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Abstract Low- and medium-energy nucleon–deuteron (Nd) scattering less than the incident energy 65 MeV
per nucleon is examined by using the quark-model nucleon–nucleon (NN) interaction fss2. The off-shell effect
of this non-local interaction yields a part of the attractive effect given by the three-nucleon force in the stan-
dard description by the meson-exchange potentials. The triton binding energy and the spin-doublet scattering
length are well described by fss2 without introducing the three-nucleon force. The nucleon analyzing power
is slightly improved from the results by the AV18 potential, but the so-called Ay puzzle in the low-energy
region is not essentially solved nor is the similar deficiency of the peak heights seen in the vector analyzing
power of the deuteron, iT11(θ). Other observables are rather similar to the predictions by meson-exchange
potentials, including disagreements of the deuteron breakup differential cross sections with experiment for
some particular kinematical configurations. The space-star anomaly of the nd and pd scattering at EN = 13
MeV is not improved. The accurate and systematic KVI data of the 1H(

−→
d , 2p)n scattering at Ed = 130 MeV

are compared with the predictions by fss2 for the breakup differential cross sections and the deuteron analyzing
powers.

1 Introduction

The QCD-inspired spin-flavor SU6 quark model (QM) for the baryon–baryon interaction, developed by the
Kyoto–Niigata group, has achieved accurate description of available nucleon–nucleon (NN) and hyperon-
nucleon experimental data [1]. These QM baryon–baryon interactions are characterized by the nonlocality and
the energy dependence inherent to the framework of the resonating-group method (RGM) for two three-quark
systems. In the strangeness sector, the Pauli forbidden state sometimes exists as the result of the exact antisym-
metrization of six quarks. The short-range repulsion of the baryon–baryon interaction is mainly described by
the quark-exchange kernel, which gives quite different off-shell properties from the standard meson-exchange
potentials. The energy dependence of the interaction is eliminated by the standard off-shell transformation
[2], utilizing the square-root inverse of the normalization kernel for the interaction Hamiltonian and the renor-
malized relative wave function between two clusters. This procedure yields an extra nonlocality, whose effect
was examined in detail for the three-nucleon bound state and for the hypertriton [3]. We found a large triton
binding energy by the QM NN interaction; namely, the deficiency of 350 keV, predicted by the model fss2,
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is almost half of the standard values 0.5–1 MeV [4], given by the modern meson-exchange NN potentials.
It is therefore interesting to examine the QM predictions to the three-nucleon scattering, especially in this
renormalized framework without the explicit energy dependence of the RGM kernel.

In this study, we apply our QM NN interaction fss2 to the neutron–deuteron (nd) and proton–deuteron (pd)
scattering in the Faddeev formalism for systems of composite particles [5,16]. The Alt-Grassberger-Sandhas
(AGS) equations [6] are solved in the momentum representation, using the off-shell RGM T -matrix obtained
from the energy-independent renormalized RGM kernel [2]. The Gaussian nonlocal potential constructed from
the fss2 is essentially used in the isospin basis [7]. The singularity of the NNT -matrix from the deuteron pole
is handled in the Noyes–Kowalski method [8,9]. Another notorious moving singularity of the free three-body
Green function is treated by the standard spline interpolation technique developed by the Böchum–Krakow
group [10]. The Coulomb force in the pd scattering is approximately treated by the screened Coulomb force,
by introducing a finite cutoff radius ρ [11]. We mainly use the channel-spin formalism which is convenient
to discuss the nucleon–deuteron (Nd) elastic scattering. The NN interaction up to Imax = 4 is included in the
present calculation, which leads to the nucleon incident energies discussed in this paper up to about EN ∼ 65
MeV.

This paper is organized as follows. The QM NN interaction is introduced in the next section, together with
the off-shell transformation to eliminate the energy dependence of the RGM kernel. In Sect. 3, the formulation
of the present study is summarized, focusing on our treatment of three types of singularities appearing in the
AGS equations; the deuteron singularity of the two-nucleon T -matrix, the moving singularity of the three-body
free Green function, and the Coulomb singularity for the pd scattering. The results of the nd and pd scattering
are discussed in Sect. 4 with respect to the eigenphase shifts, effective-range parameters of the nd scattering,
total cross sections, elastic differential cross sections, and analyzing powers of the nucleon and the deuteron.
The discussion of the deuteron breakup processes in Sect. 5 includes breakup differential cross sections for
various kinematical configurations at EN = 13 MeV, 1H(

−→
d , 2p)n reaction at Ed = 16 MeV, and comparison

with the KVI data for the 1H(
−→
d , 2p)n reaction at Ed = 130 MeV. The final section is devoted to a summary

and outlook.

2 Quark-model Baryon–baryon Interaction fss2

The present model is a low-energy effective model which introduces some of the essential features of QCD
characteristics. The color degree of freedom of quarks is explicitly incorporated into the non-relativistic spin-
flavor SU6 quark model, and the full antisymmetrization of quarks is carried out in the RGM formalism. The
gluon exchange effect is represented in the form of the quark–quark interaction. The confinement potential
is a phenomenological r2-type potential, which has a favorable feature that it does not contribute to the
baryon–baryon interactions. We use a color analogue of the Fermi–Breit (FB) interaction, motivated from the
dominant one-gluon exchange process in conjunction with the asymptotic freedom of QCD. We postulate that
the short-range part of the baryon–baryon interaction is well described by the quark degree of freedom. This
includes the short-range repulsion and the spin-orbit force, both of which are successfully described by the
FB interaction. On the other hand, the medium range attraction and the long-range tensor force, especially
afforded by the pions, are extremely non-perturbative from the viewpoint of QCD. These are therefore most
relevantly described by the effective meson exchange potentials (EMEP). In the model fss2 [12,13], the full
QM Hamiltonian H consists of the non-relativistic kinetic-energy term, the phenomenological confinement
potential U Cf

i j , the colored version of the full FB interaction U FB
i j with explicit quark-mass dependence, and the

EMEP’s U�
i j generated from the scalar (� = S), pseudoscalar (PS) and vector (V) meson exchange potentials

acting between quarks:

H =
6∑

i=1

(
mi c

2 + p2
i

2mi
− TG

)
+

6∑

i< j

(
U Cf

i j + U FB
i j + U S

i j + U PS
i j + U V

i j

)
. (2.1)

The RGM equation for the relative-motion wave function χ(r) reads

〈φ(3q)φ(3q)|E − H |A {φ(3q)φ(3q)χ(r)}〉 = 0 . (2.2)

We solve this RGM equation in the momentum representation [15]. If we rewrite the RGM equation in
the form of the Schrödinger-type equation as [ε − H0 − VRGM(ε)] χ(r) = 0, the potential term, VRGM(ε) =



Off-shell Effect of the Quark-model NN Interaction 2359

− 20

0

20

40

60

80
δ 

(d
eg

)
np

3S1

3D1

ε1

(a)

fss2

SP99

− 20

0

20

40

60

80

δ 
(d

eg
)

np

1S0
3D2

1D2

(b)

fss2

SP99

− 40

− 20

0

20

40

0 100 200 300

δ 
(d

eg
)

Tlab (MeV)

np

3P0

3P2

3P1(c)

fss2

SP99

− 40

− 30

− 20

− 10

0

0 100 200 300

δ 
(d

eg
)

Tlab (MeV)

np

1P1(d)

fss2

SP99

Fig. 1 Calculated np phase shifts (with I ≤ 2) by fss2 in the isospin basis, compared with the phase-shift analysis SP99 by Arndt
et al. [14]

VD +G +εK [5], becomes nonlocal and energy dependent. Here VD represents the direct potential of EMEP’s,
G includes all the exchange kernels for the interaction and kinetic-energy terms, and K is the exchange normal-
ization kernel. Furthermore, ε is the two-cluster energy in the center-of-mass (cm) system, measured from its
threshold. We calculate the plane-wave matrix elements of VRGM(ε), and set up with the Lippmann–Schwinger
equation of the RGM T -matrix. This approach is convenient to proceed to few-body calculations using the
Faddeev formalism [5,16], and the G-matrix calculations as well [17,18]. We show in Fig. 1 the NN phase
shifts predicted by the model fss2. Only the partial waves with the total angular-momentum I ≤ 2 are shown.
More detailed information on the QM baryon–baryon interaction is obtained from the QMPACK homepage
[19].

The energy-independent renormalized RGM kernel V RGM for a two-cluster system reads [2]

V RGM = VD + G + W , (2.3)

where the non-local kernel W appearing through the elimination of the energy-dependence is given by

W = �
1√

1 − K
h

1√
1 − K

�− h . (2.4)

Here, h denotes h0 + VD + G with h0 being the kinetic energy for the two-cluster relative motion, and
� = 1 − |u〉〈u| is a two-cluster Pauli projection operator, where |u〉 is a Pauli-forbidden state satisfying
K |u〉 = |u〉. In the NN sector, there appears no Pauli forbidden state at the quark level, so that we can simply
set� = 1 in the following discussion. An advantage of using V RGM, instead of VRGM(ε), is that the two-cluster
RGM equation takes the form of the usual Schrödinger equation in the Pauli-allowed model space, and the
relative wave function is properly normalized. This Schrödinger-type equation for the relative wave function
gives the same asymptotic behavior as the original RGM equation, thus preserving the phase shifts and physical
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observables for the two-cluster system. The difference between the previous energy-dependent RGM kernel,
VRGM(ε) = VD + G + εK , and V RGM in Eq. (2.3) is essentially a replacement of�(εK )� with W . The value
of ε is however not well defined in the three-cluster system, in particular, for scattering systems.

In order to confirm the importance of the present off-shell transformation, we have also calculated the
differential cross sections and various polarization observables, using a simple prescription of assuming a
constant energy of the two-nucleon subsystem; e.g., the deuteron energy, ε = εd = −2.2246 MeV. In this
prescription, we come across some disagreements with experimental data. Only when the off-shell transfor-
mation is properly taken into account, we can achieve an overall agreement of the scattering observables with
the experimental data for the Nd elastic scattering. We therefore show throughout this study only the results
obtained with the renormalized RGM kernel of the QM NN interaction in Eqs. (2.3) and (2.4) both for the
bound-state solution and the scattering problems.

3 Formulation

We start with the three-cluster Schrödinger equation,

[E − H0 − V RGM
α − V RGM

β − V RGM
γ ]� = 0 , (3.1)

where V RGM
α denotes the energy independent RGM kernel in Eqs. (2.3) and (2.4) with � = 1, for the α pair.

