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Abstract Naively, the “best” method of renormalization is the one where a momentum cutoff is taken to infin-
ity while maintaining stable results due to a cutoff-dependent adjustment of counterterms. We have applied
this renormalization method in the non-perturbative calculation of phase-shifts for nucleon–nucleon (NN)
scattering using chiral NN potentials up to next-to-next-to-next-to-leading order (N3LO). For lower partial
waves, we find that there is either no convergence with increasing order or, if convergence occurs, the results
do not always converge to the empirical values. For higher partial waves, we always observe convergence to
the empirical phase shifts (except for the 3G5 state). Furthermore, no matter what the order is, one can use
only one or no counterterm per partial wave, creating a rather erratic scheme of power counting that does not
allow for a systematic order-by-order improvement of the predictions. The conclusion is that infinite-cutoff
renormalization is inappropriate for chiral NN interactions, which should not come as a surprise, since the
chiral effective field theory (chiral EFT), these interactions are based upon, is designed for momenta below
the chiral-symmetry breaking scale of about 1 GeV. Therefore, this value for the hard scale should also be
perceived as the appropriate upper limit for the momentum cutoff.

1 Introduction

During the past two decades, it has been demonstrated that chiral effective field theory (chiral EFT) represents a
powerful tool to deal with hadronic interactions at low energy in a systematic and model-independent way (see
Refs. [1,2] for recent reviews). For the construction of an EFT, it is crucial to identify a separation of scales.
In the hadron spectrum, a large gap between the masses of the pions and the masses of the vector mesons,
like ρ(770) and ω(782), can clearly be identified. Thus, it is natural to assume that the pion mass sets the soft
scale, Q ∼ mπ , and the rho mass the hard scale, �χ ∼ mρ ∼ 1 GeV, also known as the chiral-symmetry
breaking scale. This is suggestive of considering a low-energy expansion arranged in terms of the soft scale
over the hard scale, (Q/�χ)ν , where Q is generic for an external momentum (nucleon three-momentum or
pion four-momentum) or a pion mass. The appropriate degrees of freedom are, obviously, pions and nucleons,
and not quarks and gluons. To make sure that this EFT is not just another phenomenology, it must have a firm
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link with QCD. The link is established by having the EFT observe all relevant symmetries of the underlying
theory, in particular, the broken chiral symmetry of low-energy QCD [3].

The early applications of chiral perturbation theory (ChPT) focused on systems like ππ [4] and π N [5],
where the Goldstone-boson character of the pion guarantees that a perturbative expansion exists. But the past
15 years have also seen great progress in applying ChPT to nuclear forces [1,2,6–23]. The nucleon–nucleon
(NN) system is characterized by large scattering lengths and bound states indicating the non-perturbative char-
acter of the problem. Weinberg [6,7] therefore suggested to calculate the nuclear amplitude in two steps. In step
one, the nuclear potential, ̂V , is defined as the sum of irreducible diagrams, which are evaluated perturbatively
up to the given order. Then in step two, this potential is iterated to all order (i.e., summed up non-perturbatively)
in the Schrödinger or Lippmann–Schwinger (LS) equation:

̂T (p ′, p) = ̂V (p ′, p) +
∫

d3 p′′
̂V (p ′, p ′′) MN

p2 − p′′2 + iε
̂T (p ′′, p) , (1)

where ̂T denotes the NN T-matrix and MN the nucleon mass.
In general, the integral in the LS equation is divergent and needs to be regularized. One way to do this is

by multiplying ̂V with a regulator function

̂V (p ′, p) �−→ ̂V (p ′, p) e−(p′/�)2n
e−(p/�)2n

. (2)

Typical choices for the cutoff parameter � that appears in the regulator are � ≈ 0.5 GeV � �χ ≈ 1 GeV.
It is pretty obvious that results for the T-matrix may depend sensitively on the regulator and its cutoff

parameter. This is acceptable if one wishes to build models. For example, the meson models of the past [24,25]
always depended sensitively on the choices for the cutoff parameters which, in fact, were important for the fit
of the NN data. However, the EFT approach wishes to be fundamental in nature and not just another model.

In field theories, divergent integrals are not uncommon and methods have been developed for how to deal
with them. One regulates the integrals and then removes the dependence on the regularization parameters
(scales, cutoffs) by renormalization. In the end, the theory and its predictions do not depend on cutoffs or
renormalization scales. So-called renormalizable quantum field theories, like QED, have essentially one set of
prescriptions that takes care of renormalization through all orders. In contrast, EFTs are renormalized order
by order.

