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Abstract The Schrödinger equation with a pertaining two-center mean field potential scheme is solved by
the quasi-analytical ansatz methodology. The ground-state wave function and the corresponding energy of a
nonrelativistic nucleon moving in the fields of two fixed Coulomb centers are reported and the behavior of the
energy vs. engaged parameters is depicted via illustrative figures.

1 Introduction

In spite of being rather old, the two-center shell model (TCSM) [1–4], which considers a nucleon influenced by
the fields of two nuclei, is still the focus of some sound studies [5–16]. Before proceeding any further, it should
be noted that the application of the two-center model (TCM) is limited to a nuclear system and it successfully
accounts for the observed phenomena in other branches of physics (see for example [6,9,10,17]). Papp [5]
proposed an approximate method based on the separable expansion of the Coulomb-like potentials. Milek [6]
investigated the quantum chaos in an axially symmetric TCSM. Bondarchuk and his colleagues [7] obtained
the ground state wavefunction of a relativistic electron by the perturbation technique. The ground-state wave
function and the corresponding energy of a relativistic electron in the field of two fixed Coulomb centers were
reported by the LCAO method in [8]. Mecke et al. [9,10] proposed the equation of state for the two-center
Lennard-Jones fluids. Using the expansion technique, the system was solved under the Woods-Saxon potential
in refs. [11,12]. The model under realistic finite depth potentials was studied in Refs. [13,14]. A realistic TCM
based on two spherical Woods-Saxon potentials was investigated by Diaz-Torres [15]. Gherghescu [16] worked
on the splitting of a deformed parent nucleus into two ellipsoidal deformed fragments using this basis. Chen
and his co-workers [17] discussed the effects of the cusp condition, the asymptotic condition, the electron-cor-
relation and the configuration interaction on the energy levels. Gonzalez Leon [18] used the supersymmetry
quantum mechanics after proper modifications to provide an analytical solution of the problem. The two-center
MICZ Kepler system and the Zeeman effect in the charge-doyen system were studied by Bellucci and Ohanyan
[19]. Diaz-Torres [20] proposed a new formalism based on the potential separable expansion to solve the prob-
lem with arbitrarily oriented deformed realistic potentials. Pachucki [21] calculated two-center two-electron
integrals for exponential functions and for an arbitrary polynomial in electron-nucleus and electron-electron
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distances. Lau and Price to solve the three-dimensional helically reduced wave equation of two-center nature
appearing in astrophysics [22] introduced a multidomain spectral-tau methodology. YuSheng et al. studied
two-center correlated orbital approach and reported the electronic ground state energy for the HeH+ [23].

In the present paper, we consider a nucleon in the field of two nuclei. After a brief introduction to the prob-
lem and the separation of variables via the ellipsoidal (or, prolate spheroidal) coordinates, we arrive at a second
order differential equation. In solving the latter, we have to proceed on a numerical technique, which is, despite
its reliability, cumbersome and rather vague in comparison to an analytic methodology that provides a deeper
understanding and is more instructive for pedagogical purposes. To our best knowledge, the obtained differen-
tial equation cannot be solved via any of common analytical approaches such as the supersymmetry quantum
mechanics (SUSYQM), Nikiforov–Uvarov (NU), point canonical transformation (PCT), Lie algebras, etc. In
our work, after some innovative transformations, we propose physical ansatzs by which the problem can be
solved in a quasi-analytical manner and thereby the ground-state wavefunction and the corresponding energy
eigenvalue are calculated. Nevertheless, the approach is not restricted to the ground state and the higher ones
can be simply obtained by the same token via the proposed ansatz.