The subscripts α, β and γ specify the types of Jacobi coordinates related to the residual pair in the usual
way, with (α, β, γ ) being a cyclic permutation of (123). The three-body kinetic energy operator is given by
H0 = h0 + h̄0, where h̄0 is the kinetic-energy operator for the relative momentum q = (2k3 − k1 − k2)/3.
Another momentum for the NN relative motion is denoted by p = (k1 − k2)/2, for which h0 is given by
h0 = (h̄2/MN ) p2 with MN being an average nucleon mass. The vector ki (i = 1 − 3) is the individual
momentum of particle i . For systems of three-identical particles, the Faddeev equation for the bound state
reads [20]

ψ = G0t Pψ , (3.2)

where G0 = G0(z) = (z − H0)
−1 is the three-body Green function for the free motion, P = P12 P23 + P13 P23

is a sum of the permutation operators for the nucleon rearrangement, and t = t (z − h̄0) is the NNT -matrix
derived by solving the standard Lippmann–Schwinger equation t = v + vG0t with v = V RGM. For the time
being, we neglect the Coulomb force for simplicity. Furthermore, z = E is the total energy measured from the
3N threshold, which is below the deuteron energy εd (<0) for the 3N bound state. A Faddeev component is
defined through ψ = G0v�, using the total wave function � = ∑

α ψα .
The AGS equation describing the 3N scattering is expressed as [20,21]

U |φ〉 = G−1
0 P|φ〉 + PtG0U |φ〉 , (3.3)

where the |φ〉 = |q0, ψd〉 is the plane-wave channel wave function with |ψd〉 being the normalized deuteron
wave function. Here, z = E + i0 is the cm total energy in the complex energy plane and E is expressed
as E = Ecm + εd with Ecm = (3h̄2/4MN )q2

0 being the nucleon incident energy in the cm system. The
incident energy in the laboratory system is given by Elab = (3/2)Ecm for the nucleon-incident reaction and
Elab = 3Ecm for the deuteron-incident reaction with the change of q0 → −q0. The scattering amplitude for
the elastic scattering is obtained from 〈φ|U |φ〉. It is important that Eq. (3.3) also provides information on the
full breakup process of the deuteron. The transition amplitude for the breakup process is given by

U0|φ〉 = (1 + P)tG0U |φ〉 = (1 + P)T |φ〉 , (3.4)

where T = tG0U corresponds to the three-body T -matrix. The breakup cross sections are obtained from the
amplitude 〈 pq|U0|φ〉 with the corresponding on-shell energy E = (h̄2/MN )( p2 + (3/4)q2). The Faddeev
component is expanded into the partial wave components through

| p, q; 123〉 =
∑

γ

|p, q, γ 〉〈γ | p̂, q̂; 123〉. (3.5)

Here, the summation is over all the angular-momentum, spin and isospin quantum numbers in the γ channel.
We mainly use the channel-spin formalism, for which the two-nucleon total angular-momentum I and the spin
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1
2 of the spectator nucleon is coupled to the channel spin (I 1

2 )Sc. The two-nucleon channel is specified by
(λs)I ; t , where I, λ, s and t are the total angular momentum, the orbital angular momentum, the spin and
the isospin of the NN subsystem, respectively. The NN isospin t is uniquely specified by λ and s from the
Pauli principle (−)λ+s+t = −1. The channel spin Sc is further coupled with the relative angular momentum
� between the spectator nucleon and the deuteron, to make the total angular-momentum (�Sc)J . We specify
the deuteron channel with λ = 0 or 2, s = 1, I = 1 and t = 0 by γd . The channel-spin formalism is partic-
ularly convenient to describe the elastic scattering, but the L S-coupling scheme is necessary for the breakup
processes.

In the scattering problem of the 3N system, we come across three types of singularities, which make the
numerical calculation difficult. One is the deuteron singularity in the two-nucleon T -matrix, which exists in
the deuteron channel γd for the positive incident energy Ecm > 0. We explicitly separate the delta function
part of the deuteron pole through [22]

t = t̃ − ic G0
−1|φ〉〈φ| G0

−1 , (3.6)

where c = (π/2)(4q0 MN/3h̄2). The difference between t and t̃ appears only when q = q0 in the deuteron
channel, and t̃ also satisfies the same basic T -matrix equation t̃ = v+vG 0̃t . The second term in the right-hand
side of Eq. (3.6) leads to a mere renormalization of U |φ〉 in Eq. (3.3). We further apply the the Noyes–Kowalski
method [8,9] to the resultant equation and obtain a new equation

Q|φ〉 = P|φ〉 + W t̃ Q|φ〉 , (3.7)

by

G0U |φ〉 = Q|φ〉 Z−1 〈φ|U |φ〉. (3.8)

Here, we have defined

W = PG0 − P|φ〉 Z−1 〈φ| P. (3.9)

and Z = 〈φ|G0
−1 P|φ〉. The rearrangement of the variable p by the permutation P is handled by the spline

interpolation technique [20]. We should note that W in Eq. (3.9) satisfies 〈φ|G0
−1 W = 0 and W G0

−1|φ〉 = 0.
Thus, if we multiply Eq. (3.7) by 〈φ|G0

−1 from the left-hand side, we obtain

〈φ|G0
−1 Q|φ〉 = 〈φ|G0

−1 P|φ〉 = Z (3.10)

which is consistent with the definition of Q|φ〉 in Eq. (3.8). The basic relationship Eqs. (3.7) and (3.10) implies
that Q|φ〉 is a modification of P|φ〉 by the effect of the nonsingular interaction t̃ , and the real symmetric matrix
Z plays an essential role in the following discussion. Furthermore, t̃γ in Eq. (3.7) can be restored to tγ for the
deuteron channel γ = γd owing to W G0

−1|φ〉 = 0 and Eq. (3.6), thus allowing us to write t̃ as t . Because
Z−1 is a nonsingular matrix, we can define

Q̃|φ〉 = Q|φ〉Z−1 P̃|φ〉 = P|φ〉Z−1. (3.11)

We multiply Eq. (3.7) with Z−1 from the right-hand side and obtain our final equation

Q̃|φ〉 = P̃|φ〉 + W t̃ Q̃|φ〉. (3.12)

The matrix element 〈φ|U |φ〉 is calculated from

〈φ|U |φ〉 = [
Z−1 − 〈φ|X |φ〉 + ic · 1

]−1
(3.13)

where

〈φ|X |φ〉 = Z−1〈φ|Pt̃ Q|φ〉Z−1 = 〈φ|P̃ t̃ Q̃|φ〉 (3.14)

is a matrix in the channel-spin variables (�Sc) and involves a principal-value integral calculated from the
solutions of Eq. (3.12).

In the channel-spin formalism, the asymptotic channel wave function |φ〉 is actually |φ; (�Sc)J Jz〉 in the
partial wave expansion with at most three possible configurations, i.e., (�Sc)J = (J ± 3/2, 3/2)J, (J ∓
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1/2, 1/2)J and (J ∓ 1/2, 3/2)J for the parity π = (−)J∓1/2. The partial wave components of the scattering
amplitude, U J

(�′S′
c),(�Sc)

, are defined by

〈φq f ; S′
c S′

cz |U |φqi ; Sc Scz〉 =
∑

�′�J Jz

U J
(�′S′

c),(�Sc)

∑

m′
〈�′m′S′

c S′
cz |J Jz〉Y�′m′(q̂ f )

∑

m

〈�mSc Scz |J Jz〉Y ∗
�m(q̂i ) ,

(3.15)

with |q f | = |qi | = q0. These are obtained by solving a linear equation derived from Eq. (3.13). The coupled-
channel S-matrix is related to the scattering amplitudes through

S J
(�Sc),(�′S′

c)
= δ�,�′δSc,S′

c
− 2ic U J

(�Sc),(�′S′
c)
. (3.16)

Here, the S-matrix is a two-dimensional (for J = 1/2) or three-dimensional (for J �= 1/2) matrix. We
diagonalize the S-matrix by [23]

S = U †e2i�U , (3.17)

where� is the diagonal matrix whose matrix elements are composed of eiδ J
�Sc . Here, the eigenphase shift δ J

�Sc

is complex for the energies above the deuteron breakup threshold 1. The unitary matrix U can be parametrized
in terms of the mixing parameters ε, ξ and η,

U =
⎛

⎝
1 0 0
0 cos ε sin ε
0 − sin ε cos ε

⎞

⎠

⎛

⎝
cos ξ 0 sin ξ

0 1 0
− sin ξ 0 cos ξ

⎞

⎠

⎛

⎝
cos η sin η 0

− sin η cos η 0
0 0 1

⎞

⎠

=
⎛

⎝
cos ξ cos η cos ξ sin η sin ξ

− cos ε sin η − sin ε sin ξ cos η cos ε cos η − sin ε sin ξ sin η sin ε cos ξ
sin ε sin η − cos ε sin ξ cos η − sin ε cos η − cos ε sin ξ sin η cos ε cos ξ

⎞

⎠ . (3.18)

We assume ε = ξ = 0 for Jπ = 1/2+ and ξ = η = 0 for Jπ = 1/2−.
The second singularity appears in PG0 in Eq. (3.9) for the positive energies E > 0 (Ecm > |εd |). This

singularity, usually called a moving singularity from the three-body Green function for the free motion, takes
place whenever the breakup process is taken into account. The main idea to avoid this singularity is to apply
the spline interpolation to the q variable [10,21,25,26], in addition to the p variable. We first separate the q–q ′
plane into two regions. The one is the region with q > qM or q ′ > qM , and the other is q < qM and q ′ < qM .
Here, qM is the maximum momentum of q for the breakup of the deuteron, given by qM = √

q0
2 − κd

2

with κd
2 being related to the deuteron binding energy |εd | through |εd | = (3h̄2/4MN )κd

2. In the region with
q > qM or q ′ > qM , x0 defined by x0 = x0(q, q ′) = ((3/4)qM

2 − q2 − q ′2)/(qq ′) is always less than −1,
so that no singularity appears. In the region with q < qM and q ′ < qM , we are confronted with the angular
integral,

I (q, q ′) =
1∫

−1

dx
F(q, q ′; x)

x − x0 − i0
. (3.19)

The kernel function F(q, q ′; x) is composed of a combination of spline interpolation functions G(q, q ′; x)
and rearrangement coefficients B(q, q ′; x):

F(q, q ′; x) = G(q, q ′; x) B(q, q ′; x). (3.20)

The function B(q, q ′; x) is expressed as the finite sum of the Legendre polynomials of the first kind Pk(x).

