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Abstract We present a simple formula for finding bound state solution of any quantum wave equation which

can be simplified to the form of � ′′(s) + (k1−k2s)
s(1−k3s)�

′(s) + (As2+Bs+C)

s2(1−k3s)2 �(s) = 0. The two cases where k3 = 0
and k3 �= 0 are studied. We derive an expression for the energy spectrum and the wave function in terms
of generalized hypergeometric functions 2 F1(α, β; γ ; k3s). In order to show the accuracy of this proposed
formula, we resort to obtaining bound state solutions for some existing eigenvalue problems in a rather more
simplified way. This method has shown to be accurate, efficient, reliable and very easy to use particularly when
applied to vast number of quantum potential models.

1 Introduction

In quantum mechanics, while solving Schrödinger, Dirac, Klein–Gordon, spinless Salpeter and
Duffin–Kemmer–Petiau wave equations in the presence of some typical central or non central potential model,
we do often come across differential equation of the form

� ′′(s) + (k1 − k2s)

s(1 − k3s)
� ′(s) + (As2 + Bs + C)

s2(1 − k3s)2 �(s) = 0, (1)

after which an appropriate coordinate transformation of the form s = s(r) has been used. The exact solutions
of these wave equations with certain potentials have been of great interest. The analysis of such solutions
makes the conceptual understanding of the quantum systems. The solutions provides a valuable means for
checking and improving models and numerical methods introduced for solving complicated quantum systems.
By solving time-independent Schrödinger equation for the energy eigenvalues and wave function, the structures
and properties of atoms, molecules, solids, or any other steady-state forms of matter can be understood and
explained. Such wave functions can describe the orbital motions of the electrons in the atoms.
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Up to now, several approaches have been developed for tackling equation of form (1). This include the
asymptotic iteration method (AIM) [1–25], Feynman integral formalism [26–28], functional analysis method
[24,29–31], exact quantization rule method [32–37], proper quantization rule [38–40], Nikiforov–Uvarov
(NU) method [41–57], supersymetric quantum mechanics [24,58–63], the generalized pseudospectral method
[64–69], etc. Notes on these techniques can be found in our recent work [24].

2 Statement of Problem

The foregoing methods involve some complicated integrals while some involves great deal in algebraic ma-
nipulations. As a result, one needs a great efforts in mathematical skills before these methods could be applied
to bound state problems. Thus, a simple efficient methodology will have its merit in Mathematical–Physics
society, both for teaching and research purposes.

3 Objectives

• The objective of this research work is therefore to derive a very simple formula to exactly solve equation of
form (1) for energy eigenvalues and wave functions. On contrary to other methods presented in the literature,
this method is quite simple and could easily be followed, even by young researchers of Theoretical Physics
solving bound state problems.

• Furthermore, to test the accuracy of this new method, we investigate the solution of relativistic (Dirac
and Klein–Gordon) and nonrelativistic Schrödinger equation for several central and non central potential
models such as the harmonic oscillator, Manning–Rosen, Eckart, Kratzer-type, Coulomb, Morse and
generalized non central Coulomb potentials for any arbitrary orbital quantum number l �= 0. It is worth
mentioning that this method yields results which are in excellent agreement with the existing ones obtained
by other approximate methods.

4 Formula Method and Their Applications

We present a simple formula for finding bound state solutions of both the relativistic and nonrelativistic wave
equations. The derivation of this method can be found in the appendix. We also proceed to demonstrate the
accuracy and convenience of this formula by finding energy eigenvalues and wave function of some already
solved quantum systems, obtained by other methods early stated in the introductory text.

4.1 Brief Overview of the Formula Method

For a given Schrödinger-like equation including the centrifugal barrier and/or the spin-orbit coupling term in
the presence of any potential model which can be written in the form of Eq. (1), we propose that the energy
eigenvalues and the corresponding wave function can be obtained by using the following formulas
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and Nn is the normalization constant. Before proceeding to the applications of these formulas, let us first discuss
a special case where k3 → 0. In this regard, the energy eigenvalues and the corresponding wave function can
be obtained as [

B − k4k2 − nk2

2k4 + k1 + 2n

]2

− k2
5 = 0, (4)

and
�(s) = Nnsk4exp(−k5s) 1 F1 (−n; 2k4 + k1; (2k5 + k2)s) , (5)

respectively.

4.2 Applications

In order to show the accuracy of these proposed formulas, we apply them to find the bound state solution of
some quantum mechanical problems studied previously in the literature. Let us begin by obtaining the bound
state solution of the Schrödinger equation for the following potential models.

4.2.1 Spherical Oscillator

The spherical oscillator is an example for a problem with central field with a purely discrete spectrum. The
Schrödinger equation with the spherically symmetric potential reads [70, p. 111]

− h̄2

2m

1

r2

d

dr

(
r2 d R(r)

dr

)
+
[

h̄2�(� + 1)

2mr2 + 1

2
mω2r2

]
R(r) = E R(r). (6)

Now we recast the differential equation (6) into the form given in (1) by introducing the appropriate change
of variables r → s through the mapping function s = r2 to obtain

d2 R(s)

ds2 + 3

2s

d R(s)

ds
+
⎡
⎣
(
−m2ω2

4h̄2

)
s2 +

(
m E
2h̄2

)
s − �

4 (� + 1)

s2

⎤
⎦ R(s) = 0. (7)

Comparing Eq. (7) with Eq. (1), we obtain k1 = 3/2, k2 = k3 = 0, A = −m2ω2

4h̄2 , B = m E
2h̄2 and C = − �

4 (�+1).
Parameters k4 and k5 can be found as follows:

k4 =
− 1

2 +
√

1
4 + �(� + 1)

2
= �

2
, k5 = √−A =

√
m2ω2

4h̄2 = mω

2h̄
. (8)

The eigenvalues of the Hamiltonian can now be expressed by using Eq. (4) as

[ m E
2h̄2

� + 3
2 + 2n

]2

=
(

mω

2h̄

)2

⇔ En� =
(

� + 3

2
+ 2n

)
h̄ω. (9)

Using Eq. (5), the corresponding radial wave functions of arbitrary �-wave bound states of the Schrödinger
equation with the spherical oscillator can be written as:

Rn�(s) = Nn�s
�
2 e−s mω

2h̄ 1 F1

(
−n; � + 3

2
; mω

h̄
s

)
or

Rn�(r) = Nn�r�e−r2 mω
2h̄ 1 F1

(
−n; � + 3

2
; mω

h̄
r2
)

, (10)

where Nn� denotes the normalization factor. These results are in agreement with the ones obtained previously
in Ref. [70].
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4.2.2 Manning–Rosen Potential

The radial Schrödinger equation with the Manning–Rosen potential is given by [71]

d2un�(r)

dr2 +
[

2μEn�

h̄2 − 1

b2

(
α(α − 1)(
er/b − 1

)2 − Ã

er/b − 1

)
− �(� + 1)

r2

]
un�(r) = 0. (11)

To solve the above equation for � �= 0 states, we apply the following approximation scheme [71]

1

r2 ≈ 1

b2

[
D0 + D1

1

er/b − 1
+ D2

1(
er/b − 1

)2
]

, (12)

where D1 = D2 = 1 and D0 = 1/12 [71–73]. Now we recast the differential equation (11) into the form given
in (1) by introducing the appropriate change of variables r → z through the mapping function z = e−r/b and
defining

ξn� =
√

−2μb2 En�

h̄2 + �(� + 1)D0, β1 = Ã − �(� + 1)D1 and β2 = α(α − 1) + �(� + 1)D2, (13)

to obtain

d2un�(z)

dz2 + (1 − z)

z(1 − z)

dun�(z)

dz
+
{

z2(−ξ2
n� − β1 − β2) + z(2ξ2

n� + β1) + (−ξ2
n�)

z2(1 − z)2

}
un�(z) = 0. (14)

Comparing Eq. (14) with Eq. (1), k1, k2, k3, A, B and C can be easily determined together with k4 and k5 can
be obtained as:

k4 = ξn�, and k5 = 1

2
(1 +√1 + 4β2). (15)

Using Eqs. (2a) and (2b), we can easily calculate the energy eigenvalues and the corresponding wave function
as

En� = h̄2

24μb2 �(� + 1) − h̄2

2μb2

⎡
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2

, (16)

un�(z) = Nn�zξn�(1 − z)
1
2 [1+√

1+4β2]
2 F1

(
−n, n + 2(ξn� + 1

2
[1 +√1 + 4β2]); 2ξn� + 1, z

)
, (17)

respectively, where Nn� is the normalization constant. The above results are identical to the ones obtained in
the literature [71,74]. It should be noted that the solution of Hulthén potential can be easily obtained by setting
α to 0 or 1 and (Ah̄2/2μb2) to Ze2δ in Eqs. (16) and (17).

4.2.3 Eckart Potential

The radial Schrödinger equation with the Eckart potential is given by [3,75] (in units h̄ = c = μ = 1)

d2 Rn�(r)

dr2 +
[

2En� − 2βe−r/a

(
1 − e−r/a

)2 + 2αe−r/a
(
1 − e−r/a

) − �(� + 1)

r2

]
Rn�(r) = 0. (18)

Using an appropriate approximation given in [3,75] to deal with the centrifugal term and introducing a new
variable of the form z = e−r/a , we have

d2 Rn�(z)

dz2 + (1 − z)

z(1 − z)

d Rn�(z)

dz
+
[

z2(2a2[En� − α]) + z(2a2[β − α − 2En�] − �(� + 1)) + 2En�a2

z2(1 − z)2

]
Rn�(z)=0.

(19)
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Now, after comparing Eq. (16) with Eq. (1), k1, k2, k3, A, B and C can be easily determined and k4 and k5 can
be obtained as:

k4 =
√

−2En�a2, k5 = 1

2
+ 1

2

√
(2� + 1)2 + 8a2β. (20)

Thus, the energy eigenvalues can be easily obtained by using formula (2a) as
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]
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2

, (21)

and the corresponding wave functions can be obtained from (2b) as:

Rn�(z) = Nn�z
√

−2En�a2
(1 − z)

1
2 + 1

2

√
(2�+1)2+8a2β

×2 F1
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2
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2

√
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√
−2En�a2 + 1, z

))
, (22)

where Nn� is the normalization constant. These results are in excellent agreement with the ones obtained
previously [3,75]

4.2.4 Kratzer Potential

The radial Schrödinger equation with the Kratzer potential is given by [7]

d2 Rn�(s)

ds2 +
⎡
⎣ s2

(
2μEn�

h̄2

)
+ s

(
4μDea

h̄2

)
+
(
− 2μDea2

h̄2 − �(� + 1)
)

s2

⎤
⎦ Rn�(s) = 0, (23)

where we have introduced a new transformation of the form r = s. Now by comparing Eq. (23) with Eq. (1),
we can easily find the values of parameters A, B and C . It is also clear that k1 = k2 = k3 = 0 and the other
parameters are obtained as

k4 = 1

2
+
√(

1

2
+ �

)2

+ 2μDea2

h̄2 and k5 =
√

−2μEn�

h̄2 . (24)

The energy eigenvalues can now be obtained by means of Eq. (4) as
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e a2
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⎡
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2
+
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1

2
+ �

)2
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h̄2

⎤
⎦

−2

, (25)

and the corresponding wave function can be found through Eq. (5) as:

Rn�(r) = r
1
2 +
√(

1
2 +�

)2+ 2μDea2

h̄2 exp

(
−
√

−2μEn�

h̄2

)

×1 F1

⎛
⎝−n; 1 + 2

⎛
⎝
√(

1

2
+ �

)2

+ 2μDea2

h̄2

⎞
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√
−2μEn�

h̄2

⎞
⎠ . (26)

These results are identical with the ones obtained in Refs. [7,76].
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4.2.5 Generalized Non Central Coulomb Potential Model

The ring-shaped coulombic (Hartmann) potential in spherical coordinates is given by [77–79]

V (r, θ) = − Ze2

r
+ β

r2 sin2 θ
+ γ cos θ

r2 sin2 θ
= 0. (27)

The solution of the Schrödinger equation with the combined Coulomb plus Aharanov–Bohm potential and
the Hartmann ring-shaped potential, which was originally proposed as a model for benzene molecules, can be
obtained as a special case of potential (27). Now, the Schrödinger equation in the presence of potential V (r, θ)
can be reduced to the two ordinary differential equations [77–79]

d2 Rn�(r)

dr2 + 2

r

d Rn�(r)

dr
+
[

2μ

h̄2

(
En� + Ze2

r

)
− �(� + 1)

r2

]
Rn�(r) = 0, (28a)

d2�(θ)

dθ2 + coth θ
d�(θ)

dθ
+
[
�(� + 1) −

(
m2 + β + γ cos θ

sin2 θ

)]
�(θ) = 0, (28b)

where the corresponding total wave function is taken as �(r, θ, φ) = R(r)�(θ)eimϕ . Now by introducing a
new transformation of the form s = r and s = cos θ−1

2 in Eqs. (28a) and (28b) respectively, we obtain

d2 Rn�(s)

dr2 + 2

s

d Rn�(s)

dr
+
⎡
⎣
(

2μE
h̄2

)
s2 +

(
2μZe2

h̄2

)
s + (−�(� + 1))

s2

⎤
⎦ Rn�(s) = 0, (29a)

d2�(s)

ds2 + 2s + 1

s(1 + s)

d�(s)

ds
+
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(−�(� + 1))s2 + (−�(� + 1) − γ /2)s + (−[m2 + β + γ ]/4)

s2(1 + s)2

]
�(s) = 0.

(29b)

It can be deduced from Eq. (29a) that k1 = 2, k2 = k3 = 0 and the values of A, B, C can be clearly seen. The
parameters k4 and k5 can therefore be calculated as

k4 = � , k5 =
√

−2μE

h̄2 , (30)

and hence the eigenvalues equation can be found by using formula (4) as

EN� = − μZ2e4

2h̄2[N + � + 1]2
. (31)

Taking N + � + 1 = n, this result is in agreement with the ones obtained for hydrogen atom in Ref. [70, p.
118] when Z = 1 and Ref. [80, p. 133] when Z = 1/4πε0. Furthermore, by comparing Eq. (29b) with Eq.
(1), k1, k2, k3, A, B and C can be easily determined then k4 and k5 can be obtained as:

k4 = 1

2

√
m2 + β + γ , k5 = 1

2

√
m2 + β − γ , (32)

and by using Eq. (2a) the following results can be obtained:

(� − n)2 =
[

1

2

√
m2 + β + γ + 1

2

√
m2 + β − γ

]2

� = n +
[

(m2 + β) +√(m2 + β)2 − γ 2

2

]1/2

. (33)
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Making use of Eqs. (33) and (31), the final energy levels for a real bound charged particle in a Coulombic field
plus a combination of non central potentials given by Eq. (28b) are

En,N ,m = − μZ2e4

2h̄2

[
N + 1 + n +

[
(m2+β)+

√
(m2+β)2−γ 2

2

]1/2
]2 , (34)

and the complete eigenfunctions (radial × angular) can be obtained from formulas (2b and 5) as

�(r, θ, φ) = Nn�r� exp

(
−
√

−2μE

h̄2

)(
cos θ − 1

2

) 1
2

√
m2+β+γ (cos θ + 1

2

) 1
2

√
m2+β−γ

e±imϕ

× 2 F1

(
−n, n +

√
m2 + β + γ +

√
m2 + β − γ + 1; 1 +

√
m2 + β + γ ,

(
1 − cos θ

2

))

× 1 F1

(
−n; 2(� + 1); 2r

√
−2μE

h̄2

)
. (35)

These results are in agreement with the ones obtained previously [77–79,81]. To show the effectiveness and
flexibility of our approach, we extend our applications to solve the Klein–Gordon equation for the following
potential models.

4.2.6 Coulomb Potential

The Klein–Gordon equation with the Coulomb potential is given by Eq. (1) in page 45 of Ref. [82]
[

d2

dr2 − �(� + 1) − (Zα)2

r2 + 2εZα

h̄cr
− m2

0c4 − ε2

h̄2c2

]
R�(r) = 0. (36)

Now, let us recast the differential equation (36) into the form given in Eq. (1) to obtain

d2 R�(r)

dr2 +

⎡
⎢⎢⎣

(Zα)2 − �(� + 1) +
(

2εZα
h̄c

)
r +

(
ε2−m2

0c4

h̄2c2

)
r2

r2

⎤
⎥⎥⎦ R�(r) = 0. (37)

Comparing Eq. (37) with Eq. (1), we obtain k1 = k2 = k3 = 0, A = (Zα)2 − �(� + 1), B = 2εZα
h̄c and

C = ε2−m2
0c4

h̄2c2 . Thus, parameters k4 and k5 can be easily found as follows:

k4 = 1

2
+
√(

� + 1

2

)
− (Zα)2 = 1

2
+ μ, k5 =

√
m2

0c4 − ε2

h̄2c2
= σ, (38)

where μ =
√(

� + 1
2

)− (Zα)2. The relativistic energy eigenvalues can now be expressed by using Eq. (4) as

⎡
⎣

2εZα
h̄c

1 + 2
√(

� + 1
2

)− (Zα)2 + 2n

⎤
⎦

2

= m2
0c4 − ε2

h̄2c2
⇔ εZα

m2
0c4 − ε2

= n′ + 1

2
+
√(

� + 1

2

)
− (Zα)2, (39)

or more explicitly,

εn′� = −m0c2

⎡
⎢⎢⎢⎣1 + (Zα)2

(
n′ + 1

2 +
[(

� + 1
2

)2 − (Zα)2
]1/2

)2

⎤
⎥⎥⎥⎦

− 1
2

(40)
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Using Eq. (5), the correspondingly radial wave functions of arbitrary �-wave bound states of the Klein–Gordon
equation with the Coulomb potential can be written as:

R�(r) = Nn�rμ+ 1
2 e−σ

1 F1

(
−n; 2μ + 1

2
; 2σr

)
(41)

These results are in agreement with the ones obtained previously in Ref. [82].

4.2.7 Eckart Potential

The Klein–Gordon equation with the Eckart potential is given by Eq. (8) of Ref. [83]

x2 d2u(x)

dx2 + x
du(x)

dx
−
[
λ2 − k2αx

1 − x
+ k2βx

(1 − x)2 + �(� + 1)x

(1 − x)2

]
u(x) = 0, (42)

where variable x is defined as x = e−r/a , λ2 = a2(M2 − E2), k2 = 2(M + E)a2. Now, let us simplify Eq.
(42) into the form of Eq. (1)

d2u(x)

dx2 + 1

x

du(x)

dx
+
[

x2[−λ2 − k2α] + x
[
2λ2 + k2(α − β) − �(� + 1)

]− λ2

x2(1 − x2)

]
u(x) = 0. (43)

Comparing Eq. (43) with Eq. (1), we obtain k1 = 1, k2 = 1, k3 = 1, A = −λ2 − k2α, B = 2λ2 + k2(α −
β) − �(� + 1) and C = −λ2. Thus, parameters k4 and k5 can be easily obtained as follows:

k4 = λ =
√

a2(M2 − E2), k5 = 1

2
+ 1

2

√
(2� + 1)2 + 4k2β = 1

2
+ 1

2

√
(2� + 1)2 + 8a2(M + E)β = 1

2
+δ,

(44)
where δ = 1

2

√
(2� + 1)2 + 8a2(M + E)β. The relativistic energy eigenvalues can now be expressed by using

Eq. (2a) or (A15) as

a
√

(M2 − E2) +
√(

� + 1

2

)2

+ 2a2β(M + E) − a
√

M2 − E2 + 2α(M + E) + 1

2
+ n = 0. (45)

Using Eq. (2b), the correspondingly radial wave functions of arbitrary �-wave bound states of the Klein–Gordon
equation with the mixed Eckart potentials can be written as:

un�(r) = Nn�e−λr/a (1 − e−r/a)δ+1
2 F1

(
−n, n + 2

(
λ + 1

2
+ δ

)
; 2λ + 1, e−r/a

)
. (46)

These results are in agreement with the ones obtained previously in Ref. [83]. Finally we solve the Dirac
equation for the Morse potential and also Kemmer Equation for Dirac Oscillator.

4.2.8 Morse Potential

The Dirac equation with the Morse potential is given by Eq. (33) of Ref. [84]

d2Gnκ(y)

dy2 + 1

y

dGnκ(y)

dy
+
[
− ε2

y2 + β2
1

y
− β2

2

]
Gnκ(y) = 0, (47)

where the parameters y, ε, β1 and β2 have been defined in Ref. [84]. Now we recast the differential equation
(47) into the form given in (1) to obtain

d2Gnκ(y)

dy2 + 1

y

dGnκ(y)

dy
+
[

−ε2 + β2
1 y − β2 y2

y2

]
Gnκ(y) = 0. (48)
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By comparing Eq. (48) with Eq. (1), we obtain k1 = 1, k2 = k3 = 0, A = −β2
2 , B = β2

1 and C = −ε2.
Parameters k4 and k5 can be found as follows:

k4 = √−C = ε, k5 = √−A = β2. (49)

The eigenvalues of the Hamiltonian can now be expressed by using Eq. (4) as

[
β2

1

2ε + 1 + n

]2

= β2
2 ⇔ εn = β2

1 − (2n + 1)β2

2β2
. (50)

Using Eq. (5), the corresponding radial wave functions for the Dirac equation with the Morse potential can be
written as:

Rn�(r) = Nnk yεe−β2 y
1 F1 (−n; 2ε + 1; 2β2 y) , (51)

where Nnk denotes the normalization constant. These results are in agreement with the ones obtained previously
in Ref. [84].

4.2.9 Kemmer Equation for Dirac Oscillator

The relativistic Kemmer equation for Dirac oscillator is given as [85]
[

d2

dr2 − M2ω2r2

h̄2 − �(� + 1)

r2 + E2 − (Mc2/2
)

h̄2c2
− Mω

h̄
[ j ( j + 1) − �(� + 1) + 1]

]
Rn�(r) = 0. (52)

Now we transform the differential equation (52) into the form given in (1) by introducing the appropriate
change of variables r → ξ through the mapping function ξ = √

Mω/h̄r to obtain
[

d2

dξ2 + 1

2ξ

d

dξ
+
(− 1

4

)
ξ2 + ς

2 ξ − 1
4�(� + 1)

ξ2

]
Rn�(ξ) = 0, (53)

where ς = E2−(Mc2/2
)

2h̄ωMc2 − 1
2 [ j ( j + 1) − �(� + 1) + 1] has been introduced for simplicity. By comparing Eq.

(53) with Eq. (1), we obtain k1 = 1/2, k2 = k3 = 0, A = − 1
4 , B = ς

2 and C = − 1
4�(� + 1). Parameters k4

and k5 can be found as follows:

k4 = 1

2
(� + 1), k5 = √−A = 1

2
. (54)

The eigenvalues of the Hamiltonian can now be expressed by using Eq. (4) as

[
ς
2

� + 3
2 + 2n

]2

= 1

4
⇔ ςn = � + 3

2
+ 2n, (55)

or more explicitly as

E = 1

2
Mc2

{
1 + 4 [4(n + 1) + j ( j + 1) − �(� − 1)]

h̄ω

Mc2

} 1
2

. (56)

By using Eq. (5), the correspondingly radial wave functions can be written as:

Rn�(r) = Nn�ξ
1
2 (�+1)e− ξ

2 1 F1

(
−n; � + 3

2
; ξ

)
, (57)

where Nn� denotes the normalization constant. These results are in agreement with the ones obtained previously
in Ref. [85].
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5 Concluding Remarks

We proposed a simple formula for finding eigensolutions (energy eigenvalues and wave function) of any
non-relativistic and relativistic wave equations. The proposed formula is derived via the asymptotic iteration
method (AIM) and functional analysis approach (FAA). This approach presents a new alternative and accurate
method to obtain bound states with different potential models. To show the accuracy and effectiveness of this
method, we re-obtained the bound state solution of non-relativistic and relativistic wave equations with a vast
number of central and non-central potential models like harmonic oscillator, Manning–Rosen, Hulthén, Eckart,
Kratzer-type, Coulomb, Morse and generalized non central Coulomb potentials. We considered the cases of
k3 = 0 and k3 �= 0 for exact and approximate solutions. It is worth being paid attention that all of our results
are in excellent agreement with the ones obtained previously by other methods.

This method is recommended for both teaching and research purposes.

Acknowledgments We thank the kind referee for the positive enlightening comments and suggestions, which have greatly helped
us in making improvements to this paper. In addition, BJF acknowledges eJDS (ICTP).

Appendix A: Derivation of the Formula Method

Firstly, let us analyze the asymptotic behavior at the origin and at infinity for the finiteness of our solution. It
can be tested when s → 0 by taking the solution of Eq. (1) as �(s) = sk4 , where

k4 = (1 − k1) +√(1 − k1)2 − 4C

2
. (A1)

Again, it can also be proved that when s → 1
k3

, the solution of Eq. (1) is �(s) = (1 − k3s)k5 , where

k5 = 1

2
+ k1

2
− k2

2k3
+
√√√√
[

1

2
+ k1

2
− k2

2k3

]2

−
[

A

k2
3

+ B

k3
+ C

]
. (A2)

Hence, the wave function in the intermediate region, for this problem, can be taken as

�(s) = sk4(1 − k3s)k5 F(s). (A3)

The newly defined function F(s) should turn out to be something very simple such as, presumably, polynomials
in s. It is worthwhile to make a last substitution aiming at converting the differential equation for �(s) to one
for F(s). The substitution of the above Eq. (A3) into Eq. (A1) leads to the following second-order differential
equations

F ′′(s) + F ′(s)
[

(2k4 + k1) − sk3(2k4 + 2k5 + k2
k3

)

s(1 − k3s)

]

−
[

2k3k4(k4 − 1) + k5k3(2k4 + k1) + k4(k1k3 + k2) − B

s(1 − k3s)

]
F(s) = 0, (A4a)

F ′′(s) + F ′(s)
[

(2k4+k1)−sk3(2k4+2k5+ k2
k3

)

s(1 − k3s)

]
−
[

k3(k4 + k5)
2 + (k4 + k5)(k2 − k3) + A

k3

s(1 − k3s)

]
F(s) = 0.

(A4b)

It should be noted that Eq. (A4a) is equivalent to Eq. (A4b), but Eq. (A4a) becomes more complicated during
the course of our calculations. Therefore, we shall continue our derivation with Eq. (A4b). At this stage, we
shall obtain the solution of Eq. (A4b) by using the asymptotic iteration method and functional analysis method



Formula Method for Bound State Problems 73

Derivation via AIM

The asymptotic iteration method (AIM) for eigenvalues problem has been introduced by Ciftci et al. [1,2]. Ever
since then, it has been used in many physical systems to obtain the whole spectra ([24] and refs. therein). The
beauty about the method is that it reproduces exact solutions of many exactly solvable quantum systems and
also gives accurate result for the non solvable potentials such as sextic oscillator, deformed Coulomb potential,
etc.

Because of unfamiliar readers, firstly, we give a brief review of AIM with all necessary formulas for our
derivation. For a given potential the idea is to convert the Schrödinger-like equation to the homogenous linear
second-order differential equation of the form:

y′′
n (x) = λ0(x)y′

n(x) + s0(x)yn(x), (A5)

where λ0(x) �= 0 and the prime denote the derivative with respect to x , the extral parameter n denotes the
radial quantum number. The variables, s0(x) and λ0(x) are sufficiently differentiable. To find energy spectrum
equation of any Schrodinger-like equation, the equation is first transformed to form of (A5). Then, one need
to obtain λk(x) and sk(x) with k > 0, i.e.,

λk(x) = λ′
k−1(x) + sk−1(x) + λo(x)λk−1(x), sk(x) = s′

k−1(x) + so(x)λk−1(x). (A2)

With λk(x) and sk(x) values, one can obtain the quantization condition

δk(x) =
∣∣∣∣
λk(x) sk(x)
λk−1(x) sk−1(x)

∣∣∣∣ = 0 , k = 1, 2, 3.... (A7)

The energy eigenvalues are then obtained by the condition given by Eq. (A7) if the problem is exactly solvable.
For nontrivial potentials that have no exact solutions, for a specific n principal quantum number, we choose
a suitable x0 point, determined generally as the maximum value of the asymptotic wave function or the
minimum value of the potential and the approximate energy eigenvalues are obtained from the roots of Eq.
(A7) for sufficiently great values of k with iteration for which k is always greater than n in the numerical
solutions. Furthermore, the eigenfunction can be obtained by transforming the Schrödinger-like equation to
the form of

y′′(x) = 2

(
ax N+1

1 − bx N+2 − m + 1

x

)
y′(x) − W x N

1 − bx N+2 y(x). (A8)

The exact solution yn(x) can be expressed as [1,2]

yn(x) = (−1)nC2(N + 2)n(σ )n 2 F1(−n, ρ + n; σ ; bx N+2), (A9)

where the following notations has been used

(σ )n = �(σ + n)

�(σ )
, σ = 2m + N + 3

N + 2
and ρ = (2m + 1)b + 2a

(N + 2)b
. (A10)

Now, comparing Eq. (A4b) with Eq. (A9), we can determine the following parameters

m =k4 + k1

2
− 1, a =

(
k5 − k1

2
+ k2

2k3

)
k3, σ =2k4+k1 and ρ =2(k4 + k5)+ k2

k3
−1, k3 �= 0. (A11)

Having determined these parameters, we can easily find the eigenfunction �(s) expressed in terms of the
hypergeometric function as

�(s) = (−1)nC2
�(2k4 + k1 + n)

�(2k4 + k1)
sk4(1 − k3s)k5

2 F1

(
−n, n + 2(k4 + k5) + k2

k3
− 1; 2k4 + k1, k3s

)

= Nnsk4(1 − k3s)k5
2 F1

(
−n, n + 2(k4 + k5) + k2

k3
− 1; 2k4 + k1, k3s

)
, k3 �= 0, (A12)
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where Nn is the normalization constant. Now, let us turn to the derivation of the energy eigenvalues. By using
Eq. (A5) we can rewrite the λ0(s) and s0(s) and consequently we can calculate λk(s) and sk(s). Thus, it gives

λ0 =
[

sk3(2k4 + 2k5 + k2
k3

) − (2k4 + k1)

s(1 − k3s)

]

s0 =
[

k3(k4 + k5)
2 + (k4 + k5)(k2 − k3) + A

k3

s(1 − k3s)

]

λ1 =
[

2k3(k4 + k5) + k2

s(1 − k3s)
− kk1(1 − k3s + kk1)

s2(1 − k3s)
+ k3kk1

s(1 − k3s)2 + k3(k4 + k5)
2 + (k2 − k3)(k4 + k5) + A

k3

s(1 − k3s)

]

s1 =
[

2kk2k3s(1 + k4 + k5) − (1 + 2k4 + k1 − sk2)

s2k3(1 − k3s)2

]

...etc

where kk1 = −2k4 − k1 +2s(k4k3 + k5k3 + k2/2) and kk2 = k3(k4 + k5)
2 + k2k3(k4 + k5)− k2

3(k5 + k4)+ A.
Combining these results with the termination condition given by Eq. (A7) gives

s0λ1 =λ0s1 ⇒ k4 + k5 = − 1

2k3

(
k2 − k3 −

√
(k3 − k2)2 − 4A

)
,

s1λ2 =λ1s2 ⇒ k4 + k5 = − 1

2k3

(
k2 + k3 −

√
(k3 − k2)2 − 4A

)
,

s2λ3 =λ2s3 ⇒ k4 + k5 = − 1

2k3

(
k2 + 3k3 −

√
(k3 − k2)2 − 4A

)
, (A14)

s3λ4 =λ3s4 ⇒ k4 + k5 = − 1

2k3

(
k2 + 5k3 −

√
(k3 − k2)2 − 4A

)
,

etc.

By finding the nth term of the above arithmetic progression, the formula for the eigenvalues can be obtained
as

k4 + k5 = 1 − 2n

2
− 1

2k3

(
k2 −

√
(k3 − k2)2 − 4A

)
(A15)

or more explicitly as
⎡
⎢⎣

k2
4 − k2

5 −
[

1−2n
2 − 1

2k3

(
k2 −√(k3 − k2)2 − 4A

)]2

2
[

1−2n
2 − 1

2k3

(
k2 −√(k3 − k2)2 − 4A

)]
⎤
⎥⎦

2

− k2
5 = 0. (A16)

Derivation via Functional Analysis Approach

FAA also called the traditional method by some authors has been introduced for finding bound state solutions
ever since the birth of quantum mechanics. In the approach, one transform the equation of form (1) to a form
of hypergeometric equation 2 F1(a, b; c; s) via an appropriate transformation by considering the singularity
points of the differential equation within the framework of the Frebenius theorem. The eigensolutions are
obtained from the properties of the hypergeometric functions on the condition that the series 2 F1(a, b; c; s)
approaches infinity unless a is a negative integer (i.e a = −n). This method have been employed by alot of
researchers to obtain eigensolution of quantum mechanical problems in both relativistic and non relativistic
case ([24] and refs. therein). Thus, solution of Eq. (A4b) can now be obtained

F(s) = [(α + n)(α + n − 1)(α + n − 2)....] [(β + n)(β + n − 1)(β + n − 2).....]
[
�(γ )

]

[�(α)] [�(β)]
[
(γ + n)(γ + n − 1)(γ + n − 2).....

] (k3s)n

n!

= 2 F1(α, β; γ ; k3s) = 1 +
∞∑

n=1

(α)n(βn)(k3s)n

n!(γ )n
, (A17)
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where α, β and γ are given by

α = k4 + k5 − 1

2
+ 1

2k3

[
k2 −

√
(k2 − k3)2 − 4A

]
, (A18a)

β = k4 + k5 − 1

2
+ 1

2k3

[
k2 +

√
(k2 − k3)2 − 4A

]
, (A18b)

γ = 2k4 + k1. (A18c)

Considering the finiteness of the solutions, it is shown from Eq. (A17) that F(s) approaches infinity unless α
is a negative integer. Nonetheless, the wave function �(s) will not be finite everywhere unless we take

α = k4 + k5 − 1

2
+ 1

2k3

[
k2 −

√
(k2 − k3)2 − 4A

]
= −n, n = 0, 1, 2, 3, ... (A19)

Hence, with Eq. (A19), the expression for β given by Eq. (A18b) can be rewritten as

β = 2(k4 + k5) + k2

k3
− 1 + n. (A20)

Using Eqs. (A19) and (A20), the solution of Eq. (A4b) can now be expressed as

F(s) = 2 F1

(
−n, n + 2(k4 + k5) + k2

k3
− 1, 2k4 + k1, k3s

)
. (A21)

With Eq. (A21), we can finally rewrite the wave function �(s) in Eq. (A3) as

�(s) = Nnsk4(1 − k3s)k5
2 F1

(
−n, n + 2(k4 + k5) + k2

k3
− 1; 2k4 + k1, k3s

)
, (A22)

where Nn is the normalization constant. In addition, by using Eq. (A19), we can find the following formula
for energy eigenvalues:

⎡
⎢⎣

k2
4 − k2

5 −
[

1−2n
2 − 1

2k3

(
k2 −√(k3 − k2)2 − 4A

)]2

2
[

1−2n
2 − 1

2k3

(
k2 −√(k3 − k2)2 − 4A

)]
⎤
⎥⎦

2

− k2
5 = 0, k3 �= 0. (A23)

It should be noted that the two approaches for obtaining this formula yield the same results. Furthermore, let
us discuss case where k3 → 0. Therefore, Eq. (A1) reduces to

� ′′(s) + (k1 − k2s)

s
� ′(s) + (As2 + Bs + C)

s2 �(s) = 0. (A24)

Also, the proposed wave function (A3) becomes

lim
k3→0

�(s) = sk4exp(−k5s)F(s) (A25)

with

lim
k3→0

k4 = (1 − k1) +√(1 − k1)2 − 4C

2
, lim

k3→0
k5 = −k2

2
+
√(

k2

2

)2

− A. (A26)

By following the same procedure, the eigenvalues and the corresponding wave function can be obtained as

[
B − k4k2 − nk2

2k4 + k1 + 2n

]2

− k2
5 = 0, (A27)

and
�(s) = Nnsk4exp(−k5s) 1 F1 (−n, 2k4 + k1, (2k5 + k2)s) , (A28)

respectively. Nn is the normalization constant.
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