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Abstract Within the framework of restricted four-body problem, we study the motion of an infinitesimal mass
by assuming that the primaries of the system are radiating-oblate spheroids surrounded by a circular cluster of
material points. In our model, we assume that the two masses of the primaries m2 and m3 are equal to μ and
the mass m1 is 1 − 2μ. By using numerical approach, we have obtained the equilibrium points and examined
their linear stability. The effect of potential created by the circular cluster and oblateness coefficients for the
more massive primary and the less massive primary, on the existence and linear stability of the libration point
have been critically examine via numerical computation. The stability of these points examined shows that
the collinear and the non-collinear equilibrium points are unstable. The result presented in this paper have
practical application in astrophysics.

1 Introduction

In recent years, there has been a growing interest in studying three-body problem with the aim of approximating
the behavior of real celestial systems ([1,2] and refs. therein). The results from the study have been found
useful in the theory of dynamical systems and in astronomy. The simplest form of the three-body problem
is restricted three-body problem (R3BP). It describe the motion of an infinitesimal mass moving under the
gravitational influence of two massive bodies called the primaries which moves in circular orbits around their
center of mass on account of their mutual attraction and the infinitesimal mass not influencing the motion of
the primaries. The classical restricted three-body problem possesses five equilibrium points. The first three
points (L1, L2, L3), denotes the collinear points while the last two points (L4 and L5) denotes the triangular
points. The Earth-Moon system together with an artificial satellite constitute such problem [1].

Now, with an interest in four-body problem. Couple R3BP is one of the examples of restricted four-body
problem (R4BP). The smaller body is called as the infinitesimal mas while the remaining massive bodies are
called as the primaries. very recently, Batagiannis and Papadakis [3] studied the families of simple symmetric
and non-symmetric periodic orbits in the restricted four body problem. Few among other interesting works
are Kumari and Kushvah [4], Papadouris and Papadakis [5], Alvarez and Vidal [6]. The purpose for studying
R4BP includes their application in general behavior of the synchronous orbit in presence of Moon and the Sun.

In this paper, our aim is to study the motion of an infinitesimal mass by assuming that the primaries of the
system are radiating-oblate spheroids surrounded by a circular cluster of material points. By using numerical
computation procedure via Wolfram MATHEMATICA v10, we locate the libration points and examine their
linear stability under the effect of oblateness and gravitational potential from a circular cluster of material
points.
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2 Equation of Motion

Let mi (i = 1, 2, 3) be the masses of the primaries with m1 > m2 ≥ m3 moving in circular periodic orbits
around their center of mass fixed at the origin of the coordinate system. These masses always lies at the vertices
of equilateral triangle with m1 being on the positive x-axis at the origin of time. The motion of the system
is referred to axes rotating with uniform angular velocity [3]. The three bodies move in the same plane and
their mutual distances remain unchanged with respect to time. The motion of the primaries consists of circular
orbits around their center of gravity. An equilateral equilibrium configuration of the three-bodies which is a
particular solution of the three-body problem given by Lagrange is formed by the primaries at any instant of a
given time. We assume that the influence of infinitesimal mass on the motion of primaries moving under their
mutual gravitational attraction is negligible. For studying the position of the infinitesimal mass, m, in the plane
of motion of the primaries we applied the synodical coordinates. Thus the masses of the primaries are fixed at
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where the mass parameter μ is taken as
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m1 + m2 + m3
. (2)

We now take the potential energy of the infinitesimal mass, under the influence of a circular cluster of material
points with its center at the origin of the coordinate system, under radiating-oblate primaries as
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where G is the gravitational constant. q1 and q2 are the radiation factors of the primaries. qi = 1 − Fri
Fgi

(i = 1, 2), where Fr is the force caused by radiation pressure force and Fg results due to gravitational force
[2,7]. the term Mb

(r2+T 2)
1/2 is the potential due to the circular cluster of material points ([7,8] and refs therein)

where Mb is the total mass of the circular cluster of material points. the oblateness coefficients for the more
massive primary denoted as Ai

(
Ai = J2i R2i

1

)
and for the less massive primary as Bi

(
Bi = J2i R2i

2

)
with J2i

being the zonal harmonic coefficients and R1,2 denote the mean radii of m1,2, supposing that the primaries
have their equatorial planes coinciding with the plane of motion. Also, r is the distance of the infinitesimal
mass and which is given by

r =
√

x2 + y2, (5)