The renormalization of perturbative EFT calculations is not a problem. The problem is non-perturbative
renormalization. This problem typically occurs in nuclear EFT because nuclear physics is characterized by
bound states which are non-perturbative in nature. EFT power counting may be different for non-perturbative
processes as compared to perturbative ones. Such difference may be caused by the infrared enhancement of
the reducible diagrams generated in the LS equation.

Weinberg’s implicit assumption [6,7,26] was that the counterterms introduced to renormalize the pertur-
batively calculated potential, based upon naive dimensional analysis (“Weinberg counting”), are also sufficient
to renormalize the non-perturbative resummation of the potential in the LS equation. In 1996, Kaplan, Savage,
and Wise (KSW) [27–29] pointed out that there are problems with the Weinberg scheme if the LS equation is
renormalized by minimally subtracted dimensional regularization. This criticism resulted in a flurry of publica-
tions on the renormalization of the non-perturbative NN problem [30–55]. The literature is too comprehensive
to discuss all contributions. Let us just mention some of the work that has particular relevance for our present
discussion.

If the potential ̂V consists of contact terms only (a.k.a. pion-less theory), then the non-perturbative summa-
tion Eq. (1) can be performed analytically and the power counting is explicit. However, when pion exchange
is included, then Eq. (1) can be solved only numerically and the power counting is less transparent. Pertur-
bative ladder diagrams of arbitrarily high order, where the rungs of the ladder represent a potential made up
from irreducible pion exchange, suggest that an infinite number of counterterms is needed to achieve cutoff
independence for all the terms of increasing order generated by the iterations. For that reason, KSW [27–29]
proposed to sum the leading-order contact interaction to all orders (analytically) and to add higher-order con-
tacts and pion exchange perturbatively up to the given order. Unfortunately, it turned out that the order by
order convergence of one-pion exchange (1PE) is poor in the 3S1-3 D1 state [30,31]. The failure was triggered
by the 1/r3 singularity of the 1PE tensor force when iterated to second order. Therefore, KSW counting is no
longer taken into consideration (see, however, [48]). A balanced discussion of possible solutions can be found
in [34].
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Some researchers decided to take a second look at Weinberg’s original proposal. A systematic investigation
of Weinberg counting in leading order (LO) has been conducted by Nogga et al. [36] in momentum space,
and by Valderrama and Arriola at LO and higher orders in configuration space [35,37,40]. A comprehensive
discussion of both approaches and their equivalence can be found in [43,49].

The LO NN potential consists of 1PE plus two nonderivative contact terms that contribute only in S waves.
Nogga et al find that the given counterterms renormalize the S waves (i.e., stable results are obtained for
� → ∞) and the naively expected infinite number of counterterms is not needed. This means that Weinberg
power counting does actually work in S waves at LO (ignoring the mπ dependence of the contact interac-
tion discussed in Refs. [27–29,34]). However, there are problems with a particular class of higher partial
waves, namely those in which the tensor force from 1PE is attractive. The first few cases of this kind of low
angular momentum are 3 P0,

3 P2, and 3 D2, which need a counterterm for cutoff independence. The leading
order (nonderivative) counterterms do not contribute in P and higher waves, which is why Weinberg counting
fails in these cases. But the second order contact potential provides counterterms for P waves. Therefore, the
promotion of, particularly, the 3 P0 and 3 P2 contacts from next-to-leading order (NLO) to LO would fix the
problem in P waves. To take care of the 3 D2 problem, a next-to-next-to-next-to-leading order (N3LO) contact
needs to be promoted to LO. Partial waves with orbital angular momentum L ≥ 3 may be calculated in Born
approximation with sufficient accuracy and, therefore, do not pose renormalization problems. In this way, one
arrives at a scheme of ‘modified Weinberg counting’ [36] for the leading order two-nucleon interaction.

For a quantitative chiral NN potential one needs to advance all the way to N3LO [20]. Thus, the renormal-
ization issue needs to be discussed beyond LO. Naively, the most perfect renormalization procedure is the one
where the cutoff parameter � is carried to infinity while stable results are maintained. This was done success-
fully at LO in the work by Nogga et al. [36] described above. At NNLO, the infinite-cutoff renormalization
procedure has been investigated in [44–46] for partial waves with total angular momentum J ≤ 1 and in [40]
for all partial waves with J ≤ 5. At N3LO, only a study of the 1S0 state exists [43]. Thus, a full analysis of
the issue is still lacking.

