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Abstract The straightforward application of dimensional regularization and minimal subtraction leads to
problems with the power counting in a manifestly Lorentz-invariant formulation of baryon chiral perturbation
theory. These complications can be avoided by using alternative renormalization schemes, such as infrared
regularization and the extended on-mass-shell scheme. Some recent applications of these formalisms are
discussed, including the chiral expansion of the nucleon mass and nucleon form factors. The extension of these
methods to include additional degrees of freedom is also addressed.

1 Introduction

Chiral perturbation theory (ChPT) [15,16,36] is the effective field theory (EFT) of the Standard Model,
describing the interactions of hadrons at energies well below a scale of about 1GeV (for an introduction
also see Ref. [29]). Instead of the underlying quarks and gluons, ChPT uses the degrees of freedom relevant
to the given energy regime, such as pions and nucleons. The connection to the Standard Model is made
through symmetries, with the EFT having the same symmetries and pattern of symmetry breaking as the more
fundamental theory. In particular, besides the discrete symmetries of charge conjugation, parity, and time
reversal, this means that ChPT incorporates the chiral symmetry of QCD and its spontaneous breaking. The
pions as the lightest hadrons are identified as the Goldstone bosons of spontaneous chiral symmetry breaking.
Because of the explicit breaking of chiral symmetry by the nonzero light quark masses, the pions are not
massless. Their interactions with each other and with nucleons and external fields are described by an effective
Lagrangian which, as for any EFT, consists of an infinite number of terms, each accompanied by its own
low-energy coupling (LEC). The Lagrangian can be arranged according to a power counting [36] in a series
of terms with an increasing number of derivatives and powers of the light quark masses. This corresponds
to a dual expansion of observables in powers of small momenta and quark masses. On the level of Feynman
diagrams, the power counting assigns to each diagram a chiral order D. Diagrams with higher chiral orders D
are suppressed by powers of a small quantity q , which generically denotes either a small external momentum
or the pion mass. In the mesonic sector, the power counting establishes a connection between the chiral and
the loop expansion, with higher-order loop diagrams having higher chiral order D and thus being suppressed.

ChPT was originally developed to describe the interactions of pions with each other and with external
fields [15,16,36]. It has been applied to a large number of pion properties and reactions, see e.g., Refs. [5,10,
23,25,27]. ChPT was subsequently extended to also include the interactions with nucleons [17], considering
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matrix elements with one-nucleon initial and final states. Baryon ChPT can be used to describe nucleon
properties such as the nucleon mass and form factors, as well as scattering processes at low energies, such as
pion-nucleon scattering. For reviews, see e.g., Refs. [2,4,28].

2 Power Counting and Renormalization in Baryon ChPT

In the mesonic sector of ChPT, the application of dimensional regularization combined with the modified
minimal subtraction scheme of ChPT results in expressions for tree and loop diagrams that satisfy the power
counting. However, in baryon ChPT this procedure leads to loop diagram contributions that violate the power
counting [17].As pointed out inRef. [17], these power counting violating terms canbe avoided by application of
a more suitable renormalization scheme. Several solutions to the power counting problem have been proposed,
including the infrared regularization of Ref. [1] and the extended on-mass-shell (EOMS) scheme of Ref. [12].
Both of these approaches, unlike the also commonly used heavy-baryon formulation [3,20], retain manifest
Lorentz invariance at each stage of the calculation.

To illustrate the main features of infrared regularization and the EOMS scheme, consider the dimensionally
regularized one-loop integral

H
(
M2,m2, q1, p1, . . . ; n

) =
∫

dnk

(2π)n

1
[
(k + q1)2 − M2

]
. . .

[
(k + p1)2 − m2

]
. . .

, (1)

where M is the lowest-order pion mass, m the nucleon mass in the chiral limit, and the qi and pi are external
momenta. The pion and nucleon propagators can be combined using Feynman parametrization to give the
expression

H
(
M2,m2, q1, p1, . . . ; n

) =
∫ 1

0
dz f (z, M, q1, p1, . . .) , (2)

where f (z, M, q1, p1, . . .) is a function of the masses and external momenta. In infrared regularization the
integral is rewritten as

H
(
M2,m2, q1, p1, . . . ; n

) =
∫ ∞

0
dz f (z, M, q1, p1, . . .) −

∫ ∞

1
dz f (z, M, q1, p1, . . .) (3)

≡ I + R. (4)

The terms I and R are the so-called infrared singular and infrared regular parts of the integral, respectively.
Each term satisfies the Ward identities of the theory separately. Further, the infrared singular term satisfies the
power counting, while the infrared regular one contains terms that violate it. As shown in Ref. [1], R only
contains terms that are analytic in the small parameters of ChPT and can thus be absorbed by counter terms.
The renormalized expression of H thus satisfies both the power counting and the Ward identities.

The chiral expansion of the infrared regular piece R contains an infinite number of terms, including those
terms that violate the power counting. The central idea of the EOMS scheme [12] is to only subtract the power
counting violating terms instead of the closed-form expression of R. Because these terms are analytic in small
quantities, they can be absorbed by counter terms, resulting in a renormalized expression for loop integrals
that satisfies the power counting. To find the subtraction terms Hsubtr, one expands the original integrand in
small quantities and then interchanges summation and integration. The terms violating the power counting are
now easily identified and can be subtracted, leaving the renormalized expression

HR = H − Hsubtr, (5)

which satisfies both the power counting and the Ward identities of ChPT. The EOMS scheme can also be
extended to multi-loop diagrams [31] and diagrams containing additional heavy degrees of freedom, such as
vector mesons [13] and the Δ(1232) resonance [18].