B(q, q ′; x) =
kM∑

k=0

(2k + 1)B(k)(q, q ′)Pk(x) (3.21)

1 We follow the notation in Ref. [24]. However, it should be noted that � and Sc are no longer good quantum numbers, but
merely characterize the dominant � and Sc values.
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where B(k)(q, q ′) is a polynomial of q and q ′. We modify Eq. (3.19) to

I (q, q ′) =
1∫

−1

dx
G(q, q ′; x)− G(q, q ′; x0)

x − x0
B(q, q ′; x)+ G(q, q ′; x0)

1∫

−1

dx
B(q, q ′; x)

x − x0 − i0
. (3.22)

In this modification, we have extracted the x-dependence of B(q, q ′; x) in the second term of the
right-hand side. The second term is expressed in terms of the Legendre polynomials of the second kind,
Qk(x) ≡ (1/2)

∫ 1
−1 dt Pk(t)/(x − t):

I (q, q ′)=
1∫

−1

dx
G(q, q ′; x)−G(q, q ′; x0)

x − x0
B(q, q ′; x)+(−2) G(q, q ′; x0)

kM∑

k=0

(2k+1)B(k)(q, q ′)Qk(x0+i0)

(3.23)

where

Qk(x0 + i0) = −1

2

{
Pk(x0)

[
log

∣∣∣∣
1 − x0

1 + x0

∣∣∣∣+ iπθ(1 − |x0|)
]

+ 2Wk−1(x0)

}
. (3.24)

Here, θ(x) is the step function and Wk(x) is a k-th degree polynomial of x . We need to calculate the integral

Ĩ =
qM∫

0

dq

qM∫

0

dq ′ f (q)I (q, q ′)g(q ′) , (3.25)

with the spline interpolation

f (q) =
∑

μ

Sμ(q) f (qμ) for q ≤ qM etc. (3.26)

We use the discretization points qμ in the Gauss-Legendre integration quadrature withωμ being the integration
weights. We define the Iμ,ν through Ĩ = ∑

μ,ν fμ Iμ,νgν , where fμ is defined by fμ ≡ √
ωμ f (qμ) etc. If

I (q, q ′) is sufficiently smooth with respect to q and q ′, we can safely apply spline interpolation to q and q ′
variables. We find

Iμ,ν = 1√
ωμ

√
ων

qM∫

0

dq

qM∫

0

dq ′ Sμ(q)I (q, q ′)Sν(q ′)

= √
ωμ

√
ων

1∫

−1

dx
G(qμ, qν; x)− G(qμ, qν; x0μν)

x − x0μν
B(qμ, qν; x)

+√
ωμ

√
ων G(qμ, qν; x0μν)

kM∑

k=0

(2k + 1)B(k)(qμ, qν) Q̃kμν (3.27)

where x0μν = x0(qμ, qν) and

Q̃kμν = (−2)
1

ωμων

qM∫

0

dq

qM∫

0

dq ′ Sμ(q)Qk(x0 + i0)Sν(q
′) . (3.28)

Unfortunately, a complete analytical calculation of the two-side spline interpolation in Eq. (3.28) is not possible.
Here, we use the one-side spline interpolation formula with respect to q ′

Qkμν = (−2)
1

ων

qM∫

0

dq ′Qk(x0μ + i0)Sν(q
′) (3.29)
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where x0μ = ((3/4)qM
2 − qμ2 − q ′2)/(qμq ′). The detailed procedure to calculate Qkμν is given in Appendix

B of Ref. [22]. This approximation of the one-side spline interpolation procedure slightly breaks the sym-
metry with respect to the exchange of μ and ν. In the actual calculation, we recover the symmetry of the
S-matrix when we calculate the matrix elements, X(�Sc),(�′S′

c)
in Eq. (3.14). Namely, we modify X(�Sc),(�′S′

c)
to

(1/2)[X(�Sc),(�′S′
c)

+ X(�′S′
c),(�Sc)].

The third singularity is the Coulomb singularity for the pd scattering. The Coulomb T -matrix 〈 p|tC | p′〉
is singular at p = p′. We avoid this singularity, by using the sharply cut-off Coulomb force introduced at the
most basic quark level in the form of (1/rqq)θ(ρ−rqq), where rqq is the relative distance between two quarks.
We use the isospin formalism for introducing the Coulomb force to the AGS equations. The proton–proton
(pp) potentialωρ(r; 1, 2) is obtained by folding the sharply cut-off Coulomb force with the (3q)–(3q) internal
wave function, resulting in

ωρ(r; 1, 2) = e2

r

{
erf

(√
3

2

r

b

)
− 1

2

[
erf

(√
3

2

r + ρ

b

)
+ erf

(√
3

2

r − ρ

b

)]}

×1 + τz(1)

2

1 + τz(2)

2
(3.30)

where r is the distance between the two protons, r = |r12| = |x1 − x2|, and b is the harmonic-oscillator range
parameter of the (3q)-clusters. The plane-wave matrix elements of Eq. (3.30) is given by

ωρ( p, p′; 1, 2) = 〈ei p·r |ωρ(r; 1, 2)|ei p′·r〉 = e22πρ2

(
sin kρ

2
kρ
2

)2

e− 1
3 (bk)2 1 + τz(1)

2

1 + τz(2)

2
, (3.31)

with k = | p − p′|, which clearly shows that the Born kernel of the screened Coulomb force is not singular at
k = 0. The angular momentum projection is carried out numerically, using enough number of discretization
points for the Gauss-Legendre quadrature. We assume the total isospin TTz = 1

2
1
2 for the ppn system, and

neglect the coupling to the isospin T = 3
2 channel by the Coulomb force. The T -matrix is generated from the

sum of the nuclear and Coulomb matrix elements for the isospin t = 1 channels, for which the factor 2/3 is
induced from the isospin matrix elements, 〈γ ∣∣ 1+τz (1)

2
1+τz (2)

2

∣∣ γ ′〉 = δγ,γ ′(2/3) for T = T ′ = 1/2.
We calculate the pd screened Coulomb potential by further folding the pp potential in Eq. (3.30) with our

deuteron wave function 〈r; 1, 2|ψd〉:
V ρC

pd (R) = 〈ψd | [ωρ(|R + r/2|; 2, 3)+ ωρ(|R − r/2|; 3, 1)
] |ψd〉 (3.32)

where R = x3 − (x1 + x2)/2 is the relative coordinate between the center-of-mass of the deuteron and the
proton. This calculation is made in Appendix C of Ref. [11]. We assign the long-range part of Eq. (3.32) to the
asymptotic Coulomb potential W ρ(R) for the pd scattering, and parametrize it as W ρ(R) = (e2/R)αρ(R).
The screening function αρ(R) is numerically calculated by using the momentum-space deuteron wave func-
tion expanded in the dipole form factors [12]. Instead of using the “screening and renormalization” procedure
[27–33], we use an extension of Vincent and Phatak procedure [34] for two-cluster Coulomb problems, which
is equivalent to the “screening and renormalization procedure” only in the limit of ρ → ∞. The scattering
amplitude is obtained by imposing a connection condition on the K -matrix K ρ

α,β ≡ (Z−1)α,β − 〈φα|Xρ |φβ〉
for the pd scattering [22], which is derived from two different asymptotic forms of the reduced wave function
�
ρ(+)
α,γ (R) ≡ 〈R, ψd

α |�ρ(+)γ 〉. Here, the subscripts α, γ , etc. specify the channel quantum numbers. The first
one is the approximate Coulomb wave for the relative distance of two clusters, r , smaller than Rin (< ρ), and
the other is free (no-Coulomb) wave in the longer range region, r > Rout > ρ. Here, Rin should be sufficiently
large in comparison with the range of the nuclear force. The asymptotic Hamiltonian composed of the screened
Coulomb force allows us to calculate constant Wronskians of this Hamiltonian in either region, in terms of the
modified Coulomb wave functions F̃ρ� (q0, R) and G̃ρ

� (q0, R). Using this property, we can extend the standard
procedure of matching conditions for asymptotic waves to the screened Coulomb potentials. The connection
condition for �ρ(+)α,γ (R) at R = Rout is written in terms of Wronskians:

∑

β

K̃ ρ
α,β

{
W [F̃ρβ , uβ ]Rout K ρ

β,γ − W [F̃ρβ , vβ ]Rout c δβ,γ
}

= c
{

W [G̃ρ
α, uα]Rout K ρ

α,γ − W [G̃ρ
α, vα]Rout c δα,γ

}
. (3.33)
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The matrix elements Ũρ
β,γ defined by

∑

β

[
K̃ ρ
α,β + i c δα,β

]
Ũρ
β,γ = δα,γ (3.34)

in the ρ → ∞ limit are related to the scattering amplitude of the Coulomb-modified AGS equation with
respect to the Coulomb distorted waves for the screening Coulomb potential. For details, Ref. [11] should be
referred to. The scattering amplitude f N ,ρ

β,γ is obtained from Ũρ
β,γ through

f N ,ρ
β,γ = −π

2

4MN

3h̄2 Ũρ
β,γ . (3.35)

In the channel-spin formalism, the full scattering amplitude is written as

f ρS′
c S′

cz ,Sc Scz
(̂q f , q̂i ) = δS′

c,ScδS′
cz ,Scz f C (θ)+ 4π

∑

�′�J Jz

ei(σ�′+σ�) f N J,ρ
(�′S′

c),(�Sc)

×
∑

m′
〈�′m′S′

c S′
cz |J Jz〉 Y�′m′ (̂q f )

∑

m

〈�mSc Scz |J Jz〉 Y ∗
�m (̂qi ) (3.36)

for a sufficiently large ρ. In Eq. (3.36), f C (θ) is the Rutherford amplitude and σ� etc. are the Coulomb phase
shifts for the partial wave �. For the pd scattering, the definition of the eigenphase shift in Eqs. (3.17) and
(3.18) is applied to the nuclear part Ũρ

β,γ in Eq. (3.35).
The 3N breakup kinematics is completely specified by the three-dimensional momenta of the three particles.

Among them, only 5 (= 3×3 - 4) quantities are independent owing to the energy- and momentum-conservation
laws. Assuming the experimental setup to detect two particles 1 and 2, we choose these as the two polar angles
θ1 and θ2, and the difference of the azimuthal angles φ12 = φ1 −φ2 for two vectors k1 and k2, in addition to the
energy S determined from k1 = |k1| and k2 = |k2| by the energy conservation. We also choose the z-axis as the
direction of the incident particle and the x-axis such that φ1 = π [35]. For a specific total energy (or a nucleon
or deuteron incident energy), the energies of particle 1 and 2, Ei = (h̄2/2MN )k2

i (i = 1, 2), are specified by a
locus of the E1–E2 energy plane. We call this a kinematical curve. Along the kinematical curve in the E1–E2
plane, the arc length S is measured starting from a certain starting point. The 3N breakup kinematics used in
this paper is summarized in Appendix A of Ref. [36], including the transformations between the cm and lab.
systems. The breakup differential cross sections of the Nd scattering in the cm system are calculated from

d5 σ

d p̂ d q̂ d q
= (2π)4

(
2MN

3h̄2

)2 3

4

p0q2

q0

1

6

∑

�

∑

Sc Scz

|〈 pq�|Oτ (1 + P)T |φq0; Sc Scz〉0|2

(3.37)

where � = �σ�τ is the spin–isospin quantum numbers in the L S-coupling scheme and the subscript 0 in the
matrix element implies the on-shell condition | p| = p0 = √

(3/4)(qM
2 − q2) with qM being the maximum

momentum of q for the deuteron breakup. The species of the detected particles in the final state are controlled
by the isospin projection operator Oτ ; i.e.,

O pp = 1 + τz(1)

2

1 + τz(2)

2
Onn = 1 − τz(1)

2

1 − τz(2)

2
(3.38)

for the two protons and two neutrons, respectively. The permutation operator P in Eq. (3.37) acts on the
momentum space and the spin–isospin space. In dealing with the permutation operator in the momentum
space, we operate P on the bra side and use all the Jacobi coordinates pα and qα (α = 1, 2, and 3) to avoid the
slow convergence of the partial-wave expansion with respect to the rearrangement factors. From this process,
we obtain

d5 σ

d p̂ d q̂ d q
= 3

4

p0q2

q0

1

6

∑

Sc,Scz

⎡

⎣
3∑

α=1

∑

�̃,�

δS̃,S δs̃,s X τ(αα)
t̃,t

f ∗̃
�,Sc Scz

( pα, qα) f�,Sc Scz ( pα, qα)

