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Abstract The inhomogeneousBethe–Salpeter equation describing the zero-energy scattering of a system com-
posed by twomassive scalars exchanging a massive scalar is numerically investigated in ladder approximation,
directly in Minkowski space. The solution is obtained by using the Nakanishi integral representation, as per-
formed in Frederico et al. (Phys Rev D 89:016010, 2014) where the method was successfully applied to bound
states. The scattering lengths are quantitatively investigated and the results compared with the corresponding
ones present in literature.

1 Introduction

In the last years, the approach for solving the homogeneous Bethe–Salpeter equation (BSE) [1] directly
in Minkowski space has made a substantial step forward due to the so-called Nakanishi perturbation-theory
integral representation (PTIR) of the n-leg transition amplitudes [2,3]. In such an approach, a generic multi-leg
transition amplitude, expressed in general through an infinite series of Feynman diagrams can be written as the
folding of a non singular weight function, the so-called Nakanishi weight function, divided by a denominator
containing the analytic structure of the amplitude.

As a matter of fact, the Nakanishi PTIR for the three-leg transition amplitude, although devised within the
perturbative framework of the Feynman diagrams, has been proved to be a very effective tool for studying the
bound state problem, within a non perturbative field-theory framework [4–10].

These successful achievements encourage to extend the Nakanishi representation to the study of the inho-
mogeneous BSE, i.e. the scattering states. Indeed, we have already presented the formal treatment of the BSE
for scattering states, within the PTIR framework, in Ref. [11], obtaining an integral equation for the Nakanishi
weight function after inserting the expression for the Bethe–Salpeter transition amplitude in the BSE. More-
over, by invoking the Nakanishi uniqueness theorem for the weight functions (see Ref. [3], Chapt. IV, pag.
141) we obtained a different equation for the weight function and one could wonder if and to what extent the
two equations give the same solution. Note that the theorem was proven within the perturbative framework,
where Nakanishi was able to formally resum the infinite Feynman diagrams contributing to a given multile-leg
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transition amplitude. We will numerically explore to which extent the hypothesis of the uniqueness of the
Nakanishi weight function is valid in a non perturbative framework. The attempt to start a quantitative inves-
tigation of the inhomogeneous BSE and to answer to the previous questions is the aim of the present work,
where the problem of the solution of the zero-energy BSE will be discussed. Finally, we will compare the
obtained scattering lengths with those recently appeared in literature obtained solving directly the BSE, and
this would be a further stringent test to what extent the PTIR can be applied in a non-perturbative regime.

This contribution is organized as follows. In Sect. 2, we briefly recall the Nakanishi PTIR and write down
the equations to solve. In Sect. 3 the expression for calculating the scattering length from the Nakanishi weight
function is given and in Sect. 4 the obtained preliminary results are reported. Finally, in the last section, we
discuss the perspectives of the present approach.

2 The Nakanishi Integral Equation for Scattering States

As shown in great detail in Ref. [11], a Nakanishi integral representation can be introduced for the half-off-shell
transition amplitude Φ(+)(k, p) describing a scattering states of two identical scalar particles of mass m, with
the same power of the denominator as in the case of the bound state analyzed in Refs. [7,8], viz

Φ(+)(k, p) = (2π)4δ(4)(k − ki )

−i
∫ 1

−1
dz′

∫ 1

−1
dz′′

∫ ∞

−∞
dγ ′ g(+)(γ ′, z′, z′′)[

γ ′ + m2 − 1
4M

2 − k2 − p · k z′′ − 2k · ki z′ − iε
]3 ,

= (2π)4δ(4)(k − ki ) − i
∫ 1

−1
dz′

∫ 1

−1
dz′′

∫ ∞

−∞
dγ ′

× g(+)(γ ′, z′, z′′)[
γ ′ + γ + κ2 − k−(k+ + M

2 z
′′ − M

2 zi z
′) − k+ M

2 (z′′ + zi z′) + 2z′cosϕ√
γ γi − iε

]3 , (1)

where p is the incoming total four-momentum of the pair, ki the (on-shell) incoming relative four-momentum,
and k the final (eventually off-shell) relative four momentum. We will adopt the frame p = {M, 0}. The
function g(+)(γ ′, z′, z′′) is the so-called Nakanishi weight function.

In the expression above, we introduced the following notation [7,11]: i) zi = −2k+
i /M = 2k−

i /M ,
since (p/2 ± ki )2 = m2, and 1 ≥ |zi |, since the incoming particles have positive longitudinal momenta, i.e.
p+/2 ± k+

i ≥ 0, ii) cosϕ = k̂⊥ · k̂i⊥, iii) γ = |k⊥|2, iv) γi = |ki⊥|2, and v) κ2 = m2 − M2/4. Let us recall
that from (p/2 ± ki )2 = m2 = M2/4 − k+

i k
−
i − γi one gets

M2 = 4
(m2 + γi )

(1 − z2i )
, κ2 = −γi − z2i

M2

4
. (2)

Let us start recalling that the transition amplitude fulfills the following BSE [1]

Φ(+)(k, p) = (2π)4δ(4)(k − ki ) + G(12)
0 (k, p)

∫
d4k′

(2π)4
iK(k, k′, p)Φ(+)(k′, p), (3)

where i K is the interaction kernel that contains all the irreducible diagrams. In the present contribution the
self-energy will be disregarded, and therefore G(12)

0 is the free propagator of the two particles of mass m.
Assuming a Yukawa interaction of the form LI = −gψ̄ψφ, where ψ is the field of particle of mass m and φ
the field of another scalar particle of mass μ, the interaction kernel in the ladder approximation is given by

iK(k, k′, p) ≈ iK(L)(k, k′) = i(−ig)2

(k − k′)2 − μ2 + iε
. (4)

Substituting the expression given in Eq. (1) in the BSE one obtains an integral equation for the weight function
g(+)(γ ′, z′, z′′). The expression obtained in ladder approximation has been reported in Ref. [11].
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Let us now specialize to the BSE in the zero-energy limit. In this case one has M2 = 4m2, κ2 = 0 and
γi = zi = 0. The equation in ladder approximation for the weight function in this case becomes [11]

∫ ∞

0
dγ ′ g(+)

0L (γ ′, z)
[γ + γ ′ + z2m2 − iε]2 = g2

γ + z2m2 − iε

[
θ(z)(1 − z)

γ + m2z2 + (1 − z)μ2 + θ(−z)(1 + z)

γ + m2z2 + (1 + z)μ2

]

+ g2

2(4π)2

1

γ + z2m2 − iε

∫ ∞

0
dγ ′

∫ 1

−1
dz′ g(+)

0L (γ ′, z′)V(γ, z, γ ′, z′) , (5)

where

g(+)
0L (γ, z) =

∫
dz′g(+)(γ, z′, z) , (6)

and

V(γ, z, γ ′, z′) =
∫ 1

0
dv v2

[
(1 − z)2θ(z − z′)
D(v, γ, z, γ ′, z′)2

+ (1 + z)2θ(z′ − z)

D(v, γ,−z, γ ′, −z′)2

]
, (7)

D(v, γ, z, γ ′, z′) = γ v(1 − v)(1 − z′) + γ ′v(1 − z) + m2v(1 − v)z2(1 − z′)
+m2v2(z′)2(1 − z) + μ2(1 − v)(1 − z). (8)

Eq. (5) can be rearranged as follows
∫ ∞

0
dγ ′′ g(+)

0L (γ ′′, z)
[γ + γ ′′ + z2m2 − iε]2 = g2

μ2

∫ ∞

0
dγ ′′ θ(z) θ

(
1 − z − γ ′′/μ2

) + θ(−z) θ
(
1 + z − γ ′′/μ2

)
[
γ + γ ′′ + z2m2 − iε

]2

− g2

2(4π)2

∫ ∞

0
dγ ′′ 1[

γ + γ ′′ + z2m2 − iε
]2

∫ ∞

0
dγ ′

∫ 1

−1
dz′ g(+)

0L (γ ′, z′)

×
[

(1 + z)

(1 + z′)
θ(z′ − z) h′

0(γ, z; γ ′, z′) + (1 − z)

(1 − z′)
θ(z − z′) h′

0(γ, −z; γ ′, −z′)
]

. (9)

Notably, h′
0(γ, z; γ ′, z′) is the proper kernel for determining a bound state with vanishing energy (cf Ref. [10])

from the homogeneous BSE, and is given by

h′
0(γ, z; γ ′, z′) = θ

(
γ
1 + z′

1 + z
− γ ′ − μ2 − 2μ

√
z′2m2 + γ ′

)
×

[
− B0(γ, z; γ ′, z′)
A0(γ ′, z′) Δ0(γ, z; γ ′, z′)

1

γ
+ 1 + z′

1 + z

∫ y+

y−
dy

y2[
y2A0(γ ′, z′) + y(μ2 + γ ′) + μ2

]2
]

−1 + z′

1 + z

∫ ∞

0
dy

y2[
y2A0(γ ′, z′) + y(μ2 + γ ′) + μ2

]2 (10)

with

A0(γ
′, z′) = z′2m2 + γ ′ ≥ 0 , (11)

B0(γ, z; γ ′, z′) = μ2 + γ ′ − γ
(1 + z′)
(1 + z)

≤ 0 , (12)

Δ2
0(γ, z; γ ′, z′) = B2

0(γ, z; γ ′, z′) − 4μ2 A0(γ
′, z′) ≥ 0 , (13)

y± = 1

2A0(γ ′, z′)
[−B0(γ, z; γ ′, z′) ± Δ0(γ, z; γ ′, z′)

] ≥ 0. (14)

The conditions above are enforced by the θ function in Eq. (10). From the uniqueness of the Nakanishi weight
function [3], one then can obtain the following equation (see Refs. [10–12])

g(+)
0L (γ, z) = g2

μ2 θ(γ )
[
θ(z) θ(1 − z − γ /μ2) + θ(−z) θ(1 + z − γ /μ2)

] − g2

2(4π)2

∫ 1

−1
dz′

∫ ∞

0
dγ ′

×
[
1 + z

1 + z′
θ(z′ − z) h′

0(γ, z; γ ′, z′) + 1 − z

1 − z′
θ(z − z′) h′

0(γ,−z; γ ′, −z′)
]
g(+)
0L (γ ′, z′). (15)
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3 The Scattering Length

The scattering amplitude in ladder approximation can be expressed in terms of the Nakanishi function as
follows [10–12]:

f (Ld)(s, θ) = 2m2

M
α

{
1

−2κ2(1 − cosθ) + μ2 − iε

+ 1

2(4π)2

∫ ∞

0
dγ

∫ 1

−1
dz

∫ 1

−1
dz′ g(+)

(L) (γ, z, z′)

×
∫ ∞

0
dy

y2[
y2 A(γ, z, z′) + y

(
μ2 + γ − 2zκ2 cosθ

) + μ2 − iε
]2

}
γi=0

, (16)

where s ≡ M2, θ is the scattering angle and the dimensionless constant α is given by

α = g2

16πm2 .

Above A(γ, z, z′) is the generalization for positive energies of the function given in Eq. (11) [11,12]. In
the zero-energy scattering limit,

lim
s→4m2

f (Ld)
0 (s, θ) = − a

= m α

{
1

μ2 + 1

2(4π)2

∫ ∞

0
dγ

∫ 1

−1
dz g(+)

0L (γ, z)

×
∫ ∞

0
dy

y2[
y2 A0(γ, z) + y

(
μ2 + γ

) + μ2 − iε
]2

}
. (17)

The scattering length in Born approximation (by adopting the convention of Ref. [13]) is

aBA = − m
α

μ2 . (18)

4 Results

Following Ref. [10], we search the solutions of the zero-energy BSE expanding g(+)
(L0)(γ, z) as follows

g(+)
(L0)(γ, z) =

Nz∑
�=1

Ng∑
j=1

A�j G�(z) L j (γ ). (19)

with

G�(z) = 4 (1− z2) Γ (5/2)

√(
2(� − 1) + 5/2

) (
2(� − 1)

)!
πΓ

(
(2(� − 1) + 5)

) C (5/2)
2(�−1)(z) , L j (γ ) = √

b L j−1(bγ ) e−bγ /2 ,

(20)
where the functions G�(z) are given in terms of even Gegenbauer polynomials, C (5/2)

2(�−1)(z), and the functions
L j (bγ ) are Laguerre polynomials. With this choice, the basis is orthonormal, i.e.,

∫ 1

−1
dz G�(z) Gn(z) = δ�n ,

∫ ∞

0
dγ L j (γ ) Lk(γ ) = b

∫ ∞

0
dγ e−bγ L j−1(bγ ) Lk−1(bγ ) = δ jk .

(21)
The parameter b, controlling the range of the Laguerre polynomials, is chosen in order to speed up the
convergence. This kind of expression ignores possible discontinuities present in g(+)

(L0)(γ, z) (an improved
approach will be presented elsewhere [16]).
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Table 1 Comparison between the scattering lengths, in ladder approximation, evaluated in Ref. [14], aCK , with those obtained
in the present work, aFSV and aUN I . The values aFSV are calculated by inserting the Nakanishi weight function solution of Eq.
(5) in Eq. (17). The values aUN I are calculated by inserting the solution of Eq. (15) in Eq. (17). The value of the exchanged
scalar mass is μ/m = 0.5 and 1.0, and the coupling constant α = g2/(16πm2), has been varied as shown in the first column.
The scattering lengths are given in units of m−1

α aCK [14] aFSV aUN I aCK [14] aFSV aUN I

μ/m = 0.5 μ/m = 1.0
0.01 −0.403 10−1 −0.403 10−1 −0.404 10−1 −0.100 10−1 −0.100 10−1 −0.100 10−1

0.05 −0.209 −0.209 −0.209 −0.510 10−1 −0.510 10−1 −0.510 10−1

0.10 −0.438 −0.438 −0.437 −0.104 −0.104 −0.104
0.20 −0.971 −0.971 −0.968 −0.217 −0.217 −0.217
0.30 −0.164 101 −0.164 101 −0.163 101 −0.339 −0.339 −0.339
0.40 −0.250 101 −0.250 101 −0.248 101 −0.474 −0.474 −0.473
0.50 −0.366 101 −0.366 101 −0.363 101 −0.621 −0.621 −0.620
0.60 −0.534 101 −0.533 101 −0.529 101 −0.784 −0.784 −0.782
0.70 −0.798 101 −0.796 101 −0.790 101 −0.965 −0.965 −0.962
0.80 −0.128 102 −0.128 101 −0.126 102 −0.117 101 −0.117 101 −0.116 101

0.90 −0.247 102 −0.245 102 −0.241 102 −0.140 101 −0.140 101 −0.139 101

1.00 −0.103 103 −0.994 102 −0.993 102 −0.166 101 −0.166 101 −0.165 101

1.10 0.620 102 0.634 102 0.618 102 −0.195 101 −0.196 101 −0.195 101

1.20 0.261 102 0.263 102 0.257 102 −0.230 101 −0.230 101 −0.229 101

1.50 0.110 102 0.110 102 0.107 102 −0.379 101 −0.380 101 −0.377 101

2.00 0.634 101 0.635 101 0.617 101 −0.111 102 −0.112 102 −0.111 102

2.50 0.454 101 0.454 101 0.438 101 0.568 102 0.526 102 0.522 102

3.00 0.332 101 0.330 101 0.317 101 0.108 102 0.106 102 0.104 102

Inserting Eq. (19) in Eq. (5) or (15), the problem of determining the unknown coefficients A�j is reduced

to the solution of a linear system. Once g(+)
(L0)(γ, z) is found, Eq. (17) can be used to compute the scattering

length. The results obtained in this way for the cases μ/m = 0.5 and 1.0 have been reported in Table 1. The
accuracy of the calculation can be checked increasing the values of Ng and Nz , namely the number of terms
included in the expansion given in Eq. (19). In the case of solution of Eq. (5) a good convergence has been
found for values b ≈ 10m−2, Ng ≈ 24 and Nz ≈ 10. The solution of Eq. (15) is found to converge more
slowly. In this case, values around Ng ≈ 48 and Nz ≈ 10 have been employed. Such a behavior is related to
the presence of discontinuities in the Nakanishi function, made manifest by the θ -functions appearing in the
inhomogeneous term of Eq. (15).

In Table 1, the preliminary results for the scattering lengths calculated for various values of α and for
μ/m = 0.5 and 1.0 are reported. The values aFSV and aUN I are the scattering lengths obtained inserting the
solution of either Eq. (5) or Eq. (15) in Eq. (17), respectively. It is important to notice that for a given mass of
the exchanged scalar and for particular values of α, states with zero binding energy appear, as can be verified
considering the homogeneous BSE. While approaching such values of α, the scattering length becomes (in
modulus) larger and larger, as expected.

Our results have been compared with the corresponding values, aCK , obtained in Ref. [14], where the direct
solution of the BSE was implemented [15]. As it can be seen, the results obtained solving the two equations
are very close and in rather good agreement with the values reported in Ref. [14]. The small differences found
are due to the above mentioned difficulties in the solution of Eq. (15). More sizable differences are observed
when the scattering lengths become very large, namely when α approaches the value necessary to obtain the
zero-energy state.

For smaller values of μ/m, the convergence of the expansion becomes much slower and with the method
of solution considered in the present work we have not been able to find stable results. Such a prob-
lem is again connected to the presence of discontinuities in the Nakanishi function which become more
severe as μ → 0. Work is in progress to take into account exactly of such discontinuities and the cor-
responding results will be published in a forthcoming paper [16]. Such discontinuities of the Nakanishi
weight function should produce the expected singularities of the scattering BS amplitude in Minkowski
space.
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5 Conclusions

We have quantitatively investigated the zero-energy inhomogeneous BSE in ladder approximation, directly in
Minkowski space within the perturbation-theory integral representation of the multi-leg transition amplitudes,
proposed by Nakanishi in the 60s [2,3]. Using the light-front framework, as shown in Ref. [7] for bound states
and in Ref. [11] for scattering states, it is possible to derive an equation for the Nakanishi weight function, see
Eq. (5). Moreover, the Nakanishi theorem [3] on the uniqueness of the non singular weight function, related to
the vertex function in PTIR, leads to an equation for g(+)

0L , Eq. (15), much simpler than Eq. (5), from the formal
point of view, but more demanding from the numerical side. These two equations allow for the numerical
evaluation of the weight function corresponding to a given value of the coupling constant of the interacting
system and the exchanged-boson mass. We have shown that the scattering lengths obtained by solving Eqs. (5)
and (15) can be substantially taken as the same. This gives us great confidence in the validity of the uniqueness
theorem also in a non perturbative regime, as already checked for the bound case [10]. Work is in progress to
incorporate the presence of discontinuities in the Nakanishi weight function [16].

In perspective, the numerical analysis we have performed appears very encouraging, and it makes com-
pelling the next steps, represented by the study of positive energy scattering states and the inclusion of the
crossed-box diagrams as already done in Ref. [8].
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