2 Formulation of the Problem

The Schrödinger equation for the fixed two-center problem, i.e. one nucleon moving in the fields of two fixed
nuclei with effective charges Za , Zb and internuclear separation distance R is

− 1

2
∇2�n,m −

(
Za

ra
+ Zb

rb
− Za Zb

R

)
�n,m = E�n,m, (1)

whose solution is normally written in the form

�n,m(λ, μ) = �n,m(λ)Mn,m(μ)e
imϕ. (2)

In ellipsoidal (or prolate spheroidal) coordinates [17] (see Fig. 1)

x = R

2

√
(λ2 − 1)(1 − μ2) cosϕ, (3a)

y = R

2

√
(λ2 − 1)(1 − μ2) sin ϕ, (3b)

z = R

2
λμ, (3c)

Fig. 1 a Elliptical coordinates (λ,μ). b Prolate spheroidal coordinates (λ,μ,ϕ), (with λ = (ra + rb)/R and μ = (ra − rb)/R.
The range of coordinates is 1 ≤ λ ≤ ∞,−1 ≤ μ ≤ 1 and 0 ≤ ϕ ≤ 2 π.)
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and the Laplacian has the form

∇2�n,m(λ, μ, ϕ) = 1

hλhμhϕ

[
∂

∂λ

(
hμhϕ

hλ

∂

∂λ
�n,m(λ, μ, ϕ)

)
+ ∂

∂μ

(
hλhϕ
hμ

∂

∂μ
�n,m(λ, μ, ϕ)

)

+ ∂

∂ϕ

(
hλhμ

hϕ

∂

∂ϕ
�n,m(λ, μ, ϕ)

)]
, (4a)

hλ = R

2

(λ2 − μ2)
1
2

(λ2 − 1)
1
2

, hμ = R

2

(λ2 − μ2)
1
2

(1 − μ2)
1
2

, hϕ = R

2
(λ2 − 1)

1
2 (1 − μ2)

1
2 . (4b)

or [17]

∇2�n,m(λ, μ, ϕ)= 4

R2(λ2−μ2)

{
∂

∂λ

[
(λ2−1)

∂

∂λ

]
+ ∂

∂μ

[
(1−μ2)

∂

∂μ

]
+ λ2−μ2

(λ2−1)(1−μ2)

∂2

∂ϕ2

}
�n,m(λ, μ, ϕ),

(5)

which brings Eq. (1) into

− 1
2

[
4

R2(λ2−μ2)

{
∂
∂λ

[
(λ2 − 1) ∂

∂λ

]+ ∂
∂μ

[
(1 − μ2) ∂

∂μ

]
+ (λ2−μ2)m2

(λ2−1)(1−μ2)

}
�n,m(λ)Mn,m(μ)

]
−
(

2za
R(λ+μ) + 2zb

R(λ−μ) − za zb
R

)
�n,m(λ)Mn,m(μ) = En,m�n,m(λ)Mn,m(μ).

(6)

After a normal separation of variable, we arrive at

d

dλ

{
(λ2 − 1)

d�n,m(λ)

dλ

}
+
{

A + 2R1λ− P2λ2 − m2

λ2 − 1

}
�n,m(λ) = 0,

R1 = R(Za + Zb)

2
, λ ≥ 1, (7a)

d

dμ

{
(1 − μ2)

d Mn,m(μ)

dμ

}
+
{
−A + 2R2μ+ P2μ2 − m2

1 − μ2

}
Mn,m(μ) = 0,

R2 = R(Zb − Za)

2
, |μ| ≤ 1,

(7b)

where

P2 = 1

2

(−R2 En,m + RZa Zb
) � 0, (8)

Before proceeding further, we write Eq. (7a) more neatly as

�′′
n,m(λ)+ 2λ

λ2 − 1
�′

n,m(λ)+
[

A + 2R1λ

λ2 − 1
− P2λ2

λ2 − 1
− m2

(λ2 − 1)2

]
�n,m(λ) = 0, (9)

and introduce a change of variable of the form

�n,m(λ) = φn,m(λ)√
λ2 − 1

, (10)

to obtain

d2φn,m(λ)

dλ2 +
{
− 1

λ2 − 1
+ λ2

(λ2 − 1)2
+ A + 2R1λ

λ2 − 1
− P2λ2

λ2 − 1
− m2

(λ2 − 1)2

}
φn,m(λ) = 0. (11)

By decomposition of fractions we have

d2φn,m(λ)

dλ2 +
{

1/4 + (2R1 − A)/2 − m2/4 + P2/2

λ+ 1
+ −1/4 + (A + 2R1)/2 + m2/4 − P2/2

λ− 1

+1/4 − m2/4

(λ+ 1)2
+ 1/4 − m2/4

(λ− 1)2
− P2

}
φn,m(λ) = 0, (12)
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Let us now return to Eq. (7b), i.e.