+
′∑

(αβγ )

∑

�̃,�

δS̃,S (−2)X S
s̃,s X τ(αβ)

t̃,t
Re
{

f ∗̃
�,Sc Scz

( pα, qα) f�,Sc Scz (− pβ, qβ)
}
⎤

⎦ (3.39)
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where X S
s̃,s and X τ(αβ)

t̃,t
etc. are the spin–isospin factors given in Appendix B of Ref. [36], and the direct breakup

amplitude is calculated from

f�,Sc Scz ( p, q) = √
4π

′∑

γ,�′,J

{
1

(−1)�
′
}

f (db)J
γ,(�′Sc)

(q)〈L (Scz − Sz) SSz |J Scz〉

×�̂′〈�′0Sc Scz |J Scz〉 Y(λ�)L (Scz−Sz)( p̂, q̂) for

{
nucleon-incident
deuteron-incident (3.40)

with �̂′ = √
2�′ + 1 and

f (db)J
γ,(�Sc)

(q) =
∞∫

0

p2 d p 〈p0|tγ (h̄2 p0
2/MN )|p〉

∑

(�′S′
c)

〈p, q, γ |Q̃|φ; (�′S′
c)J 〉 f J

(�′S′
c),(�Sc)

(3.41)

with the elastic scattering amplitude, f J
(�′S′

c),(�Sc)
, similar to Eq. (3.35). The breakup differential cross sections

in the lab system, (d5 σ/d k̂1 d k̂2 d S), are specified by the two directions k̂1 and k̂2, and the energy S mea-
sured along the locus of the E1–E2 energy plane. They are obtained from the right-hand side of Eq. (3.39) by
simply changing the phase space factor [21]

ρcm = 3

4

p0q2

q0
−→ ρlab = MN

h̄2

3k1k2

2q0

[(
2 − klab

k2
cos θ2 + k1

k2
cos θ12

)2

+
(

2 − klab

k1
cos θ1 + k2

k1
cos θ12

)2
]−1/2

. (3.42)

Here, klab is the incident lab. momentum and θ12 is the relative angle between k1 and k2. The direct breakup
amplitudes for the deuteron-incident reaction are generated by adding an extra phase factor (−1)�

′
to each

term as in Eq. (3.40), corresponding to the change from q̂0 to −q̂0
2.

The deuteron analyzing powers of the breakup differential cross sections are calculated from modifying
the initial channel-spin sum in Eq. (3.39) to the spin-transition by 〈S′

c S′
cz |S(λ)μ |Sc Scz〉. Here, S(λ)μ with λ = 1

and 2 are the spin operators of the deuteron given in Appendix A of Ref. [37]. We denote these spin-transfer
differential cross sections by I (λμ). Then, the vector-type and tensor-type deuteron analyzing powers are
given by

Ax (ξ) = 1√
2

[−I (11)+ I (11)] Ay(ξ) = i
1√
2

[I (11)+ I (11)]

Axy(ξ) = −i
3

2
[I (22)+ I (2,−2)] Axx (ξ) = −

√
3

2
I (20)+ 3

2
[−I (22)+ I (2,−2)]

Ayy(ξ) = −
√

3

2
I (20)− 3

2
[−I (22)+ I (2,−2)] (3.43)

for each particular breakup kinematical configuration ξ .
For the dp and pd reactions, we incorporate the screened Coulomb force in a way similar to the pd elastic

scattering. The treatment of the half off-shell T -matrix in Eq. (3.41) for the screened Coulomb potential is only
different from the elastic scattering. When the pp pair is detected, t I=1 = t pp is adopted as the half off-shell
T -matrix for the α = 3 amplitude. The α = 1 and α = 2 amplitudes are generated from tnp both for I = 0 and
I = 1 channels. The Coulomb-modified breakup amplitude is generated from the large-ρ limit of the breakup
amplitude including the screened Coulomb force; i.e.,

〈q, ψ(−)p |Ũ0|ψ(+)〉0 = lim
ρ→∞ eizρ(p)〈q, ψρ(−)p |Ũρ

0 |ψρ(+)〉0eiζ(q0)

∼ eizρ(p)〈 p, q|(1 + P)tρG0Uρ |φ〉0eiζ(q0). (3.44)

Since the renormalization phases, zρ(p) and ζ(q0), are λ- or �-independent in the limit of ρ → ∞, we neglect
these phase factors in the actual calculations.

2 We thank Professor H. Witała for notifying us about this phase change.
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4 Nd Elastic Scattering

4.1 Eigenphase Shifts of nd and pd Scattering

Table 1 shows the nd and pd eigenphase shifts, predicted by fss2, at the incident energy EN = 3 MeV below
the deuteron breakup threshold. In this and all other calculations of the elastic scattering, the maximum angu-
lar momentum for the NN system is taken up to Imax = 4, and the momentum mesh-points n = 6-6-5 in the
definition discussed in Sect. 3.1 of Ref. [22] are used, unless otherwise specified. The Coulomb cutoff radius
ρ = 9 fm (ρ = 8 fm) is assumed for the elastic scattering, depending on the incident energies below (above)
the deuteron breakup threshold. Table 1 also shows predictions by the Pisa group using AV18 and AV18 plus
Urbana (UR) 3N potentials [38], as well as the pd eigenphase shifts by the phase-shift analysis (PSA) [38]
based on the AV18 + UR3N potentials. From Table 1, we find an outstanding feature that the UR 3N force has
a sizable effect only in the Jπ = 1/2+ channel. We also find that our results by fss2 are very similar not to AV18
but to the AV18+UR3N shown in the parentheses. Our nd and pd 2S1/2 nuclear phase shifts are more attractive
than AV18 by 3◦–5◦ at the range of EN = 1–3 MeV. In the same energy range, the maximum difference from
the AV18 + UR3N results is only 0.6◦. This attractive behavior is not surprising since the model fss2 predicts

Table 1 The nd and pd eigenphase shifts at EN = 3 MeV, predicted by fss2

Model fss2 (nd) AV18(+UR3N ) (nd) fss2 (pd) AV18(+UR3N ) (pd) PSA
4 D1/2 −3.82 −3.85 (−3.84) −3.36 −3.56 (−3.57) −3.38 ± 0.01
2 S1/2 −30.8 −35.3 (−30.8) −27.2 −32.2 (−27.8) −24.85 ± 0.23
η1/2+ 1.55 1.12 (1.45) 1.60 1.10 (1.47) 1.65 ± 0.02
2 P1/2 −7.44 −7.49 (−7.50) −7.05 −7.36 (−7.37) −7.41 ± 0.08
4 P1/2 23.3 24.2 (24.5) 21.7 22.1 (22.3) 21.77 ± 0.01
ε1/2− 6.77 6.68 (6.82) 5.85 5.71 (5.83) 5.70 ± 0.05
4 S3/2 −69.6 −69.9 (−69.7) −62.5 −63.1 (−63.1) −63.80 ± 0.11
2 D3/2 2.34 2.36 (2.36) 2.08 2.15 (2.15) 2.23 ± 0.02
4 D3/2 −4.12 −4.14 (−4.14) −3.63 −3.83 (−3.83) −3.76 ± 0.01
ε3/2+ 0.763 0.747 (0.754) 0.866 0.800 (0.802) 0.975 ± 0.060
ξ3/2+ 1.36 1.35 (1.35) 1.31 1.30 (1.30) 1.27 ± 0.01
η3/2+ −0.364 −0.363 −0.319 −0.322 (−0.316) −0.257 ± 0.09
4 F3/2 0.919 0.920 (0.921) 0.775 0.800 (0.802) 0.928 ± 0.005
2 P3/2 −7.10 −7.18 (−7.20) −6.80 −7.14 (−7.15) −7.18 ± 0.04
4 P3/2 25.5 26.0 (26.0) 24.0 24.2 (24.2) 24.30 ± 0.01
ε3/2− −2.71 −2.61 (−2.66) −2.32 −2.20 (−2.23) −2.46 ± 0.01
ξ3/2− −0.427 −0.265 (−0.256) −0.427 −0.321 (−0.314) −0.352 ± 0.049
η3/2− −3.57 −3.52 (−3.53) −3.19 −3.11 (−3.11) −3.24 ± 0.05
4G5/2 −0.206 −0.206 −0.172 −0.189 –
2 D5/2 2.31 2.33 2.05 2.13 2.18 ± 0.02
4 D5/2 −4.44 −4.46 −3.92 −4.13 −4.07 ± 0.02
ε5/2+ −0.313 −0.315 −0.345 −0.350 −0.265 ± 0.034
ξ5/2+ −0.716 −0.701 −0.710 −0.699 –
η5/2+ −2.02 −2.04 −2.02 −2.07 –
4 P5/2 25.8 26.0 (26.3) 23.8 23.9 (24.1) 24.26 ± 0.01
2 F5/2 −0.465 −0.466 −0.396 −0.433 −0.485 ± 0.026
4 F5/2 0.947 0.951 0.800 0.876 0.804 ± 0.005
ε5/2− 0.515 0.538 0.397 0.343 0.343 ± 0.263
ξ5/2− 0.938 0.926 0.914 0.932 0.944 ± 0.016
η5/2− −0.343 −0.334 −0.397 −0.343 −0.321 ± 0.018
4 D7/2 −4.04 −4.07 −3.56 −3.77 3.64 ± 0.01
2G7/2 0.108 0.107 0.088 0.099 –
4G7/2 −0.215 −0.214 −0.180 −0.199 –
ε7/2+ 0.357 0.355 0.417 0.712 –
ξ7/2+ 1.16 1.14 1.16 1.14 –
η7/2+ −0.462 −0.459 −0.426 −0.422 –
The maximum angular momentum for the NN system, Imax = 4, and the momentum mesh points n = 6-6-5 are used. For
the pd calculation, the cutoff Coulomb radius ρ = 9 fm is used. The corresponding parameters calculated by the Pisa group
from the AV18 potential models are also listed for comparison [38]. The parameters in the parentheses are predictions by the
AV18 + UR3N potentials. Results of the phase shift analysis (PSA) [38] are based on the calculations using the AV18 + UR3N
potentials
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the almost correct triton binding energy. In spite of the attractive tendency in the 2S1/2 channel, we find from
Table 1 that our 2S1/2 nuclear phase shift at E p = 3 MeV is not so attractive as to reproduce the result of
PSA. This is apparently because the binding energy of 3H is still insufficiently reproduced even for fss2. The
model fss2 also gives the mixing parameter η+

1/2 very similar to that by AV18+UR3N . For other channels than
2S1/2, the difference of the eigenphase shifts from the AV18 or AV18+UR3N results is less than 1◦. After
all, we have found a good correspondence of the nuclear phase shifts below the deuteron breakup threshold
between our fss2 and the AV18+UR3N potentials. It is reported that the attractive behavior of UR3N force
is important for good starting point for PSA (See Fig. 10 of Ref. [39]). In our case this attractive behavior
is related to the strong deuteron distortion effect, which is sensitive to the description of the short-range NN
repulsion.

As to the 4S3/2 channel, the eigenphase shifts are strongly repulsive due to the Pauli principle, and a good
correspondence between fss2 and AV18 or AV18+UR3N results is seen in Table 1. The pd phase shift of fss2
is also similar to that of the PSA. We have examined the energy dependence of the nd and pd eigenphase
shifts up to EN = 50 MeV, with respect to the low partial waves. The 4S3/2 eigenphase shifts determined
by the PSA are very similar to those by fss2 at E p ≤ 14 MeV and tend to deviate from the fss2 values at
higher energies, to more repulsive direction. This tendency is also seen in the calculation using AV18 [39].
The imaginary part is generally much larger in the doublet scattering than in the quartet scattering, which is
also true for the P- and D-waves. This result implies that the deuteron breakup effect in the doublet channels
is stronger than in the quartet channels. For the P-wave phase shifts, 4 PJ phase shifts show the attractive
behaviour with rather monotonic rise up to 30◦–40◦ at EN = 20 MeV, but two 2 PJ phase shifts with J = 3/2
and 1/2 change the sign around EN = 10–20 MeV from negative to positive. These behaviors are very similar
to the AV18 predictions in Ref. [39] and to the PSA on the whole. It is well known that the nucleon analyz-
ing power Ay(θ) at the maximum point is very sensitive to the slight change of the 4 PJ eigenphase shifts
[40]. In our calculation, the 4 P1/2 eigenphase shift is slightly larger than the PSA and the 4 P3/2 eigenphase
shift is smaller. For these eigenphase shifts, the difference from PSA is growing with higher energies, but
the discrepancy of Ay(θ) at the maximum point between the theoretical prediction and the experimental data
is decreasing, as will be seen in Sect. 4.5. This is because Ay(θ) is very sensitive to the 4 PJ eigenphase
shift only in the lower energy region, but not so much in the higher energy region [40]. We also find some
deviation of the 2 P1/2 eigenphase shifts from the results of PSA, as seen from the comparison with Fig. 12
of Ref. [39]. However, both 2 PJ phase shifts have sizable and rapidly increasing imaginary components up
to 10◦ at EN = 20 MeV. The 2 PJ –4 PJ mixing parameters εJ− with J = 1/2 and 3/2 have large values with
opposite signs to each other. In particular, ε3/2− is very large and reaches at −45◦ at EN = 37–38 MeV.
The eigenphase shifts of the Jπ = 3/2− state are strongly influenced by the large 2 P3/2–4 P3/2 mixing for
EN ≥ 10 MeV, and the dominant components having the 2 P3/2 and 4 P3/2 quantum numbers are eventually
interchanged beyond ε3/2− > 45◦. Our result for ε−3/2, which is crucial for the correct description of Ay(θ)

according to Refs. [38] and [41], agrees reasonably well with the PSA. Both of the 2 PJ phase shifts with
J = 1/2 and J = 3/2 have sizable and smoothly increasing imaginary components. For D- and F-waves,
4 DJ and 2 FJ eigenphase shifts are repulsive and 2 DJ and 4 FJ are attractive. These are consistently reproduced
with the predictions of the PSA, although 2 FJ phase shifts of the PSA have large errorbars in the 4 to 10 MeV
region.

For the Coulomb effect in the pd scattering, there exist several benchmark calculations [33,42–44], using
different approaches for the same realistic NN forces like AV14 and AV18. For example, Ref. [42] compares
the low-energy eigenphase shifts and mixing parameters for the pd elastic scattering, predicted by the pair-cor-
related hyperspherical harmonics (PHH) approach and by the Faddeev–Noyes approach in the configuration
space with appropriate Coulomb boundary conditions. Comparison with our results is not straightforward
since the NN force is different, but the difference of the phase-shift parameters between AV14 and AV18
is sometimes larger than that between fss2 and AV18+UR3N potentials. (Compare Table 1 with Table 1 of
Ref. [42].) Another configuration approach in Refs. [43] and [44] essentially proves the consistency with the
PHH approach. The benchmark calculation for the pd elastic-scattering observables by Deltuva et al. [33]
shows the characteristic behavior of the Coulomb effect very similar to ours. (Compare Fig. 4 of Ref. [33] with
our Figs. 5, 6 and 7, 8, 11, 12 below.) The extension of the configuration space approach in Ref. [44] to the pd
breakup differential cross sections shows that our Coulomb effect is qualitatively similar to theirs. (Compare
Fig. 14 of Ref. [44] with our Fig. 13 below.)
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Table 2 The triton binding energy EB(
3H), S-wave scattering lengths 2and and 4and , effective-range parameters (4re)nd and

(2r̃e)nd , predicted by fss2 for various model spaces with the maximum angular momentum of the NN interaction (Imax) included

Imax EB(
3H) (MeV) 2and (fm) (2r̃e)nd (fm) EQ (keV) 4and (fm) (4re)nd (fm)

S + D 8.247 0.65 −149 −147 6.30 1.84
1 7.948 0.94 −102 −207 6.31 1.85
2 8.213 0.72 −133 −163 6.30 1.84
3 8.298 0.67 −146 −151 6.30 1.84
4 8.307 0.66 −148 −148 6.30 1.84
The nonlocal Gaussian potential with 15-point quadrature is used for fss2. In “S + D”, only the 3S1 + 3 D1 and 1S0 NN channels
are included. The pole energy for the doublet channel, EQ , is also shown. The calculated deuteron binding energy is 2.2206 MeV.
The momentum mesh points with n = 6-10-5 are used

4.2 Effective-range Parameters of the nd Scattering

In this section, we analyze the low-energy effective-range parameters and compare our results with the pre-
dictions by meson-exchange potentials. We will confirm the attractive feature of the fss2 interaction in the
doublet channel at very low-energies, which is already discussed to some extent in the preceding section. We
first calculate the eigenphase shifts of the nd scattering for the Jπ = 1/2+ and Jπ = 3/2+ states. In these
states, a coupled-channel theory of the effective-range parameters is in principle necessary, since the S- and
D-waves are coupled. Nevertheless, the single-channel effective-range expansion formula for the eigenphase
shifts is reasonably applied to these states, since the D-wave eigenphase shifts and mixing parameters are very
small compared to the S-wave ones for the energies below the deuteron breakup threshold. We however need
high accuracy better than 0.01 degree for the eigenphase shifts, in order to extract effective-range parameters
reliably. When the realistic deuteron wave function is used, it is very difficult in the momentum-space approach
to maintain sufficient accuracy of the phase shifts at extremely low energies below Ecm = 100 keV, since the
solution of the AGS equation becomes very singular. We therefore increase the momentum discretization points
from n = 6-6-5 to n = 6-10-5, which corresponds to 3 × 10 + 5 = 35 points for p for the NN relative motion.

In the quartet S-channel, we expand the effective-range function which is the real part of the inverse
scattering amplitude, K (q0) = q0 cot δ, in a power series of q0

2:

K (q0) = −1

a
+ 1

2
req0

2 + O(q0
4). (4.1)

Here, a is the scattering length, re is the effective range, and δ = δ
3/2
0,3/2 is the quartet S-wave eigenphase shift.

For the doublet channel, the effective-range function has a pole slightly below the elastic threshold [45–48].
This is parametrized as

K (q0) = − 1
a + 1

2 r̃eq0
2 + O(q0

4)

1 + (q0/qQ)2
(4.2)

where the pole parameter qQ specifies the pole position and δ = δ
1/2
0,1/2 is the doublet S-wave eigenphase

shift. It is reported in the early study using the N/D formalism [46–48] that the origin of this pole structure is
brought about by the dominant single-nucleon exchange and other effects such as the two-nucleon exchange.
In the doublet channel, single-nucleon exchange, which is by far the longest-range force, is attractive and the
nucleon in this channel can freely approach to the region where the other forces can act. On the other hand, the
incident nucleon cannot penetrate deep inside the deuteron owing to the Pauli principle in the quartet channel.
This is why the pole structure is found only in the doublet channel.

Table 2 lists the model-space dependence of the triton binding energy and effective-range parameters. The
converged triton binding energy is EB(

3H) = 8.311 MeV with Imax = 6. The difference by 15 keV from the
result in Ref. [3] (EB(

3H) = 8.326 MeV) is supposed to be from the Gaussian representation of the interaction
kernel. This can be interpreted in the following way. The Gaussian representation leads to the 4.4 keV differ-
ence in the deuteron binding energy, which is the difference between 2.2250 MeV (from the original result
of fss2) [1] and 2.2206 MeV (from the result of the nonlocal Gaussian potential for fss2). This difference is
almost one-third of the 15 keV difference in the triton binding energy in accordance with three NN pairs in the
triton.
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result and the solid curve shows the approximation by the effective-range parameters in Table 2 with Imax = 4
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Fig. 3 Same as Fig. 2, but for K (q0) = q0 cot δ in the quartet S-state

The effective-range parameters in Table 2 with Imax = 4 are calculated from the sample points (filled
circles) with energies between Ecm = 200 and 2 MeV, shown in Figs. 2 (the doublet channel) and 3 (the quartet
channel), by applying the Schlessinger’s point method [53] to the effective-range parameters. This method is
convenient to take into account the contributions of higher-order terms in Eqs. (4.1) and (4.2) in a natural way
and to approximate a function with a pole. The effective-range functions obtained by using the effective-range
parameters with Imax = 4 in Table 2 are also shown in Figs. 2 and 3 by solid curves. This approximation
up to q0

2 in Eqs. (4.1) and (4.2) is very good in the doublet channel, but the contribution of higher order
terms than q0

2 is visible in the quartet channel. We reconfirm the pole structure in the doublet channel with
EQ = −(3h̄2q2

Q/4MN ) � −150 keV. From Table 2, we find that the spin-quartet scattering length 4and has a
large and positive value and is insensitive to the model space adopted. This insensitivity is related to the small
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Table 3 Comparison of the nd scattering lengths predicted by using fss2 (Imax = 4) with other models

Model EB(
3H) (MeV) 2and (fm) 4and (fm)

NN NN+TM99 NN NN+TM99 NN(+TM99)

fss2 8.307 – 0.66 – 6.30
CD-Bonn 2000 8.005 8.482 0.925 0.569 6.347
AV18 7.628 8.482 1.248 0.587 6.346
Nijm I 7.742 8.485 1.158 0.594 6.342
exp. 8.482 0.65 ± 0.04 6.35 ± 0.02
For the fss2 results, the charge dependence of the NN force is neglected. The heading NN denotes the calculation using only the
NN force, and NN+TM99 denotes the calculation including the Tucson-Melbourne 99 (TM99) 2π-exchange 3N force [49,50].
The results obtained by CD-Bonn 2000, AV18 and Nijm I are taken from Ref. [51] (Imax = 5). The experimental values are taken
from Ref. [52]. The values of 4and are insensitive to the 3N force

distortion effect of the deuteron due to the Pauli repulsion for the nd interaction in this channel, which is a
kinematical constraint imposed by the spin–isospin quantum numbers. On the other hand, the spin-doublet
scattering length 2and is subject to a strong channel coupling effect. The prediction from the S + D calculation,
including the 3S1 + 3 D1 and 1S0 NN channels only, is close to the converged result. However, P-wave NN
interaction gives a repulsive effect and a well-converged value is achieved after many partial waves, up to
at least G-wave of the NN interaction, are included. The values of |EQ |/(2and) ∼ 220 keV/fm are almost
independent of the model space. This linear correlation has already been suggested in Ref. [48] for separable
potentials. A strong correlation between the triton binding energy and 2and , which is known as the Phillips line
[54], is also apparent. The correlation between the triton binding energy and the doublet scattering length 2and
can be explained in the following way. When the incident neutron energy approaches to zero, the phase shift
becomes close to zero more slowly if nd interaction is more attractive. In this situation, the effective-range
function K (q0) ∼ k/δ ∼ −1/(2and) is larger in absolute value, which corresponds to a smaller 2and .

