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Abstract The Klein–Gordon equation under equal scalar and vector potentials is solved for the Tietz potential
in D-dimensions by using supersymmetric quantum mechanics. The spectrum of the system is numerically
calculated and the oscillator strength is determined and discussed in terms of parameters of the system.

1 Introduction

The solution of nonrelativistic and relativistic wave equations is very important for many physical systems.
Particularly, it has been of great interest to solve the Klein–Gordon equation (KGE) which describes relativistic
spin-zero bosons. Different analytical techniques have been assumed by different authors to obtain the exact or
approximate solutions of the KGE with various interactions. Frequently used analytical methodologies include
supersymmetric quantum mechanics [1–3], asymptotic iteration method (AIM) [4] and the Nikiforov–Uvarov
(NU) technique [5]. In addition to all analytical approaches, there exist numerical techniques as well with each
one having its own failures and advantages. The latter, despite their notable advantage of reliability, are often
time-consuming and unobvious in comparison with their analytical counterparts. In using the former class,
however, the approximate schemes are often inevitable to obtain a general solution. In particular, the KGE
has been solved for various potentials including the Hulthén [6], Rosen–Morse [7], Poschl–Teller ([8,9] and
references therein), etc. In this work, we have solved the radial KGE for the Tietz potential. The outline of
our work is as follows. In Sect. 2, we first review the KGE under the Tietz potential. We next apply a physical
approximation to obtain the radial equation and thereby calculate the eigen functions and the eigen values
of the system via SUSYQM. In Sect. 3 we obtain the corresponding oscillator strengths of the system. Our
conclusions are given in Sect. 4 and, illustrative figures and some numerical data are included as well.
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Fig. 1 1
r2 and its approximation α2

sinh2(αr)

2 Radial Part of KGE in D-Dimensions

The radial KGE in the presence of vector and scalar potentials in the D-dimensional space is written as [10,11]
[

d2

dr2 + (En,l − V (r))2 − (m + S(r))2 − (D + 2l − 1)(D + 2l − 3)

4r2

]
un,l(r) = 0. (1)

Here, we consider the so-called Tietz potential which is the more general case of Eckhart and Manning-Rosen
potentials written as [12,13]

V (r) = S(r) = V0

(
sinh( r−r0

a )

sinh( r
a )

)2

= S1 coth2(αr)+ S2 coth(αr)+ S3, (2)

where

S1 = V0 sinh2(αr0), S2 = −V0 sinh(2αr0), S3 = V0 cosh2(αr0) and α = 1

a
. (3)

By substituting Eq. (2) in Eq. (1), we have
[

d2

dr2 + E2
n,l − m2 + (−2En,l − 2m)(S1 coth2(αr)+ S2 coth(αr)+ S3)

− (D + 2l − 1)(D + 2l − 3)

4r2

]
un,l(r) = 0. (4)

For the centrifugal term, we make use of the approximation [14,15]

1

r2 ∼ α2

sinh2(αr)
, (5)

which is a quite logical alternative for α < 0.1 (See Fig. 1). From Eq. (5), Eq. (4) is written as
[

d2

dr2 +
(

−2S1(En,l + m)− α2(D + 2l − 1)(D + 2l − 3)

4

)
csc h2(αr)− 2S2(En,l + m) coth(αr)

+ (
E2

n,l − m2 − 2(En,l + m)(S1 + S3)
)]

un,l(r) = 0, (6)
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or

− d2un,l(r)

dr2 + Veff(r)un,l(r) = Ẽn,lun,l(r), (7)

where

Veff(r) = V1 csc h2(αr)+ V2 coth(αr), (8)

Ẽn,l = E2
n,l − m2 − 2(En,l + m)(S1 + S3), (9)

and

V1 = 2S1(En,l + m)+ α2(D + 2l − 1)(D + 2l − 3)

4
, (10-a)

V2 = 2S2(En,l + m). (10-b)

Bearing in mind Eq. (A-1), we search for the Riccati equation

φ2 − φ′ = Veff − Ẽ0,l , (11)

which is

φ(r) = A + B coth(αr). (12)

Substituting Eq. (12) into Eq. (11) and comparing equal powers we find

2B A = V2, (13-a)

B2 + αB = V1, (13-b)

A2 + B2 = −Ẽ0,l , (13-c)

or equivalently

A = V2

2B
, (14-a)

B = 1

2

[
−α ±

√
α2 + 4V1

]
, (14-b)

Ẽ0,l = −
(

V 2
2

4B2 + B2

)
. (14-c)

Therefore, our partner potentials are

Veff+ (r) = φ2 + dφ

dr
= csc h2(αr)[B2 − αB] + B2 + V 2

2

4B2 + V2 coth(αr), (15-a)

