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Abstract We study a boundary-value problem for the Klein-Gordon equation that is inspired by the well-
known Mathews-Lakshmanan oscillator model. By establishing a link to the spheroidal equation, we show
that our problem admits an infinite number of discrete energies, together with associated solutions that form
an orthogonal set in a weighted L2-Hilbert space.

1 Introduction

In this work we are concerned with the one-dimensional model of a particular nonlinear oscillator, often
referred to as ”Mathews-Lakshmanan oscillator”. Originating from the classical theory, the latter model was
first introduced and discussed in [12]. It presents two interesting features, namely nonlinearity of the potential
and the presence of a term that can be interpreted as a position-dependent mass. This term produces a position-
dependent spring constant, allowing for the existence of solutions that take a simple harmonic form. The
classical model of the Mathews-Lakshmanan oscillator can be adapted to the nonrelativistic quantum context
[13], governed by the Hamiltonian for a position-dependent mass system. The associated Schrödinger equation
maintains solvability, admitting a discrete energy spectrum and a corresponding set of bound state solutions
that can be constructed in closed form [4,6,13]. In particular, the solutions allow for a representation in
terms of special functions [15,17]. The quantum version of the Mathews-Lakshmanan oscillator model was
generalized several times [8,11], including more recent studies that involve the higher-dimensional case [5]
and spaces of nonzero curvature [3]. Another generalization of the quantum Mathews-Lakshmanan oscillator
model concerns its relativistic version, which to the best of our knowledge has not been considered yet.
Therefore, the purpose of this note is to set up a simple relativistic model for the Mathews-Lakshmanan
oscillator governed by the Klein–Gordon equation. Inspired by the classical model, we incorporate a position-
dependent mass function and equip our equation with appropriate boundary conditions. Such kind of problems
involving the Klein–Gordon equation and a posistion-dependent mass, have been studied for many particular
cases, including Hulthen potentials [7], Coulombic systems [9] and kink-type interactions [10], just to mention
a few. Surprisingly, the present problem will turn out to admit infinitely many discrete stationary energies,
together with associated ”bound state” solutions that form an orthogonal set in a weighted Hilbert space. Recall
that such solutions cannot represent bound states in the strict sense, because the Klein–Gordon equation is
not compatible with a probabilistic interpretation. However, for the sake of simplicity we will refer to such
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solutions as bound states. The remainder of this paper is organized as follows. In Sect. 2 we give a short review
of the well-known Schrödinger model for the Mathews-Lakshmanan oscillator. Section 3 is devoted to the
construction of our Klein–Gordon system and the solution method. Results and a discussion is presented in
the final Sect. 4.

2 Preliminaries

We will now briefly review the quantum model of the Mathews-Lakshmanan oscillator within the one-
dimensional Schrödinger theory. For details the reader may refer to [4,6] and references therein. The latter
oscillator model originates from the classical Lagrangian

L = ẋ2

2 − 2 μ x2 − (1 − μ) x2

2 − 2 μ x2 , (1)

for a real-valued parameter μ > 0. Let us point out that the initial problem leading to the Lagrangian (1)
originally involved two independent parameters [12]. In order to preserve exact solvability in the nonrelativistic
quantum case, the two parameters can be linked to each other [4], resulting in the Lagrangian (1) that we are
considering here. The latter Lagrangian resembles a system under the presence of a position-dependent mass
m and potential energy V , given by

m = 1

1 − μ x2 V = (1 − μ) x2

2 − 2 μ x2 . (2)

In order to introduce a quantum model associated with the classical Lagrangian (1), we define the interval
Dμ ⊂ R by

Dμ =
(

− 1√
μ

,
1√
μ

)
, (3)

on which we consider the following boundary-value problem of Dirichlet type [4], obtained from a quantization
process for position-dependent mass systems

(1 − μ x2) � ′′ − μ x � ′ +
[

2 E − (1 − μ) x2

1 − μ x2

]
� = 0, x ∈ Dμ (4)