It is, therefore, the purpose of this paper to study the method of (non-perturbative) infinite-cutoff renormal-
ization systematically order-by-order from LO to N3LO and for all partial-waves with J ≤ 6. As discussed, it
is necessary to carry this investigation through all of these orders, because the presently existing quantitative
chiral NN potentials are of order N3LO and their renormalizability needs to be investigated.

This paper is organized as follows. In Sect. 2, we will present the chiral NN potential up to order N3LO
and, in Sect. 3, the non-perturbative renormalization will be discussed. The order by order convergence (or
non-convergence) is the subject of Sect. 4, and Sect. 5 will conclude the paper.

2 The Chiral NN Potential up to N3LO

EFTs are defined in terms of effective Langrangians which are given by an infinite series of terms with increas-
ing number of derivatives and/or nucleon fields, with the dependence of each term on the pion field prescribed
by the rules of broken chiral symmetry. Applying this Lagrangian to a particular process, an unlimited number
of Feynman graphs can be generated. Therefore, we need a scheme that makes the theory manageable and
calculable. This scheme which tells us how to distinguish between large (important) and small (unimportant)
contributions is ChPT, and determining the power ν of the expansion has become known as power counting.

Nuclear potentials are defined as sets of irreducible graphs up to a given order. The power ν of a few-nucleon
diagram involving A nucleons is given in terms of naive dimensional analysis by:

ν = −2 + 2A − 2C + 2L +
∑

i

	i , (3)

with

	i ≡ di + ni

2
− 2 , (4)

where C denotes the number of separately connected pieces and L the number of loops in the diagram; di is
the number of derivatives or pion-mass insertions and ni the number of nucleon fields (nucleon legs) involved
in vertex i ; the sum runs over all vertices contained in the diagram under consideration. Note that 	i ≥ 0 for
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all interactions allowed by chiral symmetry. For an irreducible NN diagram (“two-nucleon potential”, A = 2,
C = 1), Eq. (3) collapses to

ν = 2L +
∑

i

	i . (5)

Thus, in terms of naive dimensional analysis or “Weinberg counting”, the various orders of the irreducible
graphs which define the chiral NN potential are given by:

VLO = V (0)
ct + V (0)

1π (6)

VNLO = VLO + V (2)
ct + V (2)

1π + V (2)
2π (7)

VNNLO = VNLO + V (3)
1π + V (3)

2π (8)

VN3LO = VNNLO + V (4)
ct + V (4)

1π + V (4)
2π + V (4)

3π (9)

where the superscript denotes the order ν of the low-momentum expansion. LO stands for leading order, NLO
for next-to-leading order, etc.. Contact potentials carry the subscript “ct” and pion-exchange potentials can be
identified by an obvious subscript.

The charge-independent 1PE potential reads

V1π(p ′, p) = − g2
A

4 f 2
π

τ 1 · τ 2
σ 1 · q σ 2 · q

q2 + m2
π

, (10)

where p ′ and p designate the final and initial nucleon momenta in the center-of-mass system (CMS) and
q ≡ p ′ − p is the momentum transfer; σ 1,2 and τ 1,2 are the spin and isospin operators of nucleon 1 and 2;
gA, fπ , and mπ denote axial-vector coupling constant, the pion decay constant, and the pion mass, respectively.
We use fπ = 92.4 MeV and gA = 1.29 throughout this work. Since higher order corrections contribute only
to mass and coupling constant renormalizations and since, on shell, there are no relativistic corrections, the
on-shell 1PE has the form Eq. (10) in all orders.

In this paper, we will specifically calculate neutron–proton (np) scattering and take the charge-dependence
(isospin violation) of the 1PE into account. Thus, the 1PE potential that we actually apply reads

V (np)
1π (p ′, p) = −V1π(mπ0) + (−1)T +1 2 V1π (mπ±) , (11)

where T denotes the isospin of the two-nucleon system and

V1π (mπ ) ≡ − g2
A

4 f 2
π

σ 1 · q σ 2 · q
q2 + m2

π

. (12)

We use mπ0 = 134.9766 MeV and mπ± = 139.5702 MeV.

2.1 Leading Order (LO)

The LO chiral NN potential consists of a contact part and an 1PE part, cf. Eq. (6). The 1PE part is given by
Eq. (11) and the LO contacts are

V (0)
ct (p′, p) = CS + CT σ 1 · σ 2 , (13)

and, in terms of partial waves,

V (0)
ct (1S0) = ˜C1 S0

= 4π (CS − 3 CT )

V (0)
ct (3S1) = ˜C3 S1

= 4π (CS + CT ) , (14)

where CS, CT , ˜C1 S0
, ˜C3 S1

are constants.
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2.2 Next-to-Leading Order (NLO)

Multi-pion exchange starts at NLO and continues through all higher orders. It involves divergent loop integrals
that need to be regularized. An elegant way to do this is dimensional regularization which (besides the main
nonpolynomial result) typically generates polynomial terms with coefficients that are, in part, infinite or scale
dependent [13]. One purpose of the contacts is to absorb all infinities and scale dependencies and make sure
that the final result is finite and scale independent. This is the renormalization of the perturbatively calculated
NN potential, which must be carefully distinguished from the non-perturbative renormalization to be discussed
in Sect. 3. The perturbative renormalization of the NN potential is very similar to what is done in the ChPT
calculations of ππ and π N scattering, namely, a renormalization order by order, which is the method of choice
for any EFT.

For the NLO chiral NN potential, Eq. (7), we need to specify the second order contact part and the two-pion
exchange (2PE) part. The NLO contact terms are given by [1]

V (2)
ct (p′, p) = C1 q2 + C2 k2 + (

C3 q2 + C4 k2) σ 1 · σ 2 + C5 (−iS · (q × k))

+C6 (σ 1 · q) (σ 2 · q) + C7 (σ 1 · k) (σ 2 · k) , (15)

with the partial-wave decomposition

V (2)
ct (1S0) = C1 S0

(p2 + p′2)

V (2)
ct (3 P0) = C3 P0

pp′

V (2)
ct (1 P1) = C1 P1

pp′

V (2)
ct (3 P1) = C3 P1

pp′

V (2)
ct (3S1) = C3 S1

(p2 + p′2)

V (2)
ct (3S1 −3 D1) = C3 S1−3 D1

p2

V (2)
ct (3 D1 −3 S1) = C3 S1−3 D1

p′2

V (2)
ct (3 P2) = C3 P2

pp′. (16)

To state the 2PE potentials, we introduce the following notation:

V2π (p ′, p) = VC + τ 1 · τ 2 WC + [ VS + τ 1 · τ 2 WS ] σ 1 · σ 2

+ [ VL S + τ 1 · τ 2 WL S] (−iS · (q × k) ) + [ VT + τ 1 · τ 2 WT ] σ 1 · q σ 2 · q
+ [ Vσ L + τ 1 · τ 2 Wσ L ] σ 1 · (q × k ) σ 2 · (q × k ) , (17)

where

k ≡ 1
2 (p ′ + p) is the average momentum, and

S ≡ 1
2 (σ 1 + σ 2) the total spin.

(18)

Using the above notation, the NLO 2PE is simply given by [1,13]

W (2)
C = − L(q)

384π2 f 4
π

[

4m2
π(5g4

A − 4g2
A − 1) + q2(23g4

A − 10g2
A − 1) + 48g4

Am4
π

w2

]

, (19)

V (2)
T = − 1

q2 V (2)
S = −3g4

A L(q)

64π2 f 4
π

, (20)

where

L(q) ≡ w

q
ln

w + q

2mπ

(21)

and

w ≡
√

4m2
π + q2. (22)
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2.3 Next-to-Next-to-Leading Order (NNLO)

There are no new contacts at NNLO, cf. Eq. (8), and, thus, all we need is the third order 2PE potential, which
is [using the notation introduced in Eq. (17)] [1,13]

V (3)
C = V (3)

C1 + V (3)
C2 , (23)

W (3)
C = W (3)

C1 + W (3)
C2 , (24)

V (3)
T = V (3)

T 1 + V (3)
T 2 , (25)

W (3)
T = W (3)

T 1 + W (3)
T 2 , (26)

V (3)
S = V (3)

S1 + V (3)
S2 , (27)

W (3)
S = W (3)

S1 + W (3)
S2 , (28)

V (3)
L S = 3g4

Aw̃2 A(q)

32π MN f 4
π

, (29)

W (3)
L S = g2

A(1 − g2
A)

32π MN f 4
π

w2 A(q) , (30)

where

V (3)
C1 = 3g2

A

16π f 4
π

{

g2
Am5

π

16MN w2 −
[

2m2
π(2c1 − c3) − q2

(

c3 + 3g2
A

16MN

)]

w̃2 A(q)

}

, (31)

W (3)
C1 = g2

A

128π MN f 4
π

{

3g2
Am5

πw−2 − [

4m2
π + 2q2 − g2

A(4m2
π + 3q2)

]

w̃2 A(q)
}

, (32)

V (3)
T 1 = − 1

q2 V (3)
S1 = 9g4

Aw̃2 A(q)

512π MN f 4
π

, (33)

W (3)
T 1 = − 1

q2 W (3)
S1 = −g2

A A(q)

32π f 4
π

[

(

c4 + 1

4MN

)

w2 − g2
A

8MN
(10m2

π + 3q2)

]

, (34)

and

V (3)
C2 = − 3g4

A

256π f 4
π MN

(mπw2 + w̃4 A(q)) , (35)

W (3)
C2 = g4

A

128π f 4
π MN

(mπw2 + w̃4 A(q)) , (36)

V (3)
T 2 = − 1

q2 V (3)
S2 = 3g4

A

512π f 4
π MN

(mπ + w2 A(q)) , (37)

W (3)
T 2 = − 1

q2 W (3)
S2 = − g4

A

256π f 4
π MN

(mπ + w2 A(q)) , (38)

with

A(q) ≡ 1

2q
arctan

q

2mπ

(39)

and

w̃ ≡
√

2m2
π + q2. (40)

Equations (35)–(38) are corrections of the iterative 2PE, see Ref. [1] for details. In all 2PE potentials, we use
the average nucleon mass, MN = 938.9182 MeV, and the average pion mass, mπ = 138.039 MeV. The values
for the low-energy constants are c1 = −0.81 GeV−1, c3 = −3.20 GeV−1, and c4 = 5.40 GeV−1 [1].
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2.4 Next-to-Next-to-Next-to-Leading Order (N3LO)

At N3LO, 14 new contact terms appear [1],

V (4)
ct (p′, p) = D1 q4 + D2 k4 + D3 q2k2 + D4 (q × k)2

+ (

D5 q4 + D6 k4 + D7 q2k2 + D8 (q × k)2) σ 1 · σ 2

+ (

D9 q2 + D10 k2) (−iS · (q × k))

+ (

D11 q2 + D12 k2) (σ 1 · q) (σ 2 · q)

+ (

D13 q2 + D14 k2) (σ 1 · k) (σ 2 · k)

+D15 (σ 1 · (q × k) σ 2 · (q × k)) , (41)

which contribute as follows to the partial-wave potentials,

V (4)
ct (1S0) = ̂D1 S0

(p′4 + p4) + D1 S0
p′2 p2

V (4)
ct (3 P0) = D3 P0

(p′3 p + p′ p3)

V (4)
ct (1 P1) = D1 P1

(p′3 p + p′ p3)

V (4)
ct (3 P1) = D3 P1

(p′3 p + p′ p3)

V (4)
ct (3S1) = ̂D3 S1

(p′4 + p4) + D3 S1
p′2 p2

V (4)
ct (3 D1) = D3 D1

p′2 p2

V (4)
ct (3S1 −3 D1) = ̂D3 S1−3 D1

p4 + D3 S1−3 D1
p′2 p2

V (4)
ct (3 D1 −3 S1) = ̂D3 S1−3 D1

p′4 + D3 S1−3 D1
p′2 p2

V (4)
ct (1 D2) = D1 D2

p′2 p2

V (4)
ct (3 D2) = D3 D2

p′2 p2

V (4)
ct (3 P2) = D3 P2

(p′3 p + p′ p3)

V (4)
ct (3 P2 −3 F2) = D3 P2−3 F2

p′ p3

V (4)
ct (3 F2 −3 P2) = D3 P2−3 F2

p′3 p

V (4)
ct (3 D3) = D3 D3

p′2 p2. (42)

The 2PE contributions at this order, V (4)
2π , are very involved, which is why we will not reprint them here. The

comprehensive expressions can be found in Appendix D of Ref. [1]. We note that, in the calculations of this
paper, we apply all N3LO 2PE terms including those which require numerical integrations. The parameters
we use in this work are listed in column “NN potential” of Table 2 of Ref. [1].

The N3LO three-pion exchange (3PE) contributions V (4)
3π , cf. Eq. (9), are left out, since they have been

found to be negligible [56,57].

3 NN Scattering and Non-Perturbative Renormalization

For the unitarizing scattering equation, we choose the relativistic three-dimensional equation proposed by
Blankenbecler and Sugar (BbS) [58], which reads,

T (p ′, p) = V (p ′, p) +
∫

d3 p′′

(2π)3 V (p ′, p ′′)
M2

N

E p′′
1

p2 − p′′2 + iε
T (p ′′, p) (43)

with E p′′ ≡
√

M2
N + p′′2. The advantage of using a relativistic scattering equation is that it automatically

includes relativistic corrections to all orders. Thus, in the scattering equation, no propagator modifications are
necessary when raising the order to which the calculation is conducted.
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Defining

̂V (p ′, p) ≡ 1

(2π)3

√

MN

E p′
V (p ′, p)

√

MN

E p
(44)

and

̂T (p ′, p) ≡ 1

(2π)3

√

MN

E p′
T (p ′, p)

√

MN

E p
, (45)

where the factor 1/(2π)3 is added for convenience, the BbS equation collapses into the usual, nonrelativistic
Lippmann–Schwinger equation, Eq. (1). Since ̂V satisfies Eq. (1), it can be used like a usual nonrelativistic
potential, and ̂T may be perceived as the conventional nonrelativistic T-matrix. The square-root factors in
Eqs. (44) and (45) are applied to the potentials of all orders except in LO.

In the LS equation, Eq. (1), we use

MN = 2Mp Mn

Mp + Mn
= 938.9182 MeV, and (46)

p2 = M2
pTlab(Tlab + 2Mn)

(Mp + Mn)2 + 2Tlab Mp
, (47)

where Mp = 938.2720 MeV and Mn = 939.5653 MeV are the proton and neutron masses, respectively, and
Tlab is the kinetic energy of the incident neutron in the laboratory system (“Lab. Energy”). The relationship
between p2 and Tlab is based upon relativistic kinematics.

We renormalize the LO chiral NN potential as described in Refs. [36,50] and discussed in the Introduction.
We then perform the infinite-cutoff renormalization also for the NLO, NNLO, and N3LO chiral NN potentials.
This is accomplished by studying the dependence of the phase shifts on the cutoff parameter � that appears
in the regulator function, Eq. (2). We vary � over a wide range, from 0.5 to 10 GeV (with n = 2 for the LO,
NLO, and NNLO potentials, and n = 3 for N3LO).

For partial-waves with short-range repulsion, convergence with increasing cutoff values is obtained without
the use of any counterterm, i.e., convergence occurs “automatically”. In fact, in these cases, any counterterm
becomes ineffective for large cutoffs. Thus, no counterterm is used in partial-waves with short-range repulsion.

For partial-waves with short-range attraction, one counterterm (contact term) is needed to ensure conver-
gence. If we introduce a second counterterm per partial-wave, it turns out that this second parameter becomes
ineffective for large cutoffs. Thus, we apply only one counterterm, which we use to fit the following empirical
information. In S-waves, we fit the scattering lengths; 1S0 : as = −23.740 fm,3 S1 : at = 5.417 fm. In the
other partial-waves with J ≤ 2, we fit the phase shift at Tlab = 50 MeV to the central value from the Nijmegen
multi-energy np phase-shift analysis [59]. For J ≥ 3, we fit the phase-shift at 100 or 200 MeV.

In summary, at any order, either one or no counterterm is needed in each partial-wave for the infinite-cutoff
renormalization. We show this in the left half of Table 1 for the various partial-wave states. The right half
of Table 1 shows the number of counterterms according to Weinberg Counting. Obviously, there are large
differences between the two schemes. The higher partial-wave states that are not listed in the table do not
receive counterterms.

We have obtained convergence with increasing cutoff for all phase parameters with J ≤ 6 in each order,
NLO, NNLO, and N3LO. As evident from Table 1, in NNLO and N3LO, we need counterterms (contact terms)
for the renormalization of the 3 F3,

3 F4, and 1G4 waves. These terms are:

V (6)
ct (3 F3) = E3 F3

p′3 p3, (48)

V (6)
ct (3 F4) = E3 F4

p′3 p3, (49)

V (8)
ct (1G4) = F1G4

p′4 p4. (50)

In Figures 1 and 2, we demonstrate the convergence of the phase parameters with increasing cutoff for
the N3LO potential in partial-wave with J ≤ 2. The black dotted curve is obtained for � = 0.5 GeV, the
blue dashed curve for � = 1 GeV, the green dash-dot curve for � = 5 GeV, and the red solid curve for
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Table 1 Number of counterterms per partial-wave as required in two different renormalization schemes