Veff − (r) = φ2 − dφ

dr
= csc h2(αr)[B2 + αB] + B2 + V 2

2

4B2 + V2 coth(αr), (15-b)

which are shape invariant via a mapping of the for B → B − α. Thus, from Eq. (A-2),

R(an) =
(

a2
n−1 + V 2

2

4a2
n−1

)
−

(
a2

n + V 2
2

4a2
n

)
,

Ẽ−
n,l =

n∑
k=1

R(ak) =
(

a2
0 + V 2

2

4a2
0

)
−

(
a2

n + V 2
2

4a2
n

)
, (16)
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where n = 0, 1, 2, . . . and

an = a0 − nα, a0 = B. (17)

From Eqs. (14-c) and (16) the eigen values are

Ẽn,l = Ẽ−
n,l + Ẽ0,l = −

(
(B − nα)2 + V 2

2

4(B − nα)2

)
. (18)

Finally, from Eq. (9) we have

E2
n,l − m2 − 2(En,l + m)(S1 + S3) = −

(
(B − nα)2 + V 2

2

4(B − nα)2

)
, (19)

which determines the spectrum of the system. In order to extract the wavefunction of the system we start from
[

d2

dr2 +
(

−2S1(En,l + m)− α2(D + 2l − 1)(D + 2l − 3)

4

)
csc h2(αr)− 2S2(En,l + m) coth(αr)

+ (
E2

n,l − m2 − 2(En,l + m)(S1 + S3)
)]

un,l(r) = 0, (20)

which we write as[
z2 d2un,l(z)

dz2 + z
dun,l(z)

dz
+

(
− V ′

1

α2 + V ′
2

4α2

)
1

1 − z
+ V ′

1

α2

1

(1 − z)2
+ V ′

2

4α2

z

1 − z
+ V ′

3

4α2

]
un,l(z) = 0.

(21)

where

V ′
1 = −V1, V ′

2 = −V2, V ′
3 = Ẽn,l , z = exp(−2αr). (22)

Now, we analyze the asymptotic behavior of Eq. (21) [16]. When r −→ 0(z −→ 1) , we have a solution
un,l(z) = (1 − z)λ for Eq. (21), where the parameter λ is given by

λ = l ′ + 1, (23-a)

l ′ = 1

2

⎛
⎝−1 +

√
1 − 4V ′

1

α2

⎞
⎠ . (23-b)

In the other limit, i.e. r −→ ∞(z −→ 0) , we get the solution un,l(z) = zη with

η =
√

− V ′
2 + V ′

3

4α2 , ξ =
√

V ′
2 − V ′

3

4α2 . (24)

Applying the transformation un,l(z) = zη(1 − z)λ fn,l(z) , Eq. (21) reduces to

z(1 − z)
d2 fn,l(z)

dz2 + [1 + 2η − (1 + 2λ+ 2η)z]d fn,l(z)

dz
−

(
2ηλ+ η2 + λ2 + V ′

3 − V ′
2

4α2

)
fn,l(z) = 0.

(25)

The latter is just a hypergeometric equation with the solution

fn,l(z) =2 F1(a, b; 1 + 2η; z), (26)

where the parameters a and b are

a = λ+ η + ξ, (27-a)

b = λ+ η − ξ. (27-b)
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Table 1 En,l for some values of n, l for α = 0.1,m = 1, S1 = 1.5, S2 = 3, S3 = 5

|n, l〉 En,l |n, l〉 En,l

|0, 0〉 −0.9988887517 |2, 0〉 −0.9845457758
|0, 1〉 −0.9961804418 |2, 1〉 −0.9798217698
|0, 2〉 −0.9916785742 |2, 2〉 −0.9721359550
|0, 3〉 −0.9854050687 |2, 3〉 −0.9622605359
|0, 4〉 −0.9773569553 |2, 4〉 −0.9504218067
|0, 5〉 −0.9675271518 |2, 5〉 −0.9366920572
|1, 0〉 −0.9940306855 |3, 0〉 −0.9703029262
|1, 1〉 −0.9899888641 |3, 1〉 −0.9652218988
|1, 2〉 −0.9836986243 |3, 2〉 −0.9565294616
|1, 3〉 −0.9755209929 |3, 3〉 −0.9452221542
|1, 4〉 −0.9655192492 |3, 4〉 −0.9317168126
|1, 5〉 −0.9537051313 |3, 5〉 −0.9161810201

Fig. 2 En,l versus D for some values of n, l, α = 0.1,m = 1, S1 = 1.5, S2 = 3, S3 = 5

When either a or b is a negative integer −n , the hypergeometric function fn,l(z) can be reduced to a
polynomial of degree n. Therefore

un,l(r) = Nn,l exp(−2αηr)(1 − exp(−2αr))l
′+1

2 F1(−n, n + 2(l ′ + 1)+ 2η; 1 + 2η; exp(−2αr)), (28)

where

Nn,l = �(n + 1 + 2η)

n!�(1 + 2η)
. (29)

In Table 1, we have reported some numerical results for some values of n, l in the case of D = 3. In Fig. 2 we
have presented En,l versus D for some values of n, l. The behavior of En,l versus S1, S2, S3 and α for some
values of n, l is shown in Figs. 3, 4, 5, and 6, respectively.