�

(
− 1√

μ

)
= �

(
1√
μ

)
= 0, (5)

where the stationary energy E ∈ R represents the spectral parameter and the boundary conditions are allowed
to be understood in the sense of a limit. We refer to the potential of the above model as the function V in (2).
Furthermore, we require � ∈ L2

w

(
Dμ

)
for the weight function w, given by

w = 1√
1 − μ x2

. (6)

The problem (4), (5) admits a discrete spectrum (En) and an infinite orthogonal set of corresponding
solutions (�n) ⊂ L2

w

(
Dμ

)
, n ∈ N ∪ {0}, provided by the following expressions:

En = μ n2

2
+ n + 1

2
(7)

�n = (
1 − μ x2) 1

4 P
− 1

μ
+ 1

2

n+ 1
μ

+ 1
2

(−√
μ x

)
, (8)

where P stands for the associated Legendre function of the first kind [1].
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3 The Klein–Gordon model

We will now set up a boundary-value problem that is governed by a one-dimensional Klein–Gordon equation for
a quantum analogon of the nonlinear oscillator system described by (1). In its general form, the Klein–Gordon
equation can be written as

� ′′ + [
(E − V )2 − (m + S)2] � = 0. (9)

Here, the real-valued constant E denotes the stationary energy, while the functions V and S represent
vector and scalar potential, respectively. Let us reiterate that equations of the form (9) have been studied in
several contexts, see for example [7,9,10]. Now, in order to adapt (9) to the classical context, the Lagrangian
(1) dictates that we must incorporate a potential and a position-dependent mass in the form as given by (2).
While substituting one or both of the potentials in (9) is a straightforward task, a conceptual problem arises
when replacing the mass in our Klein–Gordon equation by a nonconstant function. In order to understand the
issue, let us first recall how position-dependent masses are introduced in nonrelativistic quantum mechanics.
There, the governing Schrödinger equation is constructed from an underlying Hamiltonian, which can be
modified such as to include a nonconstant mass [19,20], while momentum and energy operators maintain their
conventional definitions. In contrast to the latter scenario, the Klein–Gordon equation is generated from de
Broglie’s dispersion relation by substituting the momentum and energy operators. Since an ad-hoc introduction
of a position-dependent mass function would render the dispersion relation invalid, a Klein–Gordon equation
featuring a nonconstant mass cannot be justified from a physical viewpoint of a relativistic model. Despite this
fact, there exists a variety of articles devoted to special cases of equation (9) for a position-dependent mass
function, as mentioned above. Examples of such works can be found in [2,7,9,10] and references therein. Such
studies are usually motivated by the question of integrability when passing from a well-known Schrödinger
model for position-dependent mass to the corresponding Klein–Gordon system. A related question of particular
interest is the persistence of a discrete spectrum. In the present case we will address both of the latter aspects.
Besides the position-dependent mass, we must also replace the vector and scalar potential in (9) through
expressions that are motivated by the classical potential in (2). While such an incorporation of the potentials
can be done in several ways, in our approach we will consider a Klein–Gordon equation for position-dependent
mass m and vector potential V as given in (2), and we set the scalar potential S to zero. If we instead chose
to have equal (or equal up to a factor like in [2]) vector and scalar potentials of the form (2), then we would
obtain a problem that is qualitatively equivalent to the situation we will be considering in this work. Below we
shall comment further on implications resulting from incorporating (2) in a different way. Now, we define the
following boundary-value problem on the same domain Dμ that was taken in the Schrödinger case (3).

� ′′ +
{[

E − (1 − μ) x2

2 − 2 μ x2

]2

−
(

1

1 − μ x2

)2
}

� = 0, x ∈ Dμ (10)

�

(
− 1√

μ

)
= �

(
1√
μ

)
= 0, (11)

where as before μ > 0 and the real constant E stands for the stationary energy. We are interested in solutions
that resemble bound states, so we impose the condition that � be normalizable in an L2-Hilbert space with an
appropriate weight function to be determined.