Partial-wave Infinite-cutoff renormalization Weinberg counting

LO NLO NNLO N3LO LO NLO/NNLO N3LO
1S0 1 1 1 1 1 2 4
3 P0 1 0 0 0 0 1 2
1 P1 0 0 0 0 0 1 2
3 P1 0 1 1 1 0 1 2
3S1 1 0 1 1 1 2 4
3S1 −3 D1 0 0 1 0 0 1 3
3 D1 0 0 0 0 0 0 1
1 D2 0 1 1 1 0 0 1
3 D2 1 0 1 0 0 0 1
3 P2 1 1 1 1 0 1 2
3 P2 −3 F2 0 0 0 0 0 0 1
3 F2 0 0 0 0 0 0 0
1 F3 0 0 0 0 0 0 0
3 F3 0 0 1 1 0 0 0
3 D3 0 0 1 0 0 0 1
3 D3 −3 G3 0 0 0 0 0 0 0
3G3 0 0 0 0 0 0 0
1G4 0 0 1 1 0 0 0
3G4 0 0 0 0 0 0 0
3 F4 0 0 1 1 0 0 0

Fig. 1 Phase-shifts of neutron–proton scattering at order N3LO for total angular momentum J ≤ 1 and laboratory kinetic energies
below 250 MeV. The black dotted curve is obtained for � = 0.5 GeV, the blue dashed curve for � = 1 GeV, the green dash-dot
curve for � = 5 GeV, and the red solid curve for � = 10 GeV. Note that the curves for � =5 and 10 GeV are, in general,
indistinguishable on the scale of the figure. The filled and open circles represent the results from the Nijmegan multi-energy np
phase-shift analysis [59] and the VPI/GWU single-energy np analysis SM99 [60,61], respectively (color figure online)
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Fig. 2 Same as Fig. 1, but J = 2 phase-shifts and J ≤ 2 mixing parameters are shown (color figure online)

Fig. 3 Renormalized np phase-shifts at order LO (black dotted curve), NLO (blue dashed curve), NNLO (green dash-dotted
curve), and N3LO (red solid curve). The S = 0, T = 1 phase shifts with L ≤ 6 are shown for energies below 250 MeV. Filled
and open circles are as described in Fig. 1 (color figure online)

� = 10 GeV. The fact that the green and red curves are essentially indistinguishable in those figures, demon-
strates that convergence for large cutoffs has occured. However, it is also clearly seen in these figures that, even
though we are here at a relatively high order (N3LO), the cutoff-converged curves show large discrepancies
with respect to the empirical phase shifts in several partial waves, particularly, 1S0,

3 S1,
3 D1,

3 D2, and ε2.
This issue will be further discussed in the next section.

4 Order By Order Convergence

Having accomplished the infinite-cutoff renormalization of the four orders we consider, it is now of interest
to investigate the order-by-order convergence of these cutoff-converged cases. This is done in Figs. 3, 4, 5, 6,
7 and 8.
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Fig. 4 Renormalized S = 0, T = 0 np phase-shifts with L ≤ 5 (notation as in Fig. 3) (color figure online)

Fig. 5 Renormalized S = 1, T = 1 uncoupled np phase-shifts with L ≤ 5 (notation as in Fig. 3) (color figure online)

Fig. 6 Renormalized S = 1, T = 0 uncoupled np phase-shifts for L ≤ 6 (notation as in Fig. 3) (color figure online)

In Fig. 3, the S = 0, T = 1 np phase-shifts for L ≤ 6 are displayed, where S denotes the total spin, T the
total isospin, and L the orbital angular momentum of the two-nucleon system. Note that, in each order, the
underlying analytic expression for the potential is the same except that it is decomposed into partial-waves with
L = 0, 2, 4, and 6. The effect of this partial-wave decomposition is that the short-range part of the two-nucleon
potential is increasingly suppressed with growing L; or in other words, the “centrifugal barrier” becomes larger
with L . In the 1S0 state, the phase-shifts are (almost) converged at N3LO, but do not reproduce the empirical
phase-shifts. This is consistent with what was found in Ref. [43]. However, at the next higher S = 0, T = 1
partial-wave, the 1 D2, we observe that the phase-shift prediction converges to the empirical phase-shift values,
and this is also true for all higher S = 0, T = 1 partial-waves shown in Fig. 3.

In Fig. 4, we show the S = 0, T = 0 state for various partial-waves up to L = 5. The situation is very
similar to what we just discussed. In the lowest partial-wave, the 1 P1, we have (almost) convergence, though
not to the empirical values. In higher partial-waves, however, the predictions converge to the experimental
phase-shifts. This finishes the discussion of (spin) singlet states (S = 0).

Now we turn to (spin) triplet states (S = 1). Here, we need to distinguish between uncoupled and coupled
partial-waves and will discuss the former first. The phase-shift predictions for uncoupled S = 1, T = 1 states
are shown in Fig. 5 and for S = 1, T = 0 in Fig. 6. Good convergence to the empirical phase-shifts is observed
for all S = 1, T = 1 partial-waves (including the lowest one, 3 P1). In contrast, for S = 1, T = 0, a strong
divergence occurs at N3LO in the 3 D2 state (first frame of Fig. 6), while the higher S = 1, T = 0 partial-waves
converge well.