3 Oscillator Strengths

Let us now use the results to calculate the so-called oscillator strength. We know that the absorption of light
yields a transition from a quantum state to another one. The transition probabilities play a significant role in
many physical systems from stellar to subatomic ones [17]. In particular, the oscillator strength gives additional
information on the fine structure and selection rules of the optical absorption [18]. In transition from a lower
stateψi to an upper one,ψ j , the equivalent length and the velocity forms for the absorption oscillator strength
is
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Fig. 3 En,l versus S1 for some values of n, l, α = 0.1,m = 1, D = 3, S2 = 3, S3 = 5

Fig. 4 En,l versus S2 for some values of n, l, α = 0.1,m = 1, S1 = 1.5, D = 3, S3 = 5

f l
i, j = 2m(E j − Ei )

3h̄2 |〈ψ j |r |ψi 〉|2, (30-a)

f vi, j = 2

3m(E j − Ei )
|〈ψ j |p|ψi 〉|2. (30-b)

In Figs. 7, 8, and 9, we have plotted the variation of the length and velocity oscillator strengths versus
S1, S2 and S3 , respectively.

4 Conclusion

The high number of relativistic spin-zero systems in various physical sciences motivated us to study the KGE.
For the sake of generality, we considered the problem for arbitrary dimension. Our choice of the interaction
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Fig. 5 En,l versus S3 for some values of n, l, α = 0.1,m = 1, S1 = 1.5, S2 = 3, D = 3

Fig. 6 En,l versus α for some values of n, l, D = 3,m = 1, S1 = 1.5, S2 = 3, S3 = 5

Fig. 7 Length and velocity oscillator strength versus S1 f or,m = 1, α = 0.1, S2 = 3, S3 = 5
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Fig. 8 Length and velocity oscillator strength versus S2 f or,m = 1, α = 0.1, S1 = 1.5, S3 = 5

Fig. 9 Length and velocity oscillator strength versus S3 f or,m = 1, α = 0.1, S1 = 1.5, S2 = 3

was the Tietz potential. The latter is the more general case of Eckhart and Manning-Rosen potentials that yield
notable phenomenological consequences. To obtain useful results, the higher states (both eigen function and
eigen energies) have to be calculated. Therefore, we first applied a Pekeris-type approximation to be able to
obtain the arbitrary-state solution. For the calculations, instead numerical programming, we used the analytical
technique of supersymmetry quantum mechanics and thereby obtained the general solutions. We calculated
the oscillator strength that required the calculation higher states. The calculation enables us to determine the
transition rates for absorption, spontaneous and stimulated emission, lifetimes of electronic levels, concen-
tration of impurities, static polarizabilities and consequently in construction or checking of theoretical and
phenomenological models. The energy shows a degenerate behavior when l increases to l +1 and D reduces to
D −2, i.e. E D

n,l = E D−2
n,l+1. In addition, the particle is less bound when l increases. Our last figures clearly show

that the length oscillator strength decreases for increasing potential parameters S1, S2 and S3 (the behavior is
quite reverse for the velocity oscillator strength).

Appendix A

Supersymmetry quantum mechanics: within this appendix, a through introduction to SUSY quantum mechan-
ics is included. These few lines are form [1,3]. Our first goal in SUSYQM mechanics is finding solution of
the Riccati equation

V∓ = φ2 ∓ φ′, (A-1)

with V being the potential of Schrödinger equation. If

V+(a0, x) = V−(a1, x)+ R(a1), (A-2)

where a1 is a new set of parameters uniquely determined from the old set a0 via the mapping F : a0 	→
a1 = F(a0) and the residual term R(a1) does not include x , the partner potentials are shape invariant and the
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necessary information of the system is obtained via [1,3]

En =
n∑

s=1

R(as), (A-3)

φ−
n (a0, x) =

(n−1)∏
s=0

(
A†(as)

(En − Es)0.5

)
φ−

0 (an, x), (A-4)

φ−
0 (an, x) = C exp

⎛
⎝−

x∫
0

dzφ(an, z)

⎞
⎠ , (A-5)

A†
s = − ∂

∂x
+ φ(as, z). (A-6)
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