3.1 Connection with the Spheroidal Equation

In contrast to the Schrödinger equation (4), a direct approach to finding a closed-form solution of (10) in terms
of special functions fails. Therefore, the most promising way of tracking down solutions is to check if (10)
belongs to a known class of equations. This will in fact turn out to be true. Let us apply the following point
transformation involving the coordinate change x(y) = y/

√
μ:

� [x(y)] =
√

y2 − 1 �(y) . (12)
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After introduction of this transformation, our boundary-value problem (10), (11) can be written in the form

(1 − y2) �′′ − 2 y �′ +
(

A − h2 y2 + M2

y2 − 1

)
� = 0, y ∈ (−1, 1) (13)

� (−1) = � (1) = 0, (14)

where the constants A, h and M stand for the following abbreviations

A = 4 E2 μ2 − μ2 + 2 μ − 1

4 μ3 h = 2 E μ − μ + 1

2 μ
3
2

M =
√

4 μ3 + 3 μ2 + 2 μ − 1

4 μ3 . (15)

The boundary-value problem (13), (14) is well-known. In particular, (13) can be identified as a spheroidal
equation [18], which belongs to the confluent Heun class [16]. Before we construct solutions of the spheroidal
equation, let us briefly return to the ambiguity in incorporating classical potential energy and mass (2) into
the Klein–Gordon equation (9). Instead of having the scalar potential S vanish, we could also assign it the
expression for V in (2) and/or at the same time set V = 0. However, each of these options results in a
Klein–Gordon equation that can be converted into a spheroidal equation of the general form (13), where the
expressions for the parameters A, h and M will vary depending on the actual approach. Returning to the
present problem, if we can find solutions of the spheroidal equation, equipped with the boundary conditions
(14), then these solutions can be converted by means of (12), such that they become applicable to our initial
Klein–Gordon problem.

3.2 Solutions of the Spheroidal Equation

In order to make this work self-contained, let us summarize main facts about the solutions of the above problem
(13), (14), for details the reader may refer to [14,18]. In general, the latter boundary-value problem is known
to admit solutions only for a discrete set of parameter values for A. We will see below that these so-called
characteristic values determine precisely the discrete bound state energies of our initial Klein–Gordon equation.
Note that in order to facilitate calculations, we will not yet incorporate the settings (15) until we have fully
developed our solution method. Returning to the spheroidal equation, it is known that there exists an infinite,
discrete and ascending sequence of values A = A j , j ∈ N ∪ {0}, for each of which the problem (13), (14)
admits a solution that has exactly j zeros inside (−1, 1). The solutions form an orthogonal set with respect to
the usual inner product of the Hilbert space L2(−1, 1). All solutions have parity, but do not feature a closed-
form representation. Instead, they can be written as a series expansion in terms of Gegenbauer polynomials T
[1] via one of the formulas

�2 j = (
1 − y2) M

2

∞∑
n=0

(d2n)|A=A2 j T M
2n (y) (16)

�2 j+1 = (
1 − y2) M

2

∞∑
n=0

(d2n+1)|A=A2 j+1 T M
2n+1(y), (17)

for j ∈ N ∪ {0}, where (16) and (17) represent even and odd parity functions, respectively. The expansion
coefficients in the series are determined through the following three-term recursion relation

an dn−2 + bn dn + cn dn+2 = 0, n ∈ N ∪ {0}, d−2 = d−1 = 0, (18)

where the following abbreviations are involved:

an = n (n − 1) h2

(2 n + 2 M − 1)(2 n + 2 M − 3)
(19)

bn = h2
{
2

[
(n + M)(n + M + 1) − M2

] − 1
}

(2 n + 2 M + 3)(2 n + 2 M − 1)) + (n + M)(n + M + 1) − A
(20)

cn = h2 (n + 2 M + 1)(n + 2 M + 2)

(2 n + 2 M + 3)(2 n + 2 M + 5)
. (21)
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It is important to point out that the series (16) and (17) are in general divergent. Convergence is guaranteed
only if the parameter A in (20) takes a characteristic value a = A j , j ∈ N ∪ {0}. Before we can use the point
transformation (12) to convert the results of the present section back to our initial Klein–Gordon model, we
must have a method at hand to find both the characteristic values for A, as well as the expansion coefficients
in the solution series. Such a method will be presented in the next section.