Furthermore, T = a + b, where a and b are two parameters which determine the density profile of the circular
cluster of material points. a, the flatness parameter, control the flatness of the profile while b, the core parameter,
controls the size of the core of the density. Now, the Lagrangian of our problem can be written as
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rc is the radial distance of the infinitesimal body. It then follows that the equations of motion of the infinitesimal
mass are:

ẍ − 2n ẏ = �x (8a)

ÿ − 2nẋ = �y (8b)

where
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It should be noted here that the suffixes x and y indicate the partial derivatives of � with respect to x and y
respectively. This system admits the well-known Jacobi integral:

C = 2� − (ẋ + ẏ), (10)

where C is the Jacobi constant.

3 Equilibrium Solutions

In this section, we attempt to find the equilibrium points for the cases y = 0 and y �= 0. From the equations of
motion (8a, 8b), it can be deduce that equilibrium solution exists relative to the rotating frame when the partial
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We have splited the differential for the sake of simplicity. Now
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Similarly, we can find �y as
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3.1 Case 1: y = 0 (collinear points)

Setting y as zero, we can find the equilibrium points at x-axis by solving Eqs. (12) and (13). This implies that
collinear points lie on the line joining the primaries. We choose μ = 0.2 and varies the oblateness coefficients.
Thus,
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The two collinear points have been represented in Figs. 1, 2 and presented for better clarification in Table 1.

3.2 Case 2: y �= 0 (non-collinear points)

The non-collinear points can be found by solving Eqs. (12) and (13) simultaneously when y �= 0, i.e. f (x, y) =
0 and g(x, y) = 0, where
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Fig. 1 a Graph indicating collinear and non-collinear points. The point of intersection of the two curves (blue and red) denotes the
position of the equilibrium points while the double point at the center of figure-eight-shape represent the position of the primaries
bodies m2 and m3 and m1. We choose μ = 0.2, q1 = q2 = 1, rc = 0.99, T = 0.01, A1 = 0.0015, B1 = 0.2 : 0.2 : 1, Mb = 0,
A2 = 0, B2 = 0 b Same as (a) but for B1 = 0.0015 and A1 = 0.2 : 0.2 : 1 (color figure online)
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Fig. 2 a Graph indicating collinear and non-collinear points. The point of intersection of the two curves (blue and red) denotes
the position of the equilibrium points while the double point at the center of figure-eight-shape represent the position of the
primaries bodies m2 and m3 and m1. We choose μ = 0.2, q1 = q2 = 1, rc = 0.99, T = 0.01, A1 = 0.0015, B1 = 0.2 : 0.2 : 1,
Mb = 0.01, A2 = 0.0001, B2 = 0.0001 b Same as (a) but for B1 = 0.0015 and A1 = 0.2 : 0.2 : 1 (color figure online)
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Table 1 The collinear equilibrium points

A1 B1 = 0.0015, B2 = 0, Mb = 0 and A2 = 0 B1 = 0.0015, A2 = B2 = 0.0001, Mb = 0.01

L1 L2 L1 L2

0.0000 −0.95306838 1.12278209 −0.94898914 1.11885937
0.0015 −0.95221252 1.12310149 −0.94815485 1.11919521
0.0030 −0.95135906 1.12341751 −0.94732288 1.11952752
0.0045 −0.95050799 1.12373023 −0.94649324 1.11985634
0.0060 −0.94965932 1.12403970 −0.94566591 1.12018174
0.0075 −0.94881302 1.12434596 −0.94484088 1.12050378
0.0090 −0.94796909 1.12464908 −0.94401815 1.12082252

B1 A1 = 0.0015, B2 = 0, Mb = 0 and A2 = 0 A1 = 0.0015, A2 = B2 = 0.0001 and Mb = 0.01

L1 L2 L1 L2

0.0000 −0.95252453 1.12376801 −0.94844746 1.11984694
0.0015 −0.95221252 1.12310149 −0.94815485 1.11919521
0.0030 −0.95189701 1.12243703 −0.94785857 1.11854546
0.0045 −0.95157813 1.12177461 −0.94755869 1.11789767
0.0060 −0.95125599 1.12111423 −0.94725548 1.11725183
0.0075 −0.95093069 1.12045588 −0.94694891 1.11660793
0.0090 −0.95060234 1.11979954 −0.94663912 1.11596596
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We have also choose μ = 0.2 and varies the oblateness coefficients. The six non-collinear points have been
represented in Figs. 1 and 2 and presented for better clarification in Table 4.

4 Stability of Libration Points

In this section, we aim to study the stability of a libration point (x0, y0). To achieve this goal, firstly, we apply
infinitesimal displacement ζ and η to the coordinates via:

η = y − y0 ζ = x − x0 (17)

Substituting Eq. (17) into equations of the motion in (8a) and (8b), we can find

ζ̈ − 2nη̇ = ζ�0
xx + η�0

xy η̈ + 2nζ̇ = ζ�0
yx + η�0

yy, (18)

where the superfix ‘0’ indicates that the partial derivatives have been computed at the triangular libration point
by considering (x0, y0). Now, let us assume a solution of the form ζ = C1 expλt and η = C2 expλt , where
C1 and C2 is a constant and λ is a parameter. Substituting the assumed solutions in Eq. (18), we can find the
following non-trivial solution for C1 and C2

∣∣∣∣
λ2 − �0

xx −2nλ − �0
xy

2nλ − �0
xy λ2 − �0

yy

∣∣∣∣ = 0 (19)

Solving the determinant by expansion, we can find the characteristic equation corresponding to the variational
equations of (18) as
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yy)λ
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(
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xx�
0
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xy
2
)

= 0 (20)
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Table 2 The non-collinear equilibrium points

A1 B1 = 0.0015

L3(B2 = A2 = Mb = 0) L3(B2 = A2 = 10−4, Mb = 0.01) L4(B2 = A2 = Mb = 0)

0.0000 (−0.19345696, −0.28884586) (−0.20144084, −0.28582247) (−0.87681266, −0.82897112)
0.0030 (−0.19443441, −0.28989552) (−0.20225222, −0.28692059) (−0.87599362, −0.82841022)
0.0060 (−0.19539083, −0.29092004) (−0.20304983, −0.28799216) (−0.87518047, −0.82785288)
0.0090 (−0.19632718, −0.29192061) (−0.20383411, −0.28903841) (−0.87437306, −0.82729906)

A1 B1 = 0.0015

L4(B2 = A2 = 10−4, Mb = 0.01) L5(B2 = A2 = Mb = 0) L5(B2 = A2 = 10−4, Mb = 0.01)

0.0000 (−0.87422161, −0.82679301) (−0.87791426, 0.83013621) (−0.87491830, 0.82756065)
0.0030 (−0.87342321, −0.82624651) (−0.87709873, 0.82957741) (−0.87412052, 0.82701382)
0.0060 (−0.87263035, −0.82570342) (−0.87628899, 0.82902218) (−0.87332828, 0.82647040)
0.0090 (−0.87184299, −0.82516371) (−0.87548498, 0.82847047) (−0.87254151, 0.82593035)

A1 B1 = 0.0015

L6(B2 = A2 = Mb = 0) L7(B2 = A2 = 10−4, Mb = 0.01) L8(B2 = A2 = Mb = 0)

0.0000 (−0.19197731, 0.28831476) (−0.20074188, 0.28562894) (0.17004318, 0.91238631)
0.0030 (−0.19295597, 0.28935976) (−0.20155940, 0.28672765) (0.16821900, 0.91227333)
0.0060 (−0.19391344, 0.29037964) (−0.20236301, 0.28779979) (0.16640949, 0.91215568)
0.0090 (−0.19485068, 0.29137562) (−0.20315319, 0.28884661) (0.16461444, 0.91203350)

A1 B1 = 0.0015

L4(B2 = A2 = 10−4, Mb = 0.01) L5(B2 = A2 = Mb = 0) L5(B2 = A2 = 10−4, Mb = 0.01)

0.0000 (0.16893314, 0.90967858) (0.16892433, −0.91225463) (0.16796331, −0.90956875)
0.0030 (0.16711754, 0.90958927) (0.16709850, −0.91213880) (0.16614685, −0.90947703)
0.0060 (0.16531652, 0.90949493) (0.16528733, −0.91201832) (0.16434498, −0.90938031)
0.0090 (0.16352989, 0.90939570) (0.16349063, −0.91189334) (0.16255750, −0.90927872)

B1 A1 = 0.0015

L3(B2 = A2 = Mb = 0) L3(B2 = A2 = 10−4, Mb = 0.01) L4(B2 = A2 = Mb = 0)

0.0000 (−0.19392723, −0.28949593) (−0.20181838, −0.28650147) (−0.87675807, −0.82908154)
0.0030 (−0.19396974, −0.28925158) (−0.20187844, −0.28624807) (−0.87604795, −0.82830022)
0.0060 (−0.19401316, −0.28900596) (−0.20181838, −0.28650147) (−0.87534266, −0.82752417)
0.0090 (−0.19405750, −0.28875905) (−0.20200158, −0.28573736) (−0.87464209, −0.82675332)

B1 A1 = 0.0015

L4(B2 = A2 = 10−4, Mb = 0.01) L5(B2 = A2 = Mb = 0) L5(B2 = A2 = 10−4, Mb = 0.01)

0.0000 (−0.87416787, −0.82690189) (−0.87675800, 0.82908155) (−0.87374348, 0.82648770)
0.0030 (−0.87347669, −0.82613804) (−0.87823658, 0.83061433) (−0.87527601, 0.82806818)
0.0060 (−0.87416787, −0.82690189) (−0.87965019, 0.83208249) (−0.87374348, 0.82648770)
0.0090 (−0.87210793, −0.82462547) (−0.88100409, 0.83349119) (−0.87814103, 0.83103030)

B1 A1 = 0.0015

L6(B2 = A2 = Mb = 0) L6(B2 = A2 = 10−4, Mb = 0.01) L7(B2 = A2 = Mb = 0)

0.0000 (−0.19392723, 0.28949593) (−0.20263015, 0.28692262) (0.16829622, 0.91300221)
0.0030 (−0.19105058, 0.28820483) (−0.19971677, 0.28546376) (0.16995578, 0.91165965)
0.0060 (−0.18832101, 0.28698803) (−0.20263015, 0.28692262) (0.17158974, 0.91032129)
0.0090 (−0.18572192, 0.28583686) (−0.19434439, 0.28279340) (0.17319878, 0.90898719)
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Table 2 continued

B1 A1 = 0.0015

L7(B2 = A2 = 10−4, Mb = 0.01) L8(B2 = A2 = Mb = 0) L8(B2 = A2 = 10−4, Mb = 0.01)

0.0000 (0.16718331, 0.91029004) (0.16829623, −0.91300221) (−0.20263015, 0.28692262)
0.0030 (0.16885712, 0.90898002) (0.16772355, −0.91139458) (0.16677409, −0.90873967)
0.0060 (0.16718331, 0.91029004) (0.16715340, −0.90979566) (0.16733301, −0.91030948)
0.0090 (0.17212759, 0.90637132) (0.16658575, −0.90820535) (0.16566353, −0.90562503)

Now, the second order derivatives of the potential function w.r.t x and y are as follows

�xx = (2μ − 1)q1
[
3y2

(
20A1r2

1 − 35A2 + 8r14
) − 16

(
3A1r4

1 + r6
1

) + 90A2r2
1

]

8r9
1

+μq2
[
4r2

2

(
3B1

(
16r2

2 − 5(1 − 2y)2
) + 2r2

2

(
8r2

2 − 3(1 − 2y)2
)) − 15B2

(
24r2

2 − 7(1 − 2y)2
)]

32r9
2

+μ
(
8r2

3 − 3(2y + 1)2
)

4r5
3

+ n2 − Mb
(
T 2 − 2x2 + y2

)
(
T 2 + x2 + y2

)5/2
(21a)

�yy =
q1(2μ − 1)

[
(x − √

3μ)2
(
24r4

1 + 60r2
1 A1 − 105A2

) − 16r6
1 − 48r4

1 A1 + 90r2
1 A2

]

8r9
1

−μq2(3B1 + 4r2
2 )

(
y − 1

2

)2

r7
2

+ 7μq2
(−15B2 + 12B1r2

2 + 8r4
2

) (
y − 1

2

)2

8r9
2

(21b)

− μ

r3
3

+ 3μ
(
y + 1

2

)2

r5
3

+ n2 − Mb(T 2 + x2 − 2y2)

(T 2 + x2 + y2)5/2
− μq2

(−15B2 + 12B1r2
2 + 8r4

2

)

8r7
2

�xy = −�yx =
3μq2

(
35B2 + 20B1r2

2 + 8r4
2

) (
2
√

3μ − √
3 − 2x

) (
y − 1

2

)

16r9
2

+
3(2μ − 1)q1

(
8r4

1 + 20A1r2
1 − 35A2

) (√
3μ − x

)
y

8r9
1

(21c)

+ 3Mbxy

(T 2 + x2 + y2)5/2
+

3μ
(

x +
√

3
2 (1 − 2μ)

) (
y + 1

2

)

r5
3

4.1 Stability of Collinear Points

For stability of the collinear points (x0, 0), we have

�0
xx = (2μ − 1)q1

[
90A2r2∗1 − 16

(
3A1r4∗1 + r6∗1

)]

8r9∗1

+ μ
(
8r2∗3 − 3

)

4r5∗3

+ n2 − Mb
(
T 2 − 2x2

)
(
T 2 + x2

)5/2

+μq2
[
4r2∗2

(
3B1

(
16r2∗2 − 5

) + 2r2∗2

(
8r2∗2 − 3

)) − 15B2
(
24r2∗2 − 7

)]

32r9∗2

(22a)

�0
yy =

q1(2μ − 1)
[
(x − √

3μ)2
(
24r4∗1 + 60r2∗1 A1 − 105A2

) − 16r6∗1 − 48r4∗1 A1 + 90r2∗1 A2

]

8r9∗1

−μq2(3B1 + 4r2∗2)

4r7∗2

+ 7μq2
(−15B2 + 12B1r2∗2 + 8r4∗2

)

32r9∗2

(22b)
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Table 3 The collinear equilibrium points

A1 B1 = 0.0015, B2 = 0, Mb = 0 and A2 = 0 B1 = 0.0015, A2 = B2 = 0.0001, Mb = 0.01

ω1,2[L1] ω1,2[L2] ω1,2[L1] ω1,2[L2]
0.0000 0.00277207, −4.16745 0.630098, −1.12595 0.00629293, −4.22993 0.644868, −1.15555
0.0030 0.00322086, −4.19389 0.644078, −1.12368 0.00693737, −4.25635 0.659084, −1.15303
0.0060 0.00370102, −4.22042 0.658097, −1.12159 0.00761206, −4.28285 0.673337, −1.15069
0.0090 0.00421238, −4.24702 0.672153, −1.11969 0.00831680, −4.30942 0.687623, −1.14855

B1 A1 = 0.0015, B2 = 0, Mb = 0 and A2 = 0 A1 = 0.0015, A2 = B2 = 0.0001 and Mb = 0.01

ω1,2[L1] ω1,2[L2] ω1,2[L1] ω1,2[L2]
0.0000 – – 0.01867490, −4.78680 0.649253, −1.15074
0.0030 0.00307755, −4.20224 0.639863, −1.12839 0.00682055, −4.26512 0.654742, −1.15787
0.0060 0.00323681, −4.24523 0.645428, −1.13559 0.00722554, −4.30892 0.660288, −1.16509
0.0090 0.00338427, −4.28804 0.651002, −1.14279 0.00761541, −4.35251 0.665842, −1.17230

− μ

r3∗3

+ 3μ

4r5∗3

+ n2 − Mb

(T 2 + x2)3/2 − μq2
(−15B2 + 12B1r2∗2 + 8r4∗2

)

8r7∗2

�0
xy = �yx =

3μq2
(
35B2 + 20B1r2∗2 + 8r4∗2

) (
2
√

3μ − √
3 − 2x

)

32r9∗2

+
3μ

(
x +

√
3

2 (1 − 2μ)
)

2r5∗3

, (22c)

where we have introduced parameters r∗1 =
∣∣∣x − √

3μ

∣∣∣ , r∗2 = r∗3 =
√(

x +
√

3
2 (1 − 2μ)

)2 + 1
4 for mathe-

matical simplicity. Substituting these values given by equation (22) into the characteristic equation, we have

λ1 = −λ2 =

√√√√�0
xx + �0

yy − 4n2 +
√

(�0
xx + �0

yy − 4n2)2 − 4�0
xx�

0
yy

2
(23)

λ3 = −λ4 =

√√√√�0
xx + �0

yy − 4n2 −
√

(�0
xx + �0

yy − 4n2)2 − 4�0
xx�

0
yy

2
(24)

Numerical computation of λi (i = 1, 2, 3, 4) have been presented in Table 3. We take λ2
1,2 = ω1 and λ2

3,4 = ω2.
It can be seen that collinear equilibrium points are unstable for all the variational groups we considered.

4.2 Stability of Non-collinear Points

Again, we solve the characteristic equation for λi (i = 1, 2, 3, 4), i.e.