In Table 3, we compare the triton binding energy and 2and with some results of other extensive calcula-
tions using meson-exchange potentials and the 3N forces [51]. We should note that the charge dependence
is included in the calculations of Ref. [51], but not included in our fss2 predictions. The charge dependence
affects 2and appreciably, as well as the triton binding energy. We can estimate this effect from the slope of
the Phillips line −0.686 fm/MeV for fss2 and the charge dependence effect of the triton binding energy of
about 200 keV. From these values, the charge dependence correction is estimated to be about 0.10–0.14 fm
and we obtain 2and for fss2 to be 0.76–0.80 fm. Table 3 shows that 2and is more than 0.9 fm when only NN
meson-exchange potentials are used. The experimental values of 2and and triton binding energy are reproduced
only when the 3N force is included. The 3N effect on the doublet scattering length 2and is more than 0.4 fm.
As to the doublet scattering length 2and , the 3N force is more influential than the charge dependence of the
NN force. The model fss2 almost reproduces the experimental values of the triton binding energy and 2and
simultaneously without the 3N force.

4.3 Total Cross Sections

In this section, we mainly show the results for the nd total cross sections and discuss the energy dependence
of the S-wave contribution using the effective-range expansion Eqs. (4.1) and (4.2). The “S-wave” means that
the orbital angular momentum between the neutron and the deuteron is zero. The elastic and breakup total
cross sections for En ≤ 40 MeV, predicted using fss2, are plotted in Fig. 4, together with the experimental
data. Although some discrepancies might exist around En ∼ 10 MeV, the elastic and breakup total cross sec-
tions calculated from the optical theorem are well reproduced. In Table 4, we show the S-wave contributions
from the quartet (4S) and doublet (2S) channels to the total cross sections, calculated from the effective-range
parameters in Table 2. We find that the total cross sections are dominated by the S-wave contribution, which
is about 60 % for En = 3 MeV. The S-wave contribution is not close to 100 %, since the P-wave and D-wave
contribution is appreciable even in the energies below the deuteron breakup threshold. We should note that the
D-wave component of the deuteron wave function can couple with the nd D-wave components for the relative
motion. The quartet state is far more important than the doublet state owing to the small values of |q0 cos δ|,
even considering the statistical factor (2Sc + 1). As the energy increases, the contributions from the doublet
states become appreciable avoiding the effect of the pole structure just below the elastic threshold, but is still
less than 8 % at En = 3 MeV. This implies a very special situation in which the extra attraction to the 2S1/2
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Fig. 4 The nd elastic and breakup total cross sections up to En = 40 MeV, compared with the experimental data. The experimental
data are taken from Refs. [55] for filled circles, [56] for open circles, [57] for filled squares, [58] for open squares, and [59] for
filled triangles

Table 4 The quartet (4 S) and doublet (2 S) S-wave contributions to the low-energy nd total cross sections σtot , calculated from
the effective-range parameters for fss2 with Imax = 4 in Table 2

En 0 MeV 1 MeV 2 MeV 3 MeV
4 S (mb) 3325 (99.5 %) 2055 (73 %) 1467 (59 %) 1128 (54 %)
2 S (mb) 18.2 (0.5 %) 122.4 (4.3 %) 158.4 (6.3 %) 165.5 (7.9 %)
S-wave (mb) 3343 2177 (77 %) 1625 (66 %) 1294 (62 %)
σtot (mb) — 2832 2480 2104
exp. (mb) — 2893.6 ± 18.2 [63] 2550.6 ± 11.1 [63] 2158.0 ± 7.2 [63]

2854 ± 39 [64] 2537 ± 10 [65] 2240 ± 90 [66]
3110 ± 200 [66] 2600 ± 80 [66] 2160 ± 86 [67]

state by the 3N force is unimportant in reproducing the elastic differential cross sections of the low-energy nd
scattering. The low-energy nd cross sections are mainly determined by the magnitude of the strongly repulsive
4S3/2 eigenphase shift.

When the cutoff Coulomb force is introduced to the calculation, the elastic and total cross sections diverge
as the cutoff radius ρ is increased. However, the total breakup cross sections derived from the unitary condition
remain rather stable for the change of ρ. For example, the nd breakup total cross section 48.09 mb at En = 5
MeV is reduced to 33.78 mb (33.74 mb, 32.29 mb) if ρ = 8 fm (16 fm, 20 fm) is used. These are compared with
the experimental values σnd(br) = (34 ± 6) mb at En = 4.9 MeV [58] and σpd(br) = (21.5 ± 1.4) mb [60],
cited in Ref. [61]. Our calculation somewhat overestimates the experimental values, but the empirical Coulomb

reduction factor of
(

63 ± 18
13

)
% is quite close to our values 67–70 %. This reduction factor monotonically

increases to unity as ρ is increased; 85 % at E p = 8 MeV, 90 % at 10 MeV, and almost unity beyond 30
MeV. The pd total reaction cross sections at 23–46 MeV measured by the direct method [62] show almost no
difference between σnd(br) and σpd(br) within the errorbars, which is in accordance with our predictions.

4.4 Elastic Differential Cross Sections

We show in Figs. 5, 6 the nd and pd differential cross sections predicted by fss2 for incident energies from
EN = 1 to 95 MeV. For each energy, two curves are plotted corresponding to calculations for nd scattering
(dashed curves) and pd scattering (solid curves). The nd data shown with bars should be compared with the
dashed curves and the pd data with circles and others correspond to the solid curves. Some experimental data
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are obtained at slightly different energies from our calculation. We find that the experimental data are well
reproduced including the nuclear-Coulomb interference region. In particular, the agreement at EN ≤ 22.7
MeV is very well, which is a common feature with the predictions by the meson-exchange potentials including
the 3N force [21,30,31,68].

In general, the Coulomb effect for the elastic scattering is very large at low energies and gradually reduces
as the energy increases. At EN = 1 MeV, the nd and pd differential cross sections are quite different from
each other. In the low-energy region with EN < 10 MeV, Coulomb effect for differential cross sections is
mainly observed at forward and backward angles, while in the higher-energy region it is confined only to the
forward angles with θcm ≤ 30◦. In order to discuss the angular distribution of the differential cross sections
below the deuteron breakup threshold, we took the J -average of the eigenphase shifts in Ref. [23] with respect
to the definite Sc and orbital angular momentum �. We further adopted a simple approximation proposed by
Doleschall et al. [69], which is called the “Coulomb externally corrected approximation” in Ref. [31]. In this
approximation, we simply add the Coulomb amplitude to the nd scattering amplitude with the Coulomb phase
factors. This prescription yields a large overestimation of the differential cross sections [23,70], especially for
low energies. The almost complete reproduction of the differential cross sections is obtained by taking into
account the difference between the nd and pd nuclear phase shifts of low-partial waves [23]. This implies that
the Coulomb distortion effect to the nuclear interaction is very important in the low-energy region.

We compare in Table 5 quantitatively the pd differential cross sections at the minimum points around
θcm = 90◦–130◦ (diffraction minima) between the model fss2 and the pd experimental data, in order to inves-
tigate the energy dependence. The nd differential cross sections calculated by fss2 are also shown to examine
the Coulomb effect. We should note that, in energies above the deuteron breakup threshold, many partial waves
contribute and yet the shape of the differential cross sections is rather simple owing to the strong cancellation.
Therefore, the energy dependence at the diffraction minima affords a very crucial test of the NN interaction.
This energy dependence is very important to discuss the effect of the 3N force for the meson-exchange poten-
tials. The disagreement at the diffraction minima between theoretical predictions and experimental data is
generally known as the Sagara discrepancy [75]. We find that, on the low-energy side E p ≤ 18 MeV, the
minimum values of the pd differential cross sections calculated by fss2 reproduce the experimental data with
an inaccuracy of less than 2 %. There is no strong energy dependence reported in Ref. [75], and our discrep-
ancies are much smaller than the 6–9 % overestimation predicted in Ref. [30]. (See Fig. 8 of Ref. [30].) The
pd calculation of Ref. [68], using the AV18 potential, still gives the 4–7 % overestimation of the cross section

Table 5 Comparison of the minimum values of the elastic differential cross sections, predicted by fss2, with the experimental
data

EN (MeV) θcm (deg) (dσ/d�)min(nd) (mb) θcm (deg) (dσ/d�)min(pd) (mb) (dσ/d�)exp
min(pd) (mb) Ref.

