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Abstract We combine halo/cluster effective field theory (H/CEFT) and the Gamow shell model (GSM) to
describe the 0+ ground state of 6He as a three-body halo system. We use two-body interactions for the neu-
tron-alpha particle and two-neutron pairs obtained from H/CEFT at leading order, with parameters determined
from scattering in the p3/2 and s0 channels, respectively. The three-body dynamics of the system is solved
using the GSM formalism, where the continuum states are incorporated in the shell model valence space. We
find that in the absence of three-body forces the system collapses, since the binding energy of the ground state
diverges as cutoffs are increased. We show that addition at leading order of a three-body force with a single
parameter is sufficient for proper renormalization and to fix the binding energy to its experimental value.

1 Introduction

Nuclei located far away from the valley of β-stability display peculiar features that do not occur for well bound
nuclei. The strong coupling to the continuum manifests itself in the existence of halo configurations, where
some nucleons orbit far away from a core of more tightly bound nucleons, and of Borromean systems, where
removal of one nucleon is accompanied by at least one more nucleon. The neutron-rich Helium isotopes 6He
and 8He offer two examples of such nuclei: both are Borromean halos that have no bound excited states. They
also exhibit the “binding-energy anomaly”, i.e., higher one- and two-neutron emission thresholds in 8He than
in 6He.

Halo configurations are characterized by a large nuclear radius compared to the size of the tightly bound
core or, equivalently, by a small nucleon separation energy compared to the core binding energy. The physics of
halo nuclei is a perfect arena for the application of effective field theory (EFT). EFTs provide a powerful frame-
work to exploit separation of scales in physical systems in order to perform systematic, model-independent
calculations. If, for example, the relative momentum k of two particles is much smaller than the inverse range
of their interaction, 1/R, using contact interactions observables can be expanded in powers of k R [1].
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The application of EFT to halo and cluster systems, halo/cluster EFT (H/CEFT), was first exemplified in
low-energy neutron-alpha particle (nα) scattering [2,3]. Even though there is no bound state, the nα T matrix
has a resonance pole at an energy E5gs � 0.8 MeV much smaller than the E4ex � 20 MeV it takes to excite
the alpha particle. The physics in the p wave is closely related to halo dynamics, because the ground state
in 5He can in a first approximation be described as an nα system in the p3/2-wave configuration, which has
the qualitative characteristics of a two-body halo nucleus. H/CEFT captures these features at leading order
(LO), and provides at next-to-leading order a good description of nα scattering [2,3]. H/CEFT has also been
successfully applied to other dilute two-body systems such as low-energy αα [4] and proton-7Li [5] scattering,
radiative neutron capture on 7Li [6,7], and the electric properties of 11Be [8].

The natural follow-up to Refs. [2,3] is to consider the next halo system within the Helium isotope family,
that is, 6He. This is the aim of the present paper. Since the 6He ground state is bound by only E6gs � −1.0 MeV,
it is appropriate to assume that it can be described as the three-body system n+n+α. The nα interaction is that
studied in Refs. [2,3], while the nn force is a contact interaction determined by the low-energy nn scattering
parameters [1,9,10]. Although certain aspects of 6He have already been studied with greater resolution as a
six-body system, as stressed in Ref. [11] its long-range properties are much more efficiently captured as a
three-body system. Moreover, existing ab initio calculations are based on potentials that produce amplitudes
which do not satisfy renormalization-group (RG) invariance: the ultraviolet cutoff, originally introduced as an
arbitrary separation between physics kept explicit in the theory and physics treated as short ranged, becomes
a fit parameter.

It is well understood that the physics of three-body systems can be much richer than the physics of its
two-body subsystems. A famous example is the Efimov effect which occurs for a system of non-relativistic
particles (bosons or three-or-more-component fermions) with short-range interactions: if the s-wave scattering
lengths of its subsystems are tuned to infinity (unitarity limit), there can be an infinite sequence of three-body
bound states that has an accumulation point at the three-body threshold [12]. A closely related phenomenon
is the Thomas effect [13], where a finite-range two-body potential that is only attractive enough to support
a single two-body bound state can produce three-body bound states with arbitrarily large binding energies
as the range goes to zero. In EFT at a given order, the Thomas effect is a consequence of an inappropriate
omission of a three-body force. Since range effects are small at low energies, they are not present at LO and
the Thomas effect appears as the collapse of the three-body ground state when the cutoff is increased. This
unacceptable cutoff dependence arises from the large-momentum behavior of the LO two-body interaction.
A three-body force is then necessary and sufficient for RG invariance at LO [14–16], allowing three-body
energies to be independent of the ultraviolet regulator. The parameter associated with this force provides a
scale for the remaining discrete scale invariance, which reflects itself in the Efimov spectrum. The structure of
22C and other possible two-neutron halos with s-wave neutron-core interactions was discussed using H/CEFT
in Refs. [17,18].

The situation with p-wave two-body interactions is less clear. There is debate over whether the Efimov
effect can be realized in this case—see Refs. [19,20] and references therein. The main issue to be addressed
below is whether a three-body force is needed at LO so that the EFT description of 6He is properly renor-
malized. We emphasize that from an EFT perspective there is no question about the existence of few-body
forces: since they are not forbidden by any symmetry they arise at some level. In few-body models of 6He
and other Borromean nuclei, it is typically found that a description via two-body forces adjusted to in-vacuum
two-body data has (sometimes severe) phenomenological shortcomings, which are ameliorated by the inclu-
sion of three-body forces or, equivalently, modifications of two-body forces due to the presence of a third body
(see, for example, Refs. [21–23]). In EFT, the phenomenological importance (or lack thereof) of three-body
forces is a consequence of the order they appear. The issue here is whether they appear already at LO in 6He.
The tool we use to assess the presence of three-body forces at LO is, as always, RG invariance. However, the
fact that three-body forces have been shown to be needed for s-wave two-body interactions near the unitary
limit does not imply that they are LO when the two-body interactions have different asymptotic behavior, for
example when they are p-wave. Contrary to a phenomenological assessment, to which it is complementary, an
RG analysis concerns the internal consistency of the theory, and does not depend on the exact values of 6He
observables.

A microscopic description of weakly bound/unbound nuclei requires taking into account the interplay
between bound states, scattering states, and resonances. In other words, these systems have to be described as
open quantum systems (OQSs), in contradistinction with well-bound nuclei, which are nearly isolated from
the environment of scattering states and decay channels (“closed quantum systems”). A recent realization of
the shell model for OQSs is the so-called Gamow shell model (GSM) [24–30]. The GSM is based on the
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Berggren basis [31], which consists of bound, resonant and scattering single-particle wave functions gener-
ated by a finite-depth potential, and it provides the mathematical foundation for unifying bound and resonant
states—the poles of the T matrix—in the context of the Schrödinger equation. The GSM has been used [26–30]
to study the properties of the Helium isotope family using a phenomenological nα potential and a residual
two-neutron interaction adjusted to few-body energies.

In this paper we use the formalism of the GSM to solve the Schrödinger equation describing the dynamics
of 6He with the contact interactions of H/CEFT, including a possible three-body force. Because the two-body
interaction here is energy dependent, some care must be taken with the Berggren relation. In this first application
of the GSM to H/CEFT, we focus on the binding energy of the 0+ ground state.

The paper is organized as follows. In Sect. 2 we review the potentials derived with EFT and used for the
study of 6He. We introduce the GSM formalism in Sect. 3, and in Sect. 4 we show results for the ground-state
energy of 6He. We shall see that without a three-body force, the system is not properly renormalized at LO1.
We conclude and summarize in Sect. 5.

2 Two-Body Potentials

Being weakly bound compared to the first excited state of the alpha particle, the Jπ = 0+ ground state in 6He
can be described as a three-body system n + n + α. The neutrons in the halo interact with the alpha particle
via a two-body interaction Vnα and with each other via a potential Vnn . We denote the neutron (core) mass by
mn (Mc) and the neutron-core reduced mass by μ = mn Mc/(mn + Mc).

The potential between the α core and a neutron is constructed with EFT as described in Refs. [2,3]. The
small relative momentum means that neutron and alpha particle see each other, in a first approximation, as
elementary objects. At LO there is only one contribution, which is in the p3/2 channel, and the “dimeron”
potential projected onto this channel can be written as

Vnα(k′, k, k0) = k′k
A + Bk2

0

, (1)

where k (k′) is the incoming (outgoing) relative momentum and k0 = √
2μEnα in terms of the total energy

Enα of the nα subsystem. A and B are parameters. Since this interaction is singular, a regularization procedure
is introduced in form of an ultraviolet cutoff Λnα . The cutoff separates the short-distance physics, which is
not included explicitly in the dynamics at low energies, and the long-distance physics, which is. This is here
achieved by introducing a smooth regulator function

F(x) = exp(−x), (2)

whose role is to suppress the high-energy contributions of the potential. We thus replace the potential (1) by

Vnα(k′, k, k0;Λnα) = k′k
A(Λnα) + B(Λnα)k2

0

F
(
k′2/Λ2

nα

)
F

(
k2/Λ2

nα

)
. (3)

In order for observables to be RG invariant, i.e., independent of the arbitrary cutoff, the parameters A(Λnα)
and B(Λnα) must depend on Λnα .

More precisely, at LO, A(Λnα) and B(Λnα) are fixed such that the phase shifts at low energies obtained
with the potential (3) reproduce the effective range expansion (ERE) in the p3/2 channel truncated at the level
of the effective “range”:

k3 cot δnα(k) = − 1

anα

+ rnα

2
k2, (4)

with the scattering volume anα = −62.951 fm3 and the effective momentum rnα = −0.8819fm−1 [34]. The
position kres of the p3/2 resonance is obtained from

cot δnα(kres) = i, (5)

1 Our first results were presented in Ref. [32]. Similar results have been obtained independently by Ji et al. [33].
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so at this order kres = (0.1748 − 0.0313i) fm−1. By solving the Lippman–Schwinger equation with the
potential (3), one obtains

A(Λnα) = 2μ

[
1

anα

− Λ3
nα

4
√

2π

]
, (6)

B(Λnα) = −μ

[

rnα + 4

anαΛ2
nα

+
√

2

π
Λnα

]

. (7)

The two neutrons in the halo have sufficiently low relative momentum that meson exchange can be con-
sidered a short-range force. The neutron-neutron potential is thus taken from the pionless EFT [1,9,10]. At
LO, the potential is entirely in the 1s0 channel; in momentum space it is simply a constant C . As before, the
potential requires regularization, for which we continue to use the function F(x), but now in terms of the
relative momentum between the two neutrons and of an nn cutoff Λnn:

Vnn(k
′, k; Λnn) = C(Λnn) F

(
k′2/Λ2

nn

)
F

(
k2/Λ2

nn

)
. (8)

As previously, we fix the coupling constant C(Λnn) with the ERE for nn scattering, but now truncated at the
level of the scattering length,

k cot δnn(k) = − 1

ann
, (9)

with ann = −18.7 fm [35]. Again solving the Lippman–Schwinger equation,

C(Λnn) = 1

mn

[
1

ann
− Λnn√

2π

]−1

. (10)

Note that we do not modify the nn potential in 6He to account for the presence of the α core, as frequently
done [26–29]. This modification is a three-body effect that in EFT is represented by three-body forces, which
are present starting at some order, since they are not forbidden by any symmetry. We want to determine whether
such a force is needed at LO to renormalize the n + n + α system.

3 Schrödinger Equation with the Gamow Shell Model

We now consider the solution of the Schrödinger equation for the n + n + α system with the Gamow Shell
Model. We use coordinates inspired by the Cluster Orbital Shell Model [29,36]: ri is the position of neutron
i = 1, 2 relative to the α core, and pi the corresponding momentum. The Hamiltonian of the n + n +α system
with the two-body interactions Vnα and Vnn is written as

H =
2∑

i=1

[
p 2

i

2μ
+ Vnα(k0i ; Λnα)

]

+ Vnn(Λnn) + p1 · p2

Mc
. (11)

This Hamiltonian is translationally invariant, the recoil term p1 · p2/Mc stemming from the choice of coordi-
nates.

We work within the framework of the Gamow shell model formalism [24–30] to solve the dynamics gener-
ated by the Hamiltonian (11). The three-body equation is solved using a single-particle (sp) basis. The set of sp
states that define the one-body valence space is taken as the set of eigenstates of the LO potential Vnα(k0;Λnα).
They are solutions of the one-body Schrödinger equation

Hsp|Ψ 〉 =
[

p 2

2μ
+ Vnα(k0;Λnα)

]
|Ψ 〉 = Enα|Ψ 〉. (12)

By inserting the completeness relation projected on the p3/2 partial wave,
∫

C
dk k2 |k〉〈k| = 1, (13)
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along a contour C in the fourth quadrant of the complex momentum plane, Eq. (12) can be written as an
equation for the momentum-space wave function Ψ (k) = 〈k|Ψ 〉,

∫

C
dk′k′2 〈k|

[
p2

2μ
+ Vnα(k0; Λnα)

]
|k′〉 Ψ (k′) = Enα Ψ (k). (14)

In this paper the contour C is chosen to be made out of three straight-line segments C1,2,3, C = C1 +C2 +C3,
as indicated in Fig. 1. Segment C1 extends from k0 = 0 to k1 = k1r + ik1i , segment C2 from k1 to k2 = k2r ,
and segment C3 from k2 to k3 = kmax , where kmax ≥ k2r ≥ k1r ≥ 0 ≥ k1i > −k1r are real numbers. Since
the sp set must be finite, the contour integral along C is performed up to a cutoff kmax and discretized with
a quadrature method. In this case, kmax must be chosen large enough such that all low-energy physics below
Λnα is taken into account. Here, we typically choose kmax ∼ 3Λnα . Had we chosen a sharp regulator for
F(x), kmax would have been such that kmax = Λnα since in that case Vnα(k0, Λnα) would have vanished for
momentum above Λnα . In practice, the contour C is discretized using a Gauss–Legendre quadrature using Ni
points for the segment Ci , for a total number Nsh = N1 + N2 + N3 of discretization points.

If k1i = 0, the contour is along the real axis, and the solutions of Eq. (14) consist of bound states and
scattering states. If k1i 	= 0, solutions consist instead of bound states, resonant states located above the contour,
and complex-scattering scattering states along the contour [31]. In order to include the p3/2 resonance, we take
k1r = 0.18 fm−1, k1i = −0.08 fm−1, and k2r = 0.5 fm−1. For each value of Λnα the Schrödinger equation
(14) is solved with the LO potential along the complex contour C. Results for the energy of the resonance are
independent of the choice of the contour as long as it goes below the resonance and as long as the discretization
is precise enough. To illustrate this point, we show in Table 1 the position of the resonance kp3/2 at Λnα = 3.1
fm−1 as a function of Nsh . We start from N1 = 4, N2 = 4, and N3 = 9, that is Nsh = 17, and add one shell
in each part of the contour up to Nsh = 35. We can see that, for this last value of Nsh , convergence to four
significant figures has been reached. The position of the p3/2 resonance as a function of Λnα is shown in Fig. 2.

Fig. 1 Contour C = C1+C2+C3 in the complex-momentum plane considered in the text. The points k0 = 0, k1 = k1r +ik1i , k2 =
k2r , and k3 = kmax delimiting the segments C1,2,3 are indicated. We also show the position kres of a resonance appearing in the
Berggren relation (15)

Table 1 Position of the resonance kp3/2 at Λnα = 3.1fm−1 as a function of Nsh , the total number of discretized points on the
complex contour defined with k1r = 0.18 fm−1, k1i = −0.08 fm−1, k2r = 0.5 fm−1, and kmax = 10.0 fm−1

Nsh Re
(
kp3/2

)
[fm−1] Im

(
kp3/2

)
[fm−1]

17 0.17595 −0.03344
20 0.17615 −0.03354
23 0.17594 −0.03327
26 0.17590 −0.03324
29 0.17589 −0.03322
32 0.17589 −0.03323
35 0.17589 −0.03323
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Fig. 2 Position of the lowest p3/2 nα resonance as a function of the cutoff Λnα . Points at the top (bottom) are the results for
the real (imaginary) momentum of the resonance coming from the numerical solution of the Schrödinger equation described in
the text. The dashed lines are the corresponding momenta obtained from the effective range expansion with empirical values for
the scattering volume and effective momentum

We also show, for comparison, the value kres obtained directly from the ERE. As it can been seen from the
figure, as the cutoff Λnα increases the position of the resonance quickly converges to kres .

Since the 6He ground state is bound, it is equivalent to use for the sp states either a set of shells located along
the real continuum axis, or a complex-continuum set of states along a complex contour C together with the p3/2
resonance. In the three-body calculations presented below we have used shells located along the real energy axis,
that is, we have taken k1i = 0. For instance, for Λnα = 7.1 fm−1, we use k1r = 5.0 fm−1, k2r = 12.0 fm−1,
and kmax = 21.0 fm−1, with N1 = N2 = N3 = 30. We could certainly decrease the number of shells to
reach the same precision in the value of the 6He ground state. We have not studied in detail what the smallest
admissible number of points would be. Indeed, for a system made of three particles this is not of a great
importance, since the diagonalization of the non-symmetric Hamiltonian matrix can be performed rather fast.

From the set of eigenstates of the Schrödinger equation (12) a sp basis is generated. For an energy-inde-
pendent potential, a resonant state |Ψres〉 above, and scattering states along, C (see Fig. 1) satisfy the usual
Berggren relation [31],

|Ψres〉〈Ψ̃res | +
∫

C
dk k2 |Ψ (k)〉〈˜Ψ (k)| = 1, (15)

where the bra 〈Ψ̃ | conjugate to the ket |Ψ 〉 is such that 〈Ψ̃ |r〉 = 〈r |Ψ 〉. However, the potential Vnα(k0;Λnα)
being energy-dependent, the eigenstates of Eq. (14) are not orthