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Abstract We study the D-dimensional Klein-Gordon equation for the modified Hylleraas potential with posi-
tion dependent mass. We obtain the energy eigenvalues and the corresponding eigenfunctions for any arbitrary
l-state using the parametric Nikiforov-Uvarov method. New elegant approximation method is used to deal
with the centrifugal term. We also discuss the two limiting cases of this potential, i.e. the Woods-Saxon and
Rosen-Morse potentials.

1 Introduction

The Klein-Gordon equation (KGE) with a position dependent mass (PDM) has attracted a great attention in
recent years because of its applications in particle, nuclear, semiconductor, condensed matter physics [1–10]. In
theoretical researches, many researchers have devoted their attention to finding exact or approximate solutions
of the KGE with PDM by using various techniques including the Nikiforov-Uvarov (NU) [11], factorization
[12], Lie algebraic [13], super symmetric quantum mechanics [14,15], canonical transformation methods [16]
and some others [17]. Furthermore, the eigenfunctions obtained with these methods are usually expressed in
terms of the Jacobi, Hermite or associated Laguerre polynomials which are all hypergeometric-type polynomi-
als.On the other hand, the study of many physical systems corresponds to a D-dimensional problem in reality
and consequently some authors have investigated the arbitrary-dimension case in their studies [18–20]. In this
paper, we solve the KGE in D-dimensions with a PDM interacting with a Hylleraas potential [21,22], which,
as will be seen later, is a generalized potential yielding three well-known potentials under certain limits.The
paper is organized as follows: In Sect. 2, the KGE D-dimensions is presented. Section 3, is devoted to the
review of the NU method. The solution of the KGE is given in Sect. 4. Discussions of the result are given in
Sect. 5. Finally, we give a brief conclusion in Sect. 6.

2 Klein-Gordon Equation in D-Dimensions

The KGE for a spherically symmetric potential in D-dimension is [23]

−�Dψnlm (r,ΩN ) =
{[

En,l − V (r)
]2 − [m(r)+ S(r)]2

}
ψn,l,m (r,ΩD) , (1)
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where

�D = ∇2
D = 1

r D−1

∂

∂r

(
r D−1 ∂

∂r

)
− �2

D (ΩD)

r2 , (2)

and En,l , V (r) ,m (r) , S(r) are the energy eigenvalues,vector potential, PDM and scalar potential, respec-
tively. The hyperspherical harmonics Y m

l (ΩD) are the eigen functions of the operator �2
N (ΩN ):

ψn,l,m (r,ΩD) = Rnl(r)Y
m
l (ΩD) (3)

and Rnl(r) is the hyperradial wave function. It is well known that
�2

D(ΩD)

r2 is a generalization of the centrifugal
barrier for the D-dimensional space and involves the angular coordinate ΩD and

�2
D (ΩD) Y m

l (ΩD) = l (l + D − 2) Y m
l (ΩD) , D > 1 (4)

where l is the angular momentum quantum number. By choosing a common ansatz for the wave function in
the form

R (r) = r
−
(

D−1
2

)
Unl(r), (5)

Eq. (1) reduces to [23]
{

d2

dr2 +E2
n,l +V 2 (r)−2Enl V (r)−m2 (r)−S2 (r)−2m (r) S (r)− (D+2l−1) (D+2l−3)

4r2

}
Unl (r)=0 (6)

Let us now introduce the parametric form of the NU method.

3 Concept of Parametric Nikiforov-Uvarov Method

The NU method [11] was proposed to solve a second-order linear differential equation by reducing it to a
generalized equation of hypergeometric-type with the form

ψ ′′ (s)+ τ̃ (s)

σ (s)
ψ ′ (s)+ σ̃ (s)

σ 2 (s)
ψ (s) = 0 (7)

where the prime denote the differentiationwith respect to s, σ (s) and σ̃ (s) are polynomials at most of second
degree and τ̃ (s) is a first-degree polynomial. The particular solution of Eq. (7) is obtained by using the common
ansatz for the wave function as

ψ (s) = ϕ (s) yn(s) (8)

which reduces Eq. (7) into a hypergeometric-type equation:

σ (s) y′′
n (s)+ τ (s) y′

n (s)+ λyn (s) = 0 (9)

where ϕ (s) is defined as the logarithmic derivative

ϕ′ (s)
ϕ(s)

= π(s)

σ (s)
(10)

and the other wave function yn (s) is the hypergeometric-type function whose polynomial solution satisfies
the Rodriques relation,

yn (s) = Cn

ρ(s)

dn

dsn

[
σ n (s) ρ(s)

]
(11)

where Cn is the normalization constant and the weight function ρ(s) satisfies the condition

(σ (s) ρ(s))′ = τ (s) ρ(s) (12)



D-Dimensional Klein-Gordon Equation 2043

The required π(s) and λ for the NU method are defined as

π (s) = σ ′ − τ̃

2
±
√(

σ ′ − τ̃

2

)2

− σ̃ (s)+ kσ(s) (13)

and

λ = k + π ′(s) (14)

Therefore, the determination of k in Eq. (13) is the necessary step in the calculation of π(s) for which the
discrimination of the square root in Eq. (13) is set to zero. The eigenvalue equation defined in Eq. (14) takes
the form

λ = λn = −nτ ′ − n(n − 1)

2
σ ′′, n = 0, 1, 2, . . . . . . (15)

where

τ (s) = τ̃ (s)+ 2π(s) (16)

has a negative derivative to ensure the existence of bound-state solutions. The energy eigenvalues are obtained
by comparing Eqs. (14) with (15).

The parametric generalization of the NU method that is valid for both central and non-central exponential
type potential [24] can be derived by comparing the generalized hypergeometric-type equation

ψ ′′ (s)+ (c1 − c2s)

s (1 − c3s)
ψ ′ (s)+ 1

s2 (1 − c3s)2
[−ξ1s2 + ξ2s − ξ3

]
ψ (s) = 0, (17)

with Eq. (7). By a simple comparison, we have the correspondence

τ̃ (s) = c1 − c2s (18)

σ (s) = s (1 − c3s) (19)

σ̃ (s) = −ξ1s2 + ξ2s − ξ3 (20)

Substituting Eqs. (18–20) into Eq. (13), we find

π (s) = c4 − c5s ± [(c6 − c3k±) s2 + (c7 + k±) s + c8
] 1

2 , (21)

where

c4 = 1

2
(1 − c1) , c5 = 1

2
(c2 − 2c3) , c6 = c2

5 + ξ1

c7 = 2c4c5 − ξ2, c8 = c2
4 + ξ3 (22)

we obtain the parametric k±from the condition that the function under the square root should be square of a
polynomial

k± = − (c7 + 2c3c8)± 2
√

c8c9 (23)

where

c9 = c3c7 + c2
3c8 + c6 (24)

Hence, the function π(s) in Eq. (21) becomes

π (s) = c4 + c5s − [(√c9 + c3
√

c8
)

s − √
c8
]

(25)

and, for the negative k− values

k− = − (c7 + 2c3c8)− 2
√

c8c9 (26)
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Thus, from the relationτ (s) = τ̃ (s)+ 2π(s), we have

τ (s) = c1 + 2c4 − (c2−2c5) s − 2
[(√

c9 + c3
√

c8
)

s − √
c8
]
, (27)

whose derivative must be negative:

τ ′ (s) = −2c3 − 2
[√

c9 + c3
√

c8
]
< 0 (28)

Solving Eqs. (14) and (16), we obtain the parametric energy equation as

(c2−c3) n + c3n2 − (2n + 1) c5 + (2n + 1)
[√

c9 + c3
√

c8
]+ c8 + 2c3c8 + 2

√
c8c9 = 0 (29)

The weight function ρ(s) is obtained as

ρ (s) = sc10 (1 − c3s)c11 (30)

and together with Eq. (11), we have

yn (s) = Pn(c10,c11) (1 − 2c3s) , (31)

where

c10 = c1 + 2c4 + 2
√

c8 (32)

c11 = 1 − c1−2c4 + 2

c3

√
c9 (33)

and P(α,β)n (s) are the Jacobi polynomials. The other part of the wave function is obtained from Eq. (10) as

ϕ (s) = sc12 (1 − c3s)
c13 , (34)

where

c12 = c4 + √
c8, c13 = −c4 + 1

c3

(√
c9−c5

)
(35)

Thus, the total wave function becomes

ψ (s) = Nnls
c12 (1 − c3s)c13 P(c10,c11)

n (1 − 2c3s) . (36)

whereNnl is the normalization constant.

4 Solutions of Klein-Gordon Equation

In the present investigation, we consider a modified deformed Hylleraas potential of the form [21,22]

V (r) = V0

b

[
a + ge

( r−rc
α

)]
(

1 + e
( r−rc

α

)) (37)

where V0 is the potential depth, α denotes the adjustable parameter, rc shows the distance from the equilibrium
position and,a, b and g are the Hylleraas parameters. The behavior of the Hylleraas potential as a function of
r is displayed in Figs.1, 2, 3 for various values of rc and α for a = 1,b = 5,V0 = 2.0 MeV . We also consider a
PDM of the form [23]

m (r) = m0 + m1(
1 + e

( r−rc
α

)) (38)

The behavior of the mass function vs. r is shown in Fig. (4)for rc = 0.1, α = 0.1 and 0.2, respectively.
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Fig. 1 Plot of the V as a function of r with α = 0.1, b = 5, a = −1, Vo = 2.0 Mev for various values of rc = 0, 0.05 and 0.1

Fig. 2 Plot of the V as a function of r with α = 0.2, b = 5, a = −1, Vo = 2.0 Mev for various values of rc = 0, 0.05 and 0.1

Fig. 3 Plot of the V as a function of r with rc = 0.05, b = 5, a = −1, Vo = 2.0 Mev for various values of α = 0.1, 0.2 and 0.3
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We now introduce the elegant approximation for the centrifugal term as follows [25]

1

r2 ≈ a1 + a2(
1 + e

( r−rc
α

)) + a3(
1 + e

( r−rc
α

))2 , (39)

where
a1 = 1

r2
c

(
1 − 3α

rc
+ 3α2

r2
c

)
(40)

a2 = 1

r2
c

(
4α

rc
+ 6α2

r2
c

)
(41)

a3 = 1

r2
c

(−α
rc

+ 3α2

r2
c

)
(42)

We compared the approximation of Eq. (39) for α = 0.1 and 0.2 denoted as f1 and f2 with the centrifugal
term f = 1

r2 in Fig. 5. This shows that the approximation is in good agreement with the centrifugal term.

Fig. 4 Variation of the mass as a function of position for various values of α = 0.1 and 0.2 with rc = 0.1

Fig. 5 Comparison of the centrifugal term f = 1/r2 with the elegant approximation f1 for α = 0.1 with a1 = 1, a2 = 150, a3 = 85,
rc = 0.1 and f2 for α = 0.2 with a1 = 1, a2 = 150, a3 = 100 and rc = 0.1
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Substituting Eqs. (37), (38) and (39) into Eq. (6), we have
⎧⎪⎨
⎪⎩

d2

dr2 +E2
n,l +

V 2
0

b2

(
ae−( r−rc

α

)
+g

1+e−( r−rc
α

)
)2

− 2Enl V0

b

(
g+ae−( r−rc

α

)

1 + e−( r−rc
α

)
)

−
⎡
⎣m0+ m1e−

( r−rc
α

)
(

1 + e−( r−rc
α

))
⎤
⎦

2

− S2
0

b2

(
ae
( r−rc

α

)
+ g

1 + e−( r−rc
α

)
)2

− 2S0

b

(
ae−( r−rc

α

)+g

1 + e−( r−rc
α

)
) ⎛
⎝m0+ m1e−( r−rc

α

)
(

1 + e−( r−rc
α

))
⎞
⎠

− (D + 2l − 1) (D + 2l − 3)

4r2

⎛
⎜⎝a1+ a2e−( r−rc

α

)

1 + e−( r−rc
α

)+ a3e−( r−rc
α

)

(
1 + e−( r−rc

α

))2

⎞
⎟⎠

⎫⎪⎬
⎪⎭

Unl(r) = 0, (43)

If we take the transformation, s = −e−( r−rc
α

)
, Eq. (43) becomes

d2Unl

ds2 + (1 − s)

s (1 − s)

dUnl

ds
+ 1

s2 (1 − s)2
[−As2 + Bs − C

]
Unl (s) = 0, (44)

where

A = −ε2 + α2

⎡
⎣− a2V 2

0
b2 + 2Enl V0a

b + m2
1 + 2m0m1 + 2m0 S0a

b

+ 2m1 S0a
b + a2 S2

0
b2 + (D+2l−1)(D+2l−3)[a1+a2]

4

⎤
⎦ (45)

B = −2ε2 + α2

⎡
⎣− 2V 2

0 ag
b2 + 2Enl V0(a+g)

b + 2m0 S0(a+g)
b + 2m0m1+

2m1 S0g
b + 2S2

0 ag
b2 + (D+2l−1)(D+2l−3)(a1+a2+a3)

2

⎤
⎦ (46)

C = −ε2 + α2

[
2Enl V0g

b + 2m0 S0g
b +

m2
1 + S2

0 g2

b2 − V 2
0 g2

b2 + (D+2l−1)(D+2l−3)a1
4

]
(47)

and the dimensionless parameter ε, is defined as follows

ε2 = α2 [E2
nl − m2

0

]
(48)

Now, comparing Eq. (44) with Eq. (17), we obtain the following parameters:

c1 = c2 = 1, c3 = 1,

ξ1 = A, ξ2 = B, ξ3 = C

c4 = 0, c5 = −1

2
,

c6 = 1

4
+ A

c7 = −B

c8 = C

c9 = 1

4
+ A − B + C

c10 = 1 + 2
√

C

c11 = 2 + 2

(√
1

4
+ A − B + C + √

C

)
,

c12 = √
C

c13 = −1

2
−
(√

1

4
+ A − B + C + √

C

)
(49)
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Substituting the values of the parameters given by Eq. (49) into Eq. (29), we find the energy relation as

n2 + n + 1

2
+
√

1

4
+ A − B + C

[
(2n + 1)+ 2

√
C
]

+ (2n + 1)
√

C − B + 2C = 0 (50)

To obtain the wave function, we proceed as follows.By using Eq. (30), we find the weight function as

ρ (s) = s(1+2μ)(1 − s)2v (51)

Using Eq. (31), we get

n (s) = P(1+2μ,2v)
n (1 − 2s) (52)

where μ = √
C and v =

√
A + C − B + 1

4 .The other part of the wave function is obtained from Eq. (34) as

ϕ (s) = sμ (1 − s)v+
1
2 (53)

Finally, we obtain the corresponding Klein-Gordon wave function as

Unl (r) = Nnls
μ (1 − s)v+

1
2 P(2μ,2v)n (1 − 2s) (54)

where [12].

P(a,b)n (s) = Γ (n + a + 1)

n!Γ (a + 1) 2
F1(−n, n + a + b + 1; 1 + a; 1 − s

2
) (55)

with 2μ > −1, 2ν > −1. We are able to write Eq. (54) in terms of the hypergeometric polynomials as

Unl (r) = Nnls
μ (1 − s)v+

1
2
Γ (n + 2μ+ 1)

n!Γ (2μ+ 1)
2 F1(−n, n + 2μ+ 2v + 1; 1 + 2μ; 1 − s

2
) (56)

The normalization constant Nnl can be found from normalization condition for in special case D=3

∞∫

0

|R(r)|2 r2dr = ∞∫
0

|Unl(r)|2 dr = α
1∫
0

1

s
|Unl(r)|2 ds = 1 (57)

by using the following integral formula

1∫

0

(1 − z)2(δ+1)z2λ−1{2
F

1(−n, n + 2 (δ + λ+ 1) ; 1 + 2λ; z)}2dz

= (n + δ + 1) n!Γ (n + 2δ + 2)Γ (2λ)Γ (2λ+ 1)

(n + δ + λ+ 1) Γ (n + 2λ+ 1)Γ (2 (δ + λ+ 1)+ n)
(58)

After some calculations, we obtain the normalization constant as

Nnl =
√√√√n!2μ(n + ν + 1

2 + μ)Γ (2
(
ν + 1

2 + μ
)+ n)

α(n + ν + 1
2 )Γ (n + 2μ+ 1)Γ (n + 2ν + 1)

(59)

5 Results and Discussion

In this section, we are going to study three special cases of the Hylleraas potential and their corresponding
eigenvalues and eigen functions by choosing some special cases of the parameters in the deformed Hylleraas
potential.
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5.1 Woods-Saxon Potential

If we put a = g = 0, b = −1 and m1 = 0, the deformed Hylleraas potential turns into the Woods-Saxon
potential [26].