In its original formulation, the infrared regularization of Ref. [1] is applicable to one-loop integrals con-
taining only pion and nucleon propagators. As shown in Ref. [32], infrared regularization can be reformulated
analogously to the EOMS scheme. It can then also be applied to multi-loop diagrams and diagrams containing
additional degrees of freedom [31]. For a different formulation of infrared regularization to include vector
mesons see Ref. [6].
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3 Nucleon Mass

The nucleonmass is one of the simplest quantities for the application of baryonChPT since it does not depend on
momentum transfers. The only relevant small quantity is the pion mass, and the chiral expansion of the nucleon
mass therefore corresponds to a pion mass expansion. It has been calculated in a number of renormalization
schemes, including heavy baryon ChPT [3,24], infrared renormalization [1], and the EOMS scheme [12].Most
calculations are restricted to the one-loop level, which corresponds to O(M4) in the chiral counting, while
Ref. [24] also considered terms at O(M5). A complete calculation to O(M6), including two-loop diagrams,
was performed in Refs. [30,34]. The chiral expansion of the nucleon mass takes the form

mN = m + k1M
2 + k2M

3 + k3M
4 ln

M

μ
+ k4M

4

+ k5M
5 ln

M

μ
+ k6M

5 + k7M
6 ln2

M

μ
+ k8M

6 ln
M

μ
+ k9M

6, (6)

where the ki are combinations of LECs and μ is a renormalization scale. The full expressions for the ki can be
found in Refs. [30,34]. Since a number of the LECs entering the coefficients ki have not been determined, it is
not possible to provide reliable numerical values for all terms in Eq. (6). However, the coefficients of the leading
nonanalytic terms, such as M5 ln M

μ
and M6 ln2 M

μ
, only depend on known LECs and are renormalization-

scheme independent. They can be used to study the pion-mass dependence of the nucleon mass, as shown
in Fig. 1. The left panel shows the expected suppression of the higher-order term k7M6 ln2 M

μ
compared to

k3M4 ln M
μ

over a pion mass range up to approximately 400MeV. However, the right panel shows that the

higher-order term k5M5 ln M
μ

becomes as large as the nominally lower-order term k2M3 around pion masses
of approximately 360MeV. This does not constitute a complete analysis of the convergence behavior of Eq. (6)
since not all terms at a given order are considered. However, the pionmass estimate at which the power counting
is no longer reliable agrees with the analyses of Refs. [8,26].

4 Form Factors and Additional Degrees of Freedom

The electromagnetic form factors of the nucleons present an important test for any theoretical description of
hadrons at low energies. Baryon ChPT at order O(q4) fails to accurately describe the form factors beyond
momentum transfers of Q2 ≈ 0.1GeV2 [14,21]. It was shown in Ref. [21] that the inclusion of vector mesons
as dynamical degrees of freedom can improve the description of the form factors at higher Q2 values. In
standard baryon ChPT, vector mesons are integrated out and their contributions are taken into account through
the LECs order by order. Keeping the vector mesons as dynamical degrees of freedom thus changes the values
of the LECs, but at the same time also resums an infinite series of higher-order terms.

With the development of the EOMS scheme and the reformulation of infrared regularization, a consistent
power counting for diagrams including internal vector meson propagators can be implemented. In Ref. [33]

Fig. 1 Pion-mass dependence of terms in chiral expansion of nucleonmass. Left panel: Solid blue line represents k7M6 ln2 M
μ
, red

dashed line represents k3M4 ln M
μ
, the grey band denotes an error estimate (see Ref. [34]). Right panel: Solid blue line represents

k5M5 ln M
μ
, red dashed line represents k2M3 (color figure online)
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Fig. 2 Sachs form factors of the nucleon in manifestly Lorentz invariant baryon ChPT at O(q4) including vector mesons. Solid
lines EOMS scheme; dashed lines infrared regularization. The data are taken from Ref. [11]

the proton and neutron electromagnetic form factors were calculated in manifestly Lorentz invariant baryon
ChPT to O(q4) including vector mesons. To this order, loop diagrams containing vector meson propagators
do not simultaneously contain pion propagators, and the contributions from these diagrams are completely
absorbed in counter terms in infrared regularization. In this formalism, the only explicit contributions from
vector mesons therefore come from tree-level diagrams. In the EOMS scheme, the loop contributions are small
and the dominant vector meson contributions are again from tree-level diagrams. The results for the form
factors in the EOMS scheme and in infrared regularization are shown in Fig. 2. The inclusion of vector mesons
improves the description of the form factors considerably up to momentum transfers of Q2 = 0.4GeV2.

5 Conclusions

There is no power counting problem in manifestly Lorentz invariant baryon ChPT provided a suitable renor-
malization scheme is employed. A number of such renormalization schemes have been proposed, including the
infrared regularization and the EOMS scheme discussed here. The chiral expansion of the nucleon mass and
the electromagnetic form factors only represent a small sample of the applications of these schemes. Further
applications include, e.g., pion production [19], nucleon polarizabilities [22], the moments of GPDs [35], and
pion momentum distributions in the nucleon [7]. A further interesting development is the application of the
complex-mass scheme to extend the energy domain in which the EFT is applicable, see e.g., Ref. [9].

Acknowledgments I thank D. Djukanovic, J. Gegelia, and S. Scherer for enjoyable collaborations and many interesting discus-
sions.
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