λ1 = −λ2 =

√√√√�0
xx + �0

yy − 4n2 +
√

(�0
xx + �0

yy − 4n2)2 − 4�0
xx�

0
yy

2
(25)

λ3 = −λ4 =

√√√√�0
xx + �0

yy − 4n2 −
√

(�0
xx + �0

yy − 4n2)2 − 4�0
xx�

0
yy

2
(26)

and then evaluate them at equilibrium points. The results have been presented in Table 4. We take λ2
1,2 = ω1

and λ2
3,4 = ω2. An equilibrium point is stable if the characteristic equation evaluated at the equilibrium point,

has four complex roots with negative real parts or pure imaginary roots otherwise it is unstable. In this regard,
the non-collinear equilibrium points are found to be unstable.
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Table 4 The non-collinear equilibrium points

A1 B1 = 0.0015

ω1,2[L3](B2 = A2 =
Mb = 0)

ω1,2[L3](B2 = A2 = 10−4, Mb = 0.01) ω1,2[L4](B2 = A2 =
Mb = 0)

0.0000 0.698587 ± 2.08943i 0.201843 ± 1.95844 I −0.114859, −8.55824
0.0030 0.737719 ± 2.09589i 0.241997 ± 1.97939i −0.116121, −8.62448
0.0060 0.777724 ± 2.10203i 0.282939 ± 1.99977i −0.117388, −8.69093
0.0090 0.818571 ± 2.10781i 0.324643 ± 2.01957i −0.118659, −8.75760

A1 B1 = 0.0015

ω1,2[L4](B2 = A2 =
10−4, Mb = 0.01)

ω1,2[L5](B2 = A2 = Mb = 0) ω1,2[L5](B2 = A2 =
10−4, Mb = 0.01)

0.0000 −0.115028, −8.76845 0.158008, −2.66934 0.146416, −2.69712
0.0030 −0.116285, −8.83521 0.155672, −2.67671 0.147833, −2.70795
0.0060 −0.114160, −8.84750 0.157223, −2.68772 0.149255, −2.71878
0.0090 −0.118812, −8.96937 0.158780, −2.69872 0.150681, −2.72960

A1 B1 = 0.0015

ω1,2[L6](B2 = A2 =
Mb = 0)

ω1,2[L6](B2 = A2 = 10−4, Mb = 0.01) ω1,2[L7](B2 = A2 =
Mb = 0)

0.0000 −0.112101, −2.46343 −0.139859, −2.49056 0.243742 ± 2.23115i
0.0030 −0.128647, −2.43935 −0.155089, −2.46863 0.247004 ± 2.24285i
0.0060 −0.145287, −2.41467 −0.170428, −2.44611 0.250230 ± 2.25450i
0.0090 −0.162081, −2.38936 −0.185922, −2.42299 0.253420 ± 2.26611i

A1 B1 = 0.0015

ω1,2[L7](B2 = A2 =
10−4, Mb = 0.01)

ω1,2[L8](B2 = A2 = Mb = 0) ω1,2[L8](B2 = A2 =
10−4, Mb = 0.01)

0.0000 0.237749 ± 2.26453i −0.082174, −1.74531 −0.160371, −1.66998
0.0030 0.241012 ± 2.27620i −0.066694, −1.78344 −0.142206, −1.71098
0.0060 0.244238 ± 2.28782i −0.051821, −1.82096 −0.124897, −1.75113
0.0090 0.247427 ± 2.29941i −0.037502, −1.85792 −0.108356, −1.79050

B1 A1 = 0.0015

ω1,2[L3](B2 = A2 =
Mb = 0)

ω1,2[L3](B2 = A2 = 10−4, Mb = 0.01) ω1,2[L4](B2 = A2 =
Mb = 0)

0.0000 0.736505 ± 2.09706i 0.240986 ± 1.97780i −0.114430, −8.56523
0.0030 0.699560 ± 2.08820i 0.202634 ± 1.95998i −0.116553, −8.61745
0.0060 0.662538 ± 2.07878i 0.224616 ± 1.98507i −0.118691, −8.66973
0.0090 0.625439 ± 2.06881i 0.125686 ± 1.92202i −0.120844, −8.72209

B1 A1 = 0.0015

ω1,2[L4](B2 = A2 =
10−4, Mb = 0.01)

ω1,2[L5](B2 = A2 = Mb = 0) ω1,2[L5](B2 = A2 =
10−4, Mb = 0.01)

0.0000 −0.114588, −8.77557 0.142775, −2.65244 0.134375, −2.68304
0.0030 −0.116727, −8.82805 0.166855, −2.68976 0.159684, −2.72179
0.0060 −0.109272, −8.79999 0.190282, −2.72625 0.207834, −2.80265
0.0090 −0.121051, −8.93323 0.213100, −2.76199 0.208171, −2.79661
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Table 4 continued

B1 A1 = 0.0015

ω1,2[L6](B2 = A2 =
Mb = 0)

ω1,2[L6](B2 = A2 = 10−4, Mb = 0.01) ω1,2[L7](B2 = A2 =
Mb = 0)

0.0000 −0.125093, −2.47469 −0.150461, −2.50474 0.242486 ± 2.22978i
0.0030 −0.114483, −2.43065 −0.143036, −2.45742 0.248260 ± 2.24422i
0.0060 −0.099783, −2.39535 −0.184033, −2.07113 0.253998 ± 2.25862i
0.0090 −0.081929, −2.36725 −0.114337, −2.39141 0.259703 ± 2.27297i

B1 A1 = 0.0015

ω1,2[L4](B2 = A2 =
10−4, Mb = 0.01)

ω1,2[L5](B2 = A2 = Mb = 0) ω1,2[L5](B2 = A2 =
10−4, Mb = 0.01)

0.0000 0.236472 ± 2.26310i −0.0667671, −1.77417 −0.150461, −2.50474
0.0030 0.242289 ± 2.27762i −0.0821114, −1.75454 −0.160261, −1.67929
0.0060 0.235711 ± 2.28097i −0.0981591, −1.73406 −0.152771, −1.70977
0.0090 0.253809 ± 2.30653i −0.1149660, −1.71269 −0.199014, −1.63134

By taking μ = 0 and using L4(−0.87342321,−0.82624651), we have the discriminant � = (�0
xx +

�0
yy − 4n2)2 − 4�0

xx�
0
yy = 4.69628 (� > 0) and by taking μ = 1

2 with L4(−0.87342321,−0.82624651),
we have the discriminant � = (�0

xx + �0
yy − 4n2)2 − 4�0

xx�
0
yy = −0.5180488 (� < 0). This implies that

� is a decreasing function of μ within an interval
(
0, 1

2

)
and there exist only one value of μ called as critical

mass (μc) in the interval
(
0, 1

2

)
for which the discriminant is zero.

5 Results and Conclusion

In this research, we examined the motion of an infinitesimal mass by assuming that the primaries of the system
are radiating-oblate spheroids surrounded by a circular cluster of material points, within the framework of
restricted four-body problem. In our model we assume that the two masses of the primaries m2 and m3 are
equal to μ and the mass m1 is 1 − 2μ. we have obtained the equilibrium points via numerical computation.
In Table 1 we obtained the two collinear points L1 and L2 on the x-axis. Firstly, we fixed B1 at 0.0015 in the
absent of gravitational potential with A2 = B2 = 0 and then varies A1 as 0.0000:0.0030:0.0090. We found that
the equilibrium point shifted from left to right. This is also observed in the presence of gravitational potential
with A2 = B2 �= 0. However, when we fixed A1 at 0.0015 and then varies B1, we found that collinear point
L1 shifted from left to right whereas that of L2 shifted from right to left. This is observed in the two cases we
considered, i.e. A2 = B2 = Mb = 0 and A2 = B2 �= MB �= 0.

In Table 4, we present the non-collinear points for the two cases A2 = B2 = Mb = 0 and A2 = B2 �=
MB �= 0. It is shown that L4(x, y) ≈ L5(x,−y). We found that our results are in excellent agreement with
Kumari and Kushvah [4] when A2 = B2 = Mb = 0 also with the ones obtained by Papadouris and Papadakis
[5] when A1 = B1 = A2 = B2 = Mb = 0. We also examined the linear stability of these point and found then
to be unstable. An extension to the effect of potential created by the circular cluster and oblateness coefficients
for the more massive primary and the less massive primary, on the existence and linear stability of the libration
point have also been presented.

Libration points are very important in astronomy because they indicate places where particle can be trapped.
As a consequence, our results can be applied in astrophysics.

Acknowledgments I thank the kind referee for the positive enlightening comments and suggestions, which have greatly helped
me in making improvements to this paper.
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