1 66 142.1 83 169.0 170.2 ± 1.3 [73]
2 93 120.3 93 122.1 123.7 ± 1.0 [75]
2.5 99 103.8 99 106.5 104.5 ± 0.8 [75]
3 103 89.3 103 92.5 91.1 ± 0.7 [75]
4 108 65.4 107 69.2 69.8 ± 0.5 [75]
5 112 50.4 112 53.6 52.7 ± 0.4 [75]
6 114 39.6 114 42.3 41.8 ± 0.3 [75]
6.5 115 35.3 116 37.7 37.2 ± 0.3 [75]
7 116 31.5 117 33.7 32.9 ± 0.2 [75]
8 118 25.2 119 27.1 26.7 ± 0.2 [75]
8.5 119 22.7 120 24.4 24.3 ± 0.2 [75]
9 120 20.4 120 22.0 21.8 ± 0.2 [75]
10 121 16.7 121 18.0 18.0 ± 0.2 [75]
12 123 11.4 123 12.3 12.2 ± 0.1 [75]
14 124 8.05 125 8.61 8.7 ± 0.1 [75]
16 125 5.89 126 6.23 6.2 ± 0.1 [75]
18 126 4.48 126 4.69 4.7 ± 0.1 [75]
22.7 128 2.72 128 2.75 2.89 ± 0.03 [76]
28 129 1.92 129 1.88 2.19 ± 0.02 [84]
35 129 1.49 130 1.42 1.52 ± 0.04 [79]
46.3 131 1.15 130 1.10 1.28 ± 0.02 [79]
65 131 0.775 132 0.759 0.873 ± 0.045 [80] (64.8 MeV)
70 133 0.695 133 0.684 0.812 ± 0.004 [81]
The minimum value (dσ/d�)min(Nd) at the minimum point θcm is derived for the nd or pd scattering at the nucleon incident
energy EN = En or E p
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Fig. 5 nd and pd differential cross sections from EN = 1 to 16 MeV, compared with the experimental data. The solid curve shows
the pd prediction by fss2 with the screened Coulomb force and the dashed curve shows the nd calculation. The experimental
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minima at E p < 18 MeV because of the Coulomb effect. (See Table II of Ref. [68].) This overestimation,
however, is largely cancelled by the introduction of the Urbana URIX 3N force, resulting in a good agreement
with the experimental data. This fact is also confirmed by Ishikawa. (See Figs. 3 and 4 of [43].) The discrep-
ancy from the experimental data is less than 3 % in this energy region, which is a comparable accuracy to
our results. Here we again find that in fss2 the attractive effect by the 3N force is already taken into account
at the two-nucleon interaction level, and the nice agreement with the experimental data is achieved without
the three-body force. It should be stressed that this accords with the good reproduction of the triton binding
energy [3] and nd doublet scattering length 2and by fss2, as already discussed in the preceding subsections.
Concerning the Coulomb effect, it is rather small at the diffraction minima in the low-energy region so long as
E p ≥ 2 MeV. This is very similar to the result in Ref. [68] for E p < 18 MeV. (Compare Table 5 and Table II
of Ref. [68].) As the energy increases, the fss2 results tend to go below the data at the minimum point and the
deficiency amounts to 14 % at E p = 28 MeV and 16 % at E p = 70 MeV. The discrepancy at E p ∼ 70 MeV is
similar to the predictions by the meson-exchange potentials in Refs. [21,81]. In the higher energy region with
E p ≥ 65 MeV, it is reported that the Coulomb effect to the diffraction minima is rather small and the explicit
inclusion of the � isobar degree of freedom becomes more important to decrease the discrepancies (namely
to increase the differential cross sections) [31,85]. In our case, the Coulomb effect works in the direction to
reduce the differential cross sections at the diffraction minima beyond E p ∼ 28 MeV. This behavior might be
due to inadequate treatments such as the too-small Coulomb cutoff parameter or/and the insufficient partial
waves.

4.5 Analyzing Powers

The vector analyzing powers of the nucleon Ay(θ), predicted by the model fss2, are compared with a large
amount of the experimental data in Figs. 7, 8 for the energies from EN = 1–65 MeV. Almost all the polarization
data are for the pd or dp scattering and the accurate comparison with the experimental data requires the inclu-
sion of the Coulomb force. The nd data shown with bars should be compared with the dashed curves and the
pd data with circles and others correspond to the solid curves. We should note that the polarization observables
are more sensitive to the truncation of the model space and to the Coulomb effect than the differential cross
sections. They are also affected by the slight change of the nuclear phase shifts. The enhancement of Ay(θ)
in the forward angular region is qualitatively reproduced by introducing the screened Coulomb force, but not
quantitatively. In the low energy region E p ≤ 7 MeV the enhancement in θcm ≤ 60◦ is not sufficient in the
present calculations. In the energy region EN ≤ 14 MeV, the Coulomb effect is appreciable at the maximum
points around θcm ∼ 120◦ and make the agreement with the experimental data worse. In the energy region
EN = 16–30 MeV, the shape of Ay(θ) changes and a clear minimum point appears. At the minimum points,
the Coulomb effect can be observed. In the higher energy region, the Coulomb effect diminishes and is confined
to the forward angular region. In the energy region E p = 30–65 MeV, there is no large discrepancy in Ay(θ)
between the theory and experiment.

The long-standing Ay puzzle for the large discrepancy between the theory and experiment in the low-
energy region EN ≤ 20 MeV still persists even in our calculations. In order to examine the discrepancy more
quantitatively, we calculate the relative magnitude at the maximum point according to

RAmax = Ath
y (θmax)

Aexp
y (θmax)

(4.3)

where Ath
y (θmax) and Aexp

y (θmax) are the maximum values of Ay(θ) in the theoretical predictions and the exper-
imental data, respectively. In Fig. 9, we show RAmax’s in the energy region EN ≤ 19 MeV, and compare them
with the AV18 predictions in Ref. [102]. From this figure, the deficiency of the Ay(θ) at the maximum point
is about 15–20 % in our case, which is smaller than 25–30 % in the predictions by AV18. In our calculations,
the Ay puzzle for the pd scattering is more serious than for the nd scattering. However, in the pd scattering,
this discrepancy diminishes as the energy increases.

The realistic NN interaction AV18 does not reproduce Ay(θ) unless the 3 PJ NN interactions is modified
unrealistically [41]. The NN interaction of the model fss2 reproduces the empirical 3 PJ phase shifts within
an accuracy of one degree at energies less than 300 MeV [1]. In Ref. [41], the authors claim that the 4 P1/2

and ε−3/2 should be appreciably modified by the 3N force, in order to improve Ay(θ). In Refs. [44,103], a
phenomenological 3N force including the tensor and spin-orbit components is incorporated to reproduce the
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experimental data for the low-energy Ay(θ) and T21(θ). The energy dependence of these observables is nicely
reproduced by the 3N spin-orbit and tensor forces with moderate strength. It is interesting to figure out if these
non-central 3N forces are consistent with predictions by the effective field theory.

In some old predictions using the realistic separable potentials [69,104–106], Ay(θ)’s at some energies are
very well reproduced. Our QM NN interactions and the separable potentials, which are characterized by the
strong nonlocality in the configuration space, are both considered to have quite differential off-shell properties
from the meson-exchange potentials. It is expected that the nonlocal description of the short-range repulsion
is related to our improvement in Ay puzzle, although it is difficult to pin down some particular eigenphase
shifts.

We show the vector analyzing powers of the deuteron iT11(θ) in Fig. 10, and compare them with the
experimental data. Since all these observables are measured from the dp elastic scattering, the inclusion of the
Coulomb force is necessary as for Ay(θ). We find a problem that in low energies the peak heights of iT11(θ)
are appreciably lowered by the effect of the Coulomb force, which is already pointed out in Ref. [38]. This
situation is similar to Ay(θ) and is not surprising, since Ay(θ) and iT11(θ) have rather similar spin structure.
The peak height around θcm ∼ 120◦ is too low by 10–15 % in the energy region Ed ≤ 28 MeV. The introduction
of the Coulomb force leads to the slight enhancement at θcm ≤ 60◦. The experimental data in Ed ≤ 14 MeV
are very well reproduced in this angular region. However, our calculations do not reproduce the behavior of
Ay(θ) and iT11(θ) in the forward angles simultaneously with a common cutoff radius ρ, which is also seen
in other calculations [30,31,68,70]. In the higher energy region, the experimental data are well reproduced,
although error bars are rather large.

In Figs. 11, 12, the deuteron tensor analyzing powers T20(θ), T21(θ) and T22(θ) in Ed ≤ 130 MeV are
compared with the dp experimental data. Our results using fss2 show comparatively better agreement with
the experimental data than the vector analyzing powers. In the higher energy region with Ed > 56 MeV,
experimental data with smaller error bars are desirable. The tensor analyzing powers in the low energy region
are largely influenced by the Coulomb effect. In particular, the shape of T20(θ) and T21(θ) at the forward angle
θcm ≤ 60◦ is greatly modified, giving a better reproduction of the dp experimental data. In T21(θ) at Ed =
5–18 MeV, dip structure around θcm ∼ 90◦ are not sufficiently reproduced in our calculations. This tendency
is also seen in the calculations of Ref. [68], but the values predicted by Alt et al. [30] are too small in this
angular region probably because of the too much simplified nuclear interaction (separable potentials). At the
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maximum point around θcm ∼ 120◦, the Coulomb effect remains at Ed ≤ 22 MeV. For T22(θ), the Coulomb
effect generally raises the minimum point in the low-energy side with Ed ≤ 35 MeV, which results in good
agreement with the experimental data. At Ed ≤ 6 MeV, the predicted values at the minimum point overshoot
the experimental data and are slightly too much reduced. As to this small difference between the theory and the
experiment, the comparison with the result in Ref. [68] indicates that the 3N force effect might be important
to enhance the magnitudes at the minimum points.

5 Deuteron Breakup Processes

5.1 Breakup Differential Cross Sections for Various Kinematical Configurations

A large number of examples for the breakup differential cross sections, predicted by fss2, are already published
in Ref. [36] for the neutron-induced n+d reactions without the Coulomb force. In these cases, two neutrons in
principle should be detected experimentally in various kinematical configurations. It is customary to classify
the three-body breakup kinematics into the following six categories based on the classical (or geometrical)
argument:

1. The quasi-free scattering (QFS): one of the nucleons in the final state is at rest in the lab system (kα = 0).
2. The final-state interaction (FSI): the relative momentum of the two outgoing nucleons is equal to zero

( pα = 0).
3. The collinear configuration (COLL): one of the outgoing nucleons is at rest in the cm system, and the other

two have momenta back to back (qα = 0).
4. The symmetric space star configuration (SST): the three nucleons emerge from the reaction point in the cm

system, keeping equal momenta with 120◦ relative to each other and perpendicular to the beam direction
(on the x–y plane in the cm system).

5. The coplanar star configuration (CST): the same as the symmetric space star configuration, but with the
three momenta lying on the reaction plane.

6. The non-standard configuration (NS): the other non-specific configurations.

From these configurations, we can roughly estimate which portion of the NN T -matrix is responsible at the
final stage of the reaction, according to the structure of the direct breakup amplitudes in Eq. (3.41). For exam-
ple, Ref. [21] argues that the first Born term of the QFS is approximately a product of an on-shell two-nucleon
T -matrix and the deuteron wave function at zero momentum. It is known that the 3N force effect is rather
small for the QFS condition. On the other hand, the collinear configurations are expected to be sensitive to the
3N force intuitively. For the FSI configuration the half-off shell T -matrix generates a large peak corresponding
to the 1S0 positive-energy bound state near the zero-energy threshold. It is well known that the nd theoretical
calculations in the SST configuration underpredict the experimental values largely, which is called the space
star anomaly [113]. It should be noted, however, that the disagreement between the theory and experiment is
also seen in some other coplanar star and non-standard configurations.

Actually, many of the experimental data are for the p+d reactions and the Coulomb force should be included
to compare the calculated results with experiment, which is particularly important in the T -matrix at the final
stage of rearrangement in Eq. (3.41). The convergence of the partial-wave expansion is very slow for the
screened Coulomb potential with a large cutoff Coulomb radius ρ. The half off-shell T -matrix for the nuclear
plus screened Coulomb potential in Eq. (3.41) begins to oscillate in p when ρ becomes large, and eventually
approaches to the full Coulomb result except for the renormalization phase factor. The half-off shell Coulomb
T -matrix is a smooth function of p, but has a sharp singularity at p = p0 in the on-shell limit. We therefore
need to take a large Imax and enough number of discretization points for the relative momentum p between two
protons, especially in the small p region. In this paper, we modify the four-interval separation of the p-mesh
points with the middle points 1, 3 and 6 fm [22] in the no-Coulomb case to five-interval separation with 0.2,
0.8, 2.4 and 5 fm when the Coulomb force is included. We use the same notation n = n1–n2–n3 = 5-6-5 as
in Sect. 3.1 of Ref. [22], but the actual number of discretization points is 4 × 6 + 5 = 29. In the following
figures, we show the calculated results with ρ = 8 (dotted curve), 16 (solid curve) and 20 fm (bold solid
curve), together with Imax = 4. For ρ = 8 fm, two different choices of the p-mesh points above give almost
the same results.