3.3 The Solution Algorithm

We will now develop an algorithm, the purpose of which is to give a successive approximation to both the
characteristic values and the expansion coefficients. This algorithm is not new, but was introduced in [14].
Since it is essential for understanding subsequent considerations, we shall briefly review the algorithm in two
steps.

Step 1. We solve the recursion (18) with respect to d2/d0, first substituting n = 0 and the second time n = 2.
This gives the following two relations

d2

d0
= − b0

c0

d2

d0
= −a2

b2 + c2
d4
d2

. (22)

Combining these two relations, we obtain

−b0

c0
= −a2

b2 + c2
d4
d2

.

Now we will modify the right side of this equation. We shift all indices n in (18) up by two, set n = 4,
solve for d4/d2, and substitute the result into the right-hand side of (22). An iteration of this process gives rise
to the following continued fraction expansion:

− b0

c0
= − a2

b2 + c2
− a4

b4 + c4
− a6

b6 + c6 ...

. (23)

We stop this iteration after N > 0 steps by reasoning that dN+2/dN is very small, so we set dN+2/dN = 0.
This turns (23) into an algebraic equation that can be solved for the parameter A, yielding approximations
for the characteristic values belonging to solutions of even parity. Observe that (23) generally has several
solutions, each of which is associated with a characteristic value. Also, the number of solutions increases with
the number N of steps that are done. In a similar way we obtain a continued fraction expansion for odd indices:

− b1

c1
= − a3

b3 + c3
− a5

b5 + c5
− a7

b7 + c7 ...

, (24)

that leads to the characteristic values associated with the odd solutions.

Step 2. We set d0 = 1. Relation (22) then gives d2, which can be plugged into the recursion relation (18)
for n = 2 in order to obtain d4. The continuation of this process yields the following expansion coefficients
d6, d8, d10, .... The coefficients for odd indices are constructed in a similar manner, starting out with d1 = 1.
The recursion (18) for n = 1 generates d3, which can be substituted into (18) for n = 3 in order to give d5. This
iteration produces the subsequent expansion coefficients d7, d9, d11, .... The solutions of the boundary-value
problem (13), (14) can now be approximated by plugging the expansion coefficients and the characteristic
values into the series representations (16), (17).
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3.4 Solutions of the Klein–Gordon Equation

While the algorithm described in the previous section is designed to work for the spheroidal equation, we can
adapt it to our initial Klein–Gordon equation by applying a few minor modifications that will now be listed.

• The parameters A, h and M in (19)-(21) must be replaced through the corresponding expressions in (15).
As a result, the recursion relation (18) and its coefficients depend entirely on the parameters μ, E and n.

• Equations (23) and (24) must now be solved for the energy E (instead of A, which has been replaced in the
previous point). The resulting characteristic values E = E j , where j is an integer, approximate the sought
bound state energies of the Klein–Gordon model (10), (11). Recall that in general, the latter model features
positive and negative energies, as is typical for the Klein–Gordon equation. Since we are interested in real
energies only, we must make sure that the parameter M in (15) is real-valued, resulting in a restriction on
μ that will be discussed in Sect. 4.

• The second step of the algorithm is performed exactly as described in Sect. 3.2, until the expansion
coefficients have been found. As such, the algorithm is complete.