Finally, we discuss the coupled cases. The T = 1 coupled partial-waves are displayed in Fig. 7. We include
here the 3 P0 state, such that we can compare it with its counterparts of larger L , namely 3 F2,

3 H4, and 3K6.
It is clearly seen that the 3 P0 shows no order-by-order convergence, while the 3 F2 has near convergence and
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Fig. 7 The renormalized 3 P0 and renormalized S = 1, T = 1 coupled np phase parameters for J ≤ 6 (notation as in Fig. 3)
(color figure online)

the 3 H4 and 3K6 states are fully converged to the empirical information. The associated coupled partial-waves
show corresponding trends.

The last set of partial-waves to be discussed are the S = 1, T = 0 coupled states shown in Fig. 8. While
there is no convergence with increasing orders for the J = 1 states, converged results and agreement with the
experimental parameters are seen in the L = J + 1 partial-waves (3G3 and 3 I5) and in the mixing parameters
with J ≥ 3 (i.e., ε3 and ε5). Contrary to this, the L = J − 1 waves (3S1,

3 D3,
3 G5) never converge. Even in

the rather high partial-wave, 3G5, there is a large difference between the NNLO and N3LO predictions. This
phenomenon may be related to the fact that the 3G5 is the only higher partial-wave that disagrees with the
empirical phase-shifts at N3LO, as was noticed already in Ref. [19]. At the present time, we do not have an
explanation for this problem.

The observations we have made in conjunction with Figs. 3, 4, 5, 6, 7, and 8 can be summarized as follows:
Some lower partial-waves show no convergence and no order-by-order improvement. On the other hand, all
higher partial-waves (except for the notorious 3G5) do not only converge, they also converge to the empir-
ical values. Note that in higher partial-waves the short-range part of the NN interaction (equivalent to the
high-momentum components of the interaction) is suppressed by the centrifugal barrier. This suggests that the
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Fig. 8 Renormalized S = 1, T = 0 coupled np phase parameters for J ≤ 5 (notation as in Fig. 3) (color figure online)

long- and intermediate-range part of the NN potential up to N3LO is reasonable, while the short-range part
may be, in part, un-physical.

In the infinite-cutoff renormalization the potential is admitted up to unlimited momenta. However, the EFT
this potential is derived from has validity only for momenta smaller than the chiral symmetry breaking scale
�χ ≈ 1 GeV. The lack of order-by-order convergence and the discrepancies in lower partial-waves demon-
strate that the potential should not be used beyond the limits of the effective theory (see Ref. [62] for a related
discussion). The conclusion then is that cutoffs should be limited to � � �χ .

5 Summary and Conclusions

We have investigated a particular scheme for the non-perturbative renormalization of the nucleon–nucleon
potential based upon chiral EFT. In the scheme applied, the cutoff parameter of the regulator is taken to
infinity.

Two vital requirements for constituting the legitimacy of an EFT are regulator independence and a power
counting scheme that allows for order-by-order improvements of the predictions. We were able to achieve
regulator independence (i.e., cutoff-independence) for all orders of chiral perturbartion theory considered (i.e.,
LO, NLO, NNLO, and N3LO) and all partial-waves up to J = 6. In general, cutoff-independence is seen for
cutoff values above 5 GeV.

However, in this investigation, we have also observed that large cutoffs impose limitations on the effec-
tiveness of counterterms. In each partial-wave, either no counterterm (case of short-range repulsion) or one
counterterm (case of short-range attraction) is effective. Therefore, the power counting scheme implied by
the infinite-cutoff method is considerably different from the one of Naive Dimensional Analysis or Weinberg
Counting (cf. Table 1). As a consequence, order-by-order improvements of the predictions do not occur in
several lower partial-waves.

Thus, the chiral EFT approach to nuclear forces fails when renormalized by the infinite-cutoff method. This
result may not come as a surprise considering that the EFT which we apply is designed for momenta below the



2204 Ch. Zeoli et al.

chiral-symmetry breaking scale, �χ ≈ 1 GeV. Under the infinite-cutoff method, the potential contributes for
momenta that are far beyond the hard scale of 1 GeV. Our results suggest that finite-cutoffs �1 GeV should be
used for the non-perturbative regularization of the chiral NN potential. With such cutoffs, all counterterms of
Weinberg Counting are effective, and an order-by-order improvement of the predictions is to be expected [63].
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