M ′′
n,m(μ)− 2μ

1 − μ2 M ′
n,m(μ)+

[−A + 2R2μ

1 − μ2 + P2μ2

1 − μ2 − m2

(1 − μ2)2

]
Mn,m(μ) = 0, (13a)

where

Mn,m(μ) = ψn,m(μ)√
1 − μ2

, (13b)

Decomposition of fractions brings the latter into the form

d2ψn,m(μ)

dμ2 +
{

1/4 + (−A − 2R2)/2 + P2/2 − m2/4

1 + μ
+ 1/4 + (−A + 2R2)/2 + P2/2 − m2/4

1 − μ

+1/4 − m2/4

(1 + μ)2
+ 1/4 − m2/4

(1 − μ)2
− P2

}
ψn,m(μ) = 0 (14)

which again cannot be solved by an exact analytical method.

3 Ansatz Solution

3.1 The Ansatz Solution for φn,m(λ)

Eq. (12) fails to admit exact analytical solutions. Therefore, we follow the ansatz approach with the starting
square

φn,m(λ) = hn(λ) exp(ym(λ)), (15)

where

hn(λ) =
⎧⎨
⎩

1, i f n = 0,
n∏

i=1
(λ− αn

i ), if n ≥ 1, (16)

and

ym(λ) = αLn(λ− 1)+ βLn(λ+ 1)+ δλ, (17)

By substitution of hn(λ) and ym(λ) into Eq. (15), we find

φ′′
n,m(λ) =

[
y′′

m(λ)+ y′
m

2(λ)+ h′′
n(λ)+ 2y′

m(λ)h
′
n(λ)

hn(λ)

]
φn,m(λ), (18)

Here, we consider the case n = 0. From Eqs. (16)– (18) we find

φ′′
0,m(λ)+

[
αβ − 2βδ

λ+ 1
+ −αβ − 2αδ

λ− 1
+ β − β2

(λ+ 1)2
+ α − α2

(λ− 1)2
− δ2

]
φ0,m(λ) = 0, (19)

By comparing the corresponding powers of Eqs. (12) and (19), we have

αβ − 2βδ = 1

4
+ (2R1 − A)/2 − m2/4 + P2/2, (20a)

−αβ − 2αδ = −1/4 + (A + 2R1)/2 + m2/4 − P2/2, (20b)

β − β2 = 1/4 − m2/4, (20c)

α − α2 = 1/4 − m2/4, (20d)

−P2 = −δ2, (20e)
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Eqs. (20c), (20d) and (20e) give

α = β = 1 + m

2
, (21a)

δ = −
√

1

2
(−R2 E0,m + RZa Zb), (21b)

From Eqs. (17), (20a) and (20b), we simply have

ym(λ) =
(

1 + m

2

)
Ln(λ− 1)+

(
1 + m

2

)
Ln(λ+ 1)− λ

√
1

2
(−R2 E0,m + RZa Zb), (22a)

φ0,m(λ) = (λ2 − 1)

(
1+m

2

)
exp

(
−λ
√

1

2
(−R2 E0,m + RZa Zb)

)
(22b)

and

�0,m(λ) = Nλ,0,m(λ
2 − 1)

m
2 exp

(
−λ
√

1

2
(−R2 E0,m + RZa Zb)

)
. (23)

3.2 The Ansatz Solution ψn,m(μ)

In this case, we introduce the ansatz

ψn,m(μ) = hn(μ) exp(ym(μ)), (24)

where

hn(μ) =
⎧⎨
⎩

1, if n = 0,
n∏

i=1
(μ− α̃n

i ), if n ≥ 1, (25)

and

ym(μ) = α̃Ln(1 − μ)+ β̃Ln(1 + μ)+ δ̃μ, (26)

Substitution of the proposed ansatz gives

ψ ′′
n,m(μ) =

[
y′′

m(μ)+ y′
m

2(μ)+ h′′
n(μ)+ 2y′

m(μ)h
′
n(μ)

hn(μ)

]
ψn,m(μ), (27)

For n = 0 we have

ψ ′′
0,m(μ)+

[
−2β̃δ̃ + α̃β̃

1 + μ
+ 2α̃δ̃ + α̃β̃

1 − μ
+ β̃ − β̃2

(1 + μ)2
+ α̃ − α̃2

(1 − μ)2
− δ̃2

]
ψ0,m(μ) = 0, (28)

By comparing Eqs. (14) and (28), we find

α̃β̃ − 2β̃δ̃ = 1/4 + (−A − 2R2)/2 + P2/2 − m2/4, (29a)

α̃β̃ + 2α̃δ̃ = 1/4 + (−A + 2R2)/2 + P2/2 − m2/4, (29b)

β̃ − β̃2 = 1/4 − m2/4, (29c)

α̃ − α̃2 = 1/4 − m2/4, (29d)

δ̃2 = P2. (29e)



276 H. Hassanabadi et al.

From Eqs. (29c), (29d) and (29e) we obtain

α̃ = β̃ = 1 + m

2
, (30a)

δ̃ = −
√

1

2
(−R2 E0,m + RZa Zb). (30b)

Then, we have

ym(μ) =
(

1 + m

2

)
Ln(1 − μ)+

(
1 + m

2

)
Ln(1 + μ)+

(
−
√

1

2
(−R2 E0,m + RZa Zb)

)
μ, (31a)

ψ0,m(μ) = (1 − μ2)

(
1+m

2

)
exp

(
−μ

√
1

2
(−R2 E0,m + RZa Zb)

)
(31b)

From Eqs. (13b) and (31b), we have

M0,m(μ) = Nμ,0,m(1 − μ2)
m
2 exp

(
−μ

√
1

2
(−R2 E0,m + RZa Zb)

)
, (32)

By solving Eqs. (20a)–(20e) and (29a)–(29e) and by considering the lowest amount of energy as the ground
state energy, we obtain the energy eigenvalue as

E0,m = −1

2

{
RZ2

a − 2RZa Zb + RZ2
b − 2Za Zb − 4Za Zbm − 2Za Zbm2

R(1 + m)2

}
. (33)

By combining Eqs. (23) and (32), the ground state wave-function is written as

�0,m(λ, μ, ϕ) = N0,m�0,m(λ)M0,m(μ)e
imϕ, (34a)

�0,m(λ, μ, ϕ) = N0,m(λ
2 − 1)(

m
2 )(1 − μ2)(

m
2 ) exp

(
−λ
√

1

2
(−R2 E0,m + RZa Zb)

−μ
√

1

2
(−R2 E0,m + RZa Zb)

)
eimϕ. (34b)

To ensue capability of the approach, we include the first excited state solution in the next subsection.

3.3 The Excited States

For n = 1, according to Eq. (16), we choose

h1(λ) = (λ− α
(1)
1 ) (35)

and ym(λ) from Eqs. (16)–(18), we find

φ′′
1,m(λ)+

[
αβ − 2βδ

λ+ 1
+ −αβ − 2αδ

λ− 1
+ β − β2

(λ+ 1)2
+ α − α2

(λ− 1)2
− δ2 + − 2α

λ−1 − 2β
λ+1 − 2δ

λ− α
(1)
1

]
φ1,m(λ) = 0,

(36)

By comparing the above equation and Eq. (7), we find

1/4 + (2R1 − A)/2 − m2/4 + P2/2

λ+ 1
+ −1/4 + (A + 2R1)/2 + m2/4 − P2/2

λ− 1
+ 1/4 − m2/4

(λ+ 1)2

+1/4 − m2/4

(λ− 1)2
− P2 = αβ − 2βδ

λ+ 1
+ −αβ − 2αδ

λ− 1
+ β − β2

(λ+ 1)2
+ α − α2

(λ− 1)2
− δ2 + − 2α

λ−1 − 2β
λ+1 − 2δ

λ− α
(1)
1

(37)
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By equating the corresponding powers on both sides, we have

− (2R1 − A)

2
− P2

2
− α

(1)
1

4
− (2R1 − A)α(1)1

2
+ m2α

(1)
1

4
− P2α

(1)
1

2

= −β2 − αβ + 2βδ − αα
(1)
1 β + 2βδα(1)1 − β,

(2R1 + A)

2
− P2

2
+ α

(1)
1

4
− (2R1 + A)α(1)1

2
− m2α

(1)
1

4
+ P2α

(1)
1

2

= −α2 − αβ − 2αδ + αα
(1)
1 β + 2αδα(1)1 − α,

−1

4
+ m2

4
− α

(1)
1

4
+ m2α

(1)
1

4
= −β + β2 − βα

(1)
1 + β2α

(1)
1 ,

1

4
− m2

4
− α

(1)
1

4
+ m2α

(1)
1

4
= α − α2 − αα

(1)
1 + α2α

(1)
1 ,

2R1 + P2α
(1)
1 = δ2α

(1)
1 − 2αδ − 2βδ − 2δ,

−P2 = −δ2. (38)

By solving the above equations one can find A, α, β, δ, α(1)1 and P , and thereby the energy of the system. We

can repeat the same process for higher states by choosing hn(λ) = (λ− α
(n)
1 ) · · · (λ− α

(n)
n ) =

n∏
i=1

(λ− α
(n)
i ).

Let us now return to Eq. (7b) for the first node. A decomposition of fractions gives

d2ψ1,m(μ)

dμ2 +
{

1/4 + (−A − 2R2)/2 + P2/2 − m2/4

1 + μ
+ 1/4 + (−A + 2R2)/2 + P2/2 − m2/4

1 − μ

+1/4 − m2/4

(1 + μ)2
+ 1/4 − m2/4

(1 − μ)2
− P2

}
ψ1,m(μ) = 0, (39)

By inserting h1(μ) = (μ− α̃
(1)
1 ), Eqs. (25)–(27) give

ψ ′′
1,m(μ)+

⎡
⎣−2β̃δ̃ + α̃β̃

1 + μ
+ 2α̃δ̃ + α̃β̃

1 − μ
+ β̃ − β̃2

(1 + μ)2
+ α̃ − α̃2

(1 − μ)2
− δ̃2 +

2α̃
1−μ − 2β̃

1+μ − 2δ̃

μ− α̃
(1)
1

⎤
⎦ψ1,m(μ) = 0,

(40)

or

1/4 + (−A − 2R2)/2 + P2/2 − m2/4

1 + μ
+ 1/4 + (−A + 2R2)/2 + P2/2 − m2/4

1 − μ
+ 1/4 − m2/4

(1 + μ)2

+1/4 − m2/4

(1 − μ)2
− P2 = −2β̃δ̃ + α̃β̃

1 + μ
+ 2α̃δ̃ + α̃β̃

1 − μ
+ β̃ − β̃2

(1 + μ)2
+ α̃ − α̃2

(1 − μ)2
− δ̃2 +

2α̃
1−μ − 2β̃

1+μ − 2δ̃

μ− α̃
(1)
1

,

(41)
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Fig. 2 Energy vs. R for Za = 2, Zb = 1

by comparing the corresponding powers, we find

(A + 2R2)

2
− P2

2
− α̃

(1)
1

4
+ (A + 2R2)α̃

(1)
1

2
− P2α̃

(1)
1

2
+ m2α̃

(1)
1

4

= −β̃2 + 2β̃δ̃ − α̃β̃ + 2β̃δ̃α̃(1)1 − α̃β̃α̃
(1)
1 − β̃,

(−A + 2R2)

2
+ P2

2
− α̃

(1)
1

4
+ (A − 2R2)α̃

(1)
1

2
− P2α̃

(1)
1

2
+ m2α̃

(1)
1

4

= α̃2 + 2α̃δ̃ + α̃β̃ − 2α̃δ̃α̃(1)1 − α̃β̃α̃
(1)
1 + α̃,

−1

4
+ m2

4
− α̃

(1)
1

4
+ m2α̃

(1)
1

4
= −β̃ + β̃2 − β̃α̃

(1)
1 + β̃2α̃

(1)
1 ,

1

4
− m2

4
− α̃

(1)
1

4
+ m2α̃

(1)
1

4
= α̃ − α̃2 − α̃α̃

(1)
1 + α̃2α̃

(1)
1 ,

−2R2 + P2α̃
(1)
1 = δ̃2α̃

(1)
1 − 2β̃δ̃ − 2α̃δ̃ − 2δ̃,

−P2 = −δ̃2. (42)

Having found A, α̃, β̃, δ̃, α̃(1)1 and P from the above equations, the energy of the system can be obtained

from Eq. (8). We can repeat the story for higher states by substituting hn(μ) = (μ − α̃
(n)
1 ) · · · (μ − α̃

(n)
n ) =

n∏
i=1

(μ− α̃
(n)
i ). We have included some numerical results and illustrative figures to provide a better view to the

results. In particular, Fig. 2 depicts the energy behavior vs. the internuclear separation distance R for different
values m. We see that the energy decreases with increasing R. In Figs. 3–4 is plotted energy variation vs. m
and Zb. The eigenfunction is plotted in Fig. 5 for the individual parts, and the overall wavefunction. In Fig.
2, E0,m is plotted vs. R for some values m. It reveals that as R increases the energy decreases and tends to a
constants value. Figure 3 represents the variation of ground state energy vs. m for different values of R. We
see that the saturation occurs for m = 4. Figure 4 depicts the energy behavior vs. Zb for different values of Za
and it well shows that how the energy increases to a limit and then decreases for increasing Zb. In Fig. 5 we
can see the wavefunctions for n = 0 in the interval 1 ≤ λ ≤ ∞,−1 ≤ μ ≤ 1. The left and right figures in the
upper panel of Fig. 5 respectively represent �0,5(λ) vs. λ and M0,5(μ) vs. μ. There, the lower panel depicts
the total wavefunction �0,5(λ, μ).
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Fig. 3 Energy vs. m for Za = 2, Zb = 1

Fig. 4 Energy vs. Zb for R = 5 f m,m = 1 f m−1

4 Conclusion

Bearing in mind the wide application of the two-center problem in various branches of physics including
nuclear and solid state physics, we considered the problem under Coulomb interactions. By proposing an
elegant ansatz and several transformations, we obtained the ground state eigenfunction of the system as well
as the corresponding energy eigenvalue. The higher states can be directly obtained via the introduced ansatz
function. Our results, after proper fits and modifications done, can be used in nuclear and molecular physics,
and to be more precise, in the study of equilibrium separation between the nuclei, decay properties of bound
state wavefunction, different cross sections, nuclear fusion rates, interference patterns, charge transfer, excita-
tion, ionization and electron-positron pair production that accompany slow collisions of heavy ions, systematic
analysis of the quantum electrodynamics (QED) corrections to the energy levels of heavy quasi-molecules,
static multipole polarizabilities of the interacting atoms, description of the interacting nuclei as well as that of



280 H. Hassanabadi et al.

Fig. 5 a �0,5(λ) vs. λ for Za = 2, Zb = 1, R = 5 f m. b M0,5(μ) vs. μ for Za = 2, Zb = 1, R = 5 f m. c Ground state
wavefunction, �0,5(λ, μ) vs. λ and μ for Za = 2, Zb = 1, R = 5 f m

the two-body channels, form factors, Slater orbitals, ejected electrons in the double ionization, spectroscopy
of diatomic molecules, dinuclear configurations, quasi-molecular resonance states, etc.
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