V (r) = −V0

1 + e
r−rc
α

(60)

The corresponding energy eigenvalues from Eq. (50) are found to be

E2
nl − m2

0 = − 1

4α2

[
δ′

n + σ ′ + (n + σ ′)
]2

+ β ′, (61)

where

δ′ = (D + 2l − 1) (D + 2l − 3) a2α
2

4
(62)

σ ′ =
⎛
⎝1

2
+
√

1

4
+ (D + 2l − 1) (D + 2l − 3) α2a3

4

⎞
⎠ , (63)

β ′ = (D + 2l − 1) (D + 2l − 3) (a1 + a2 + a3)

4
. (64)

and the wave function is

Rnl (r) = Nnlr
−
(

D−1
2

) (
−e

r−rc
α

)μ (
1 + e

r−rc
α

)v+ 1
2

P(1+2μ,2v)
n

(
1 + 2e

r−rc
α

)
, (65)

where μ = √
C and v =

√
A + C − B + 1

4 with

A = −ε2 + (D + 2l − 1) (D + 2l − 3) a1

4
α2 (66)

B = −2ε2 + α2
[
(D + 2l − 1) (D + 2l − 3) a1

2
+ (D + 2l − 1) (D + 2l − 3) a2

4

]
(67)

C = −ε2 + α2
[
(D + 2l − 1) (D + 2l − 3) (a1 + a2 + a3)

4

]
. (68)

This result is consistent with Ref. [26].

5.2 Rosen-Morse Potential

If we choose a = −1, b = −1, g = 1 and m1 = 0, then the Hylleraas potential becomes the Rosen-Morse
potential [28].

V (r) = −V0 tanh

(
r − rc

α′

)
(69)

For this case, the energy eigenvalues and wave function are respectively given as

E2
nl − m02 = − 1

4α′2

[
δ′′

n + σ ′′ + (n + σ ′′)
]2

+ β ′′, (70)

ψlnm (r,ΩD) = Nnlr
−
(

D−1
2

) (
−e

r−rc
α′
)μ (

1 + e
r−rc
α′
)v+ 1

2
P(1+2μ,2v)

n

(
1 + 2e

r−rc
α′
)

Y m
l (ΩD) (71)
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where,

α′ = 2α (72)

δ′′ = 4Enl V0α
′2 + 4m0S0α

′2 + (D + 2l − 1) (D + 2l − 3) a2α
′2

4
(73)

σ ′′ =
⎛
⎝1

2
+
√

−3V 2
0 α

′2 + 3S2
0α

′2 + α′2 (S2
0 − V 2

0

)+ 1

4
+ (D + 2l − 1) (D + 2l − 3) α′2a3

4

⎞
⎠ , (74)

β ′′ = 2Enl V0 − V 2
0 + S2

0 + 2m0S0 + (D + 2l − 1) (D + 2l − 3) (a1 + a2 + a3)

4
. (75)

μ = √
C, v =

√
A + C − B + 1

4 with

A = −ε2 + α′2
[
−2Enl V0 − 2m0S0 + S2

0 − V 2
0 + (D + 2l − 1) (D + 2l − 3) a1

4

]
(76)

B =−2ε2+α′2
[
−2S2

0 +2V 2
0 + (D+2l−1) (D+2l−3) a1

2
+ (D+2l−1) (D+2l−3) a2

4

]
(77)

C = −ε2 + α′2
[

2Enl V0 + 2m0S0 + S2
0 − V 2

0 + (D + 2l − 1) (D + 2l − 3) (a1 + a2 + a3)

4

]
(78)

This result is consistent with that of Ref. [28].

6 Conclusion

We have obtained the energy eigenvalues and the corresponding wave functions of the D-dimensional Klein-
Gordon equation for modified Hylleraas potential with a position dependent mass. With appropriate choiceofthe
values of aandb in the modified Hylleraas potential, we obtained the energy eigenvalues and the wave func-
tions of the Woods-Saxon and Rosen-Morse potentials. Finally, the eigenvalues and the wave functions of
these special cases are in exact agreement with the previously published works of [26–28] for the special case
of D = 3, and m1 = 0.
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