The remaining task is to construct the solutions of our initial boundary-value problem (10), (11) that are
associated with the characteristic values for the energy parameter E . We will enumerate these characteristic
values in the following way. First, we apply the convention that E0 corresponds to the lowest positive energy
(”ground state”), while E−1 is the highest negative energy. As a consequence, the solutions associated with
the energies E0 and E−1 do not have any zeros inside Dμ. Furthermore, a characteristic value E = E j for a
j > 0 is associated with a solution that has exactly j zeros inside Dμ. Finally, a characteristic value E = E j
for a j < 0 is associated with a solution that has exactly j + 1 zeros inside Dμ. This situation is illustrated in
Sect. 4 within Table 1 below. Now, the sought solutions of the problem (10), (11) can be found by reversing the
point transformation (12), applying it to the solution series (16), (17) of the spheroidal equation. In addition,
all terms must be expressed through the initial variable x , recall that y(x) = √

μx , and the parameters A, h, M
are to be replaced by (15), where E attains a characteristic value. This gives

�2 j = (
1 − μ x2) 1

2 +
√

4μ3+3μ2+2μ−1
16μ3

∞∑
n=0

(d2n)|E=E2 j T

√
4μ3+3μ2+2μ−1

4μ3

2n

(√
μ x

)
(25)

�2 j+1 = (
1 − μ x2) 1

2 +
√

4μ3+3μ2+2μ−1
16μ3

∞∑
n=0

(d2n+1)|E=E2 j+1 T

√
4μ3+3μ2+2μ−1

4μ3

2n+1

(√
μ x

)
, (26)

for j ∈ N∪{0}. Observe that the functions (25) are even, while their counterparts (26) are odd. Note further that
the square roots stem from the incorporation of the definition for M , see (15). Next, we investigate on which
space the functions (25), (26) are orthogonal. Such a space must exist, because the initial series solutions (16)
and (17) form an orthogonal set in L2(−1, 1). The solutions of the spheroidal equation and its Klein–Gordon
counterpart are connected by the point transformation (12). We now set up the orthogonality relation for (16),
(17) and apply the latter point transformation for nonnegative integers k, k′:

(�k, �k′) = δkk′ =
1∫

−1

�∗
k �k′ dy =

√
1
μ∫

−
√

1
μ

�∗
k �k′

1

1 − μ x2 dx =

√
1
μ∫

−
√

1
μ

�∗
k �k′ w2 dx,

where we used the abbreviation w that was introduced in (6). We conclude that the functions (25), (26) form
an orthogonal set on the weighted Hilbert space L2

w2

(
Dμ

)
.

4 Results

We will now apply the theoretical findings developed in the previous sections to concrete examples. Before
we do so, some technical remarks are in order. At first let us mention that all symbolic calculations leading to
the results reported in this section were performed using the MuPAD language in MATLAB R2013a, where
the number of significant decimal digits was set to 40. Next, recall that the bound state energies (characteristic
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values) of our boundary value problem (10), (11) must be determined through the approximative scheme
described in Sects. 3.3 and 3.4. Thus, we cannot state a closed-form relation for the bound state energies in
terms of the constant μ, as it is possible for the Schrödinger scenario (7). Instead, the present problem requires
the parameter μ to be specified beforehand, such that the bound state energies can be determined numerically
through our algorithm. Since the latter energies are required to be real, we must guarantee that the parameters
(15) entered in the algorithm are real-valued. While this is always true for A and h, the constant M can become
imaginary if the argument of its square root is negative. In order to avoid this, we must request that

μ ≥ −1

4
− 5

3
1
3 4

(
99 + 8

√
159

) 1
3

+
(

99 + 8
√

159
) 1

3

3
2
3 4

≈ 0.304481. (27)

Hence, in contrast to the Schrödinger case outlined in section 2, the parameter μ > 0 cannot be arbitrary,
but must obey the restriction (27) in order to ensure reality of the bound state energies. Next, let us compute
these energies for the case μ = 3/5, observe that this choice is compatible with (27).

