0.08 (solid line), 0.12 (dotted line), 0.16 (dashed line), 0.20 (long dashed line), 0.24 (dot-dashed
line). The curves have been arbitrarily normalized to the maximum of N (ki = 0.08) (solid line)

take into account three body losses we have introduced a dissipative term into the time dependent nonlinear
Schrödinger equation (TDNLSE) obtained from a local approximation of a TD energy functional. We have
shown that, while the equation obtained by using the Gross–Pitaevskii equation of state in the TD energy
functional is unable to fully capture the experimental quenched dynamics of the atomic cloud, the corresponding
equation derived from a functional containing the energy density fitted to our recently calculated MC bulk
equation of state [14] gives values of the average radius of the cloud in fairly good agreement with very recent
experimental data [4].We take this result as supporting the use of ourMC equation of state in the energy density
functional.

The solution of our dissipative TDNLSE shows a fast depletion of the condensate at short times, t ≤ 300
µs due to three-body losses, accompanied by the relative increase in the population of large momenta. Also
this feature is in agreement with the experimental findings [4]. As shown in Fig. 4 though, the momentum
densities at various momenta reach a ’quasi equilibrium’ distribution, at very large times of about 1000µs. One
must notice however that even the larger momenta reported in our figures are much smaller than those studied
experimentally, corresponding to values for which our TDDFT is questionable. We reconcile our results with
those reported in Ref. [4] by observing that they refer to different length scales: while from the experiment
a fast equilibration on a short length scale has been found, reminiscent of local equilibrium, our calculation
shows that a much longer time is needed to get quasi-equilibrium on a large length scale. The authors of
Ref. [4] interpret their results (see their fig. 4) as a saturation of the value of n(k) at times of the order of
200 µs, shorter than the time scale for three body losses (300 µs), thus indicating a different mechanism as
responsible for the equilibration of the momentum distribution. Such a mechanism could be the interaction
between the condensed and non condensed fractions of boson atoms which is not present in our equation, since
the dissipative term in our equation lets the total number of atoms to decrease while leaving the system in a
degenerate state.

The effect of the interaction between the condensate and excited atoms on the dynamics of momentum
distribution of a Bose gas after a rapid quench to a very large value of as has been explicitly addressed at in some
recent papers [35–40] and supports the existence of different times domains in the dynamics of momentum
distribution. In Ref. [35], in particular, they correspond to a fast depletion of the condensate followed or
accompanied by a slow re-adjustment of the momentum distribution and, only at very large times, the reaching
of a metastable state. We will explore the possibility of coupling the wave function obeying our TDNLSE to
a bath [35] describing the small noncondensed fraction with the goal of better reproducing the experimental
data at large momenta and short times.
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