Figure 13 shows the breakup differential cross sections for the reactions d(p, 2p)n and d(n, 2n)p with the
nucleon incident lab. energy EN = 13 MeV. The nd calculations are shown by the dashed curves and should
be compared with the experimental data with error bars. We find that the Coulomb effect is rather small in
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these examples and our results are very similar to the predictions by the meson-exchange potentials, given
in Refs. [21,32,44,114]. A slight overestimation of the peak in quasi-free scattering (QFS) is reduced by the
Coulomb effect and the agreement with the pd experimental data [109] or more recent one [115] from Kyushu
university group is improved for ρ = 16 fm. However, if we further increase ρ up to 20 fm, a catastrophic
situation takes place and the peak height is too much suppressed. The np final state interaction (FSI) peaks are
well reproduced. In the collinear (COLL1, COLL2) and coplanar star (CST1) configurations, the nd data [113]
agree well with theoretical predictions, but our CST1 result is at least 10–20 % too small. The space star result
is located just between the lower pd data and the higher nd data, which is the same feature as other predictions
by the meson-exchange potentials. This disagreement of breakup differential cross sections at En = 13 MeV
was reported a long time ago, and is still an unsolved problem called the space star anomaly [113].

5.2 1H(
−→
d , 2p)n Reaction at Ed = 16 MeV

Figure 14 shows the nd and pd breakup differential cross sections at the two collinear (COLL1, COLL2) and
two nonstandard (NS1, NS2) configurations, compared with the dp experimental data of Correll’s et al. [116]
for the reaction 1H(

−→
d , 2p)n at Ed = 16 MeV. This corresponds to the nucleon-induced breakup reaction at

the nucleon incident energy of 8 MeV. The nd breakup differential cross sections are shown by dashed curves
and the experimental data should be compared with other curves. The starting point S = 0 is chosen as each
collinear point or the nearest point, as discussed Appendix B of Ref. [36]. In general, the agreement with exper-
imental data is good, although not perfect especially for COLL2. If we compare our nd results (dashed curves)
with the predictions by meson-exchange predictions in Ref. [21], we find that they are very similar to each
other. The Coulomb effect clearly improves the agreement with the experimental data in collinear (COLL1,
COLL2) and nonstandard (NS1) configurations, although the results by ρ = 20 fm sometimes overshoot the
experimental data.

5.3 Comparison with the KVI Data for the 1H(
−→
d , 2p)n Reaction at Ed = 130 MeV

Very accurate KVI data for the 1H(
−→
d , 2p)n reaction with Ed = 130 MeV [117,118] are compared with our

predictions in Fig. 15. The nd results are shown by the dashed curves. For the dp calculations, the cutoff
parameter ρ for the Coulomb force is chosen to be 8 fm (dotted curve), 16 fm (solid curve) and 20 fm (bold
solid curve). Since the starting positions of S = 0 are not the same between our calculation and the experiment,
we shift the S-axis of the calculated result by the amount denoted in each figure. The dip structure seen at the
pp final state interaction for the first panel PL-1 (θ1 = θ2 = 13◦ and φ12 = 20◦) is properly reproduced when
we choose the cutoff parameter ρ ≥ 16 fm. On the other hand, the improvement by the Coulomb effect with ρ
= 8 fm is spoiled when ρ is increased to 16 fm or 20 fm in PL-2. In other cases, we find that the pd calculations
with the Coulomb effect generally improve the agreement with experiment. For the large azimuthal angles
φ12 ∼ 180◦, the underestimation of the breakup differential cross sections may not be only due to the flaw in
the Coulomb treatment. We have also compared our calculations with a large amount of the systematic data
of the KVI group [117], although they are not shown in this paper. The overall agreement between the theory
and the experiment is obtained.

The vector-type and tensor-type analyzing powers of the deuteron in the breakup differential cross sections
are shown in Figs. 16 and 17, respectively. No-Coulomb results denoted by the dashed curves almost repro-
duce the experimental data on the whole, but some uncomfortable oscillations develop when the Coulomb
cutoff radius is increased up to ρ = 20 fm. This is particularly serious for configurations of the pp final-state
interaction with θ1 ∼ θ2 and φ12 = 0 in Fig. 17, where a great accuracy around the small p ∼ p0 is required
as discussed in Sect. 5.1.

6 Summary and Outlook

In this series of studies [11,22,23,36,37], we have applied the quark-model (QM) baryon–baryon interaction
fss2 to the neutron–deuteron (nd) and the proton–deuteron (pd) scattering in the Faddeev formalism for com-
posite particles. The main motivation is to investigate the off-shell effect of the QM nucleon-nucleon (NN)
interaction, in which the short-range repulsion is described by the nonlocalities of the quark exchange kernel
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Fig. 14 Breakup differential cross sections for the reaction 1H(
−→
d , 2p)n with Ed = 16 MeV, compared with the experimental

data [116]. The cutoff Coulomb radii, ρ = 8 (dotted), 16 (solid) and 20 fm (bold solid curves), together with Imax = 4 are used.
No-Coulomb results are shown by the dashed curves

in the resonating-group method (RGM), assuming the naive three-quark structure of nucleons. The practical
calculations are carried out using the 15-point Gaussian nonlocal potential constructed from fss2, which is
tailored to reproduce the converged triton binding energy of fss2 with an accuracy of 15 keV and the NN
phase-shift parameters with a difference of less than 0.1◦ [7,23]. The potential keeps all the nonlocal effects
of the original fss2, including the energy-dependent term of the QM RGM. The energy dependence is elim-
inated by the standard off-shell transformation utilizing the square root of the normalization kernel for two
three-quark clusters [2]. It is extremely important to deal with this energy dependence properly, since an extra
nonlocal kernel generated from this procedure is crucial to reproduce all the elastic scattering observables
below En ≤ 65 MeV [22,37].

In order to compare our results with many accurate experimental data of the pd scattering, we have incor-
porated the Coulomb force in an approximate way of using the screened Coulomb potential. Based on the
two-potential formula, we have extended the Vincent and Phatak method [34] for the sharply cut-off Cou-
lomb problem to the pd elastic scattering, using a connection condition for the K -matrix derived from the
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Fig. 15 Breakup differential cross sections for the reaction 1H(
−→
d , 2p)n at Ed = 130 MeV, compared with the experimental

data [118]. The nd results are shown by the dashed curves. For the dp calculations, the Coulomb cutoff parameter ρ is chosen to
be 8 (dotted), 16 (solid) and 20 fm (bold solid curves). Here, the kinematical conditions are θ1 = θ2 = 13◦, and φ12 are changed
from 20◦ to 180◦ with a step of 20◦. The calculated curves are shifted by about 100 MeV with respect to S to fit the experimental
origin

asymptotic waves [11]. This method gives reasonable results for various scattering observables with a rather
moderate value for the Coulomb cutoff radius around ρ ∼ 8–9 fm. The nuclear-Coulomb interference in the
forward angular region is correctly reproduced for the differential cross sections and analyzing powers. The
breakup differential cross sections and the deuteron analyzing powers of the dp and pd reactions are also
calculated with the same solutions of the AGS equation as the elastic scattering, by incorporating the half
off-shell T -matrix for the nuclear plus screened Coulomb potential in the final pp channel. It turns out that,
in the kinematical configurations involving the pp final-state interaction, a large ρ value greater than 16 fm is
required to reproduce an intricate behavior of the differential cross sections and analyzing powers. Accurate
calculations including enough number of partial waves and low-momentum discretization points for the pp
relative motion are necessary to obtain reliable results.

We have found that our calculations reproduce almost all the results for the breakup differential cross
sections, predicted by the meson-exchange potentials, including the disagreement with the experiment. This
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Fig. 16 Vector analyzing power of the deuteron for the reaction 1H(
−→
d , 2p)n with Ed = 130 MeV, compared with the experi-

mental data [119]. The cutoff Coulomb radii, ρ = 8 (dotted), 16 (solid) and 20 fm (bold solid curves), together with Imax = 4
are used. No-Coulomb results are shown by the dashed curves. The calculated curves are shifted by about 150 MeV with respect
to S to fit the experimental origin

feature is probably related to the structure of the direct breakup amplitudes in Eq. (3.41). First, they are
constrained by the elastic scattering amplitudes f J

(�′S′
c)(�Sc)

in the initial stage. In the final stage of reactions,
only the half-off shell two-nucleon T -matrix appears owing to the energy conservation for outgoing nucleons.
The effect of the completely off-shell T -matrix therefore appears only at the stage of solving the basic AGS
equations for 〈p, q, γ |Q̃|φ; (�′S′

c)J 〉, for which the present investigations imply that the difference between
our QM NN interaction and the meson-exchange potentials is rather minor. On the whole, the agreement with
the experimental data is fair, but there exist discrepancies in some particular kinematical configurations, which
are commonly found for both our predictions and meson-exchange predictions. In particular, the space star
anomaly of 13 MeV nd and pd scattering is not improved even in our model. There are major disagreements
in the breakup differential cross sections in some of the coplanar and nonstandard configurations. Since these
large disagreements can be resolved neither by the Coulomb effect nor by the introduction of the 3N force,
systematic studies from more basic viewpoints of the NN interaction are still needed both experimentally and
theoretically.

In spite of the apparent disagreement between the theory and the experiment in some of the breakup observ-
ables, our QM NN interaction fss2 is still very successful in reproducing the essential features of almost all
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other experimental data in the three-nucleon system without reinforcing it with the three-body force. These
include:

1) a nearly correct binding energy of the triton [3],
2) reproduction of the doublet and quartet S-wave scattering lengths, 2a and 4a [23],
3) low-energy differential cross sections of the pd elastic scattering up to E p ∼ 35 MeV at the diffraction

minimum points [22],
4) improved maximum heights of the nucleon analyzing power Ay(θ) in the low-energy region En ≤ 25 MeV,

although still insufficient [37],
5) breakup differential cross sections with many kinematical configurations [36].

Many of these improvements are related to the sufficiently attractive nd interaction in the 2S channel, in which
the strong distortion effect of the deuteron is very sensitive to the treatment of the short-range repulsion of
the NN interaction. In our QM NN interaction, this part is described by the quark exchange kernel of the
color-magnetic quark-quark interaction. In the strangeness sector involving the �N and �N interactions, the
effect of the Pauli repulsion on the quark level appears in some baryonic channels. It is therefore interesting to
study�±-deuteron scattering in the present framework to find the repulsive effect directly related to the quark
degree of freedom. Such an experiment is being planned at the J-PARC facility [120].
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