Results of this calculation are shown in Table 1. The first and second column display a selection of bound
state energies (recall that there are infinitely many of these energies in total). The remaining columns show
parity of the associated solutions, as well as their number of zeros. The explicit form of the solutions can
be obtained from (25), (26), therefore we omit to state them here again. Instead we present a plot of three
solutions � j , for j = 0, 1, 2, in the left part of Fig. 1, note that these functions are normalized in the Hilbert
space L2

w2

(
Dμ

)
. It is interesting to compare the Klein–Gordon solutions with their Schrödinger counterparts

that are given in (8). The corresponding plots are shown in the right part of Fig. 1, where we normalized
the Schrödinger solutions with respect to the space L2

w

(
Dμ

)
. The plots in Fig. 1 demonstrate the similarity

between the two systems, both of which admit an infinite set of bound state energies with associated solutions
that have parity. The qualitative shape of the solutions shown in Fig. 1 does not change significantly if the
value of our parameter μ varies. Next, let us have a closer look at the bound state energies shown in Table 1.
These energies are displayed in the left part of Fig. 2, where the dashed line indicates the zero energy level.
The tick marks on the x-axis stand for the index of the respective bound state energy. The right part of Fig.
2 shows the bound state energies (7) of the Schrödinger model. We observe from Fig. 2 that the sequence of
bound state energies for the Klein–Gordon model behaves approximately like a linear function if we ignore
the gap between positive and negative energies. Despite this general tendency, it is clearly visible that the
bound state energies are not equidistant. In contrast to this fact, the sequence of Schrödinger energies increases
quadratically, as we know from (7). As far as the general behaviour of the Klein–Gordon bound state energies
is concerned, we observe from Fig. 3 that for large indices the energy sequence becomes linear and the energy
levels become equidistant. Before we conclude this section, let us study the dependence of the bound state
energies on the parameter μ. To this end, we calculate the ground state energy E0 for several values of μ. The
result is displayed in Fig. 4, where the x-axis represents the values of μ. Inspection of the figure shows that
the energy E0 increases strictly with μ, where the rate of increase corresponds to a square root. Numerical
calculations for different bound state energies confirm this finding, such that we conjecture En ∼ √

μ for all
integers n.

Table 1 Bound state energies and solution properties of the boundary-value problem (10), (11) for the parameter setting μ = 3/5

Stationary energy Numerical value Associated solution Parity Number of zeros

E−6 −5.518046 �−6 Odd 5
E−5 −4.751330 �−5 Even 4
E−4 −3.797747 �−4 Odd 3
E−3 −3.110552 �−3 Even 2
E−2 −2.448525 �−2 Odd 1
E−1 −1.664147 �−1 Even 0
E0 1.682410 �0 Even 0
E1 2.492612 �1 Odd 1
E2 3.008767 �2 Even 2
E3 3.649014 �3 Odd 3
E4 4.749066 �4 Even 4
E5 5.503584 �5 Odd 5
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Fig. 1 The solutions �0 (solid curve), �1 (dashed curve) and �2 (dotted curve) of the Klein–Gordon model (left plot) and of its
Schrödinger counterpart (right plot) for the parameter setting μ = 3/5
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Fig. 2 Bound state energies for the Klein–Gordon system (left plot) and for the Schrödinger model (right plot), taken from (7).
In both cases we have μ = 3/5
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Fig. 3 The Klein–Gordon bound state energies for large indices and μ = 3/5. We see that the energy sequence becomes linear
and equidistant
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Fig. 4 Dependence of the Klein–Gordon ground state energy E0 on the parameter μ

5 Concluding Remarks

We have studied a boundary-value problem for the Klein–Gordon equation in a setting that resembles the
classical interaction of the Mathews-Lakshmanan oscillator. Similar to the corresponding Schrödinger system
that was studied previously, our Klein–Gordon model turned out to admit discrete bound state energies and an
associated orthogonal set of solutions. A possible next step within the present line of work is to set up a Dirac
equation for the Mathews-Lakshmanan oscillator in order to study existence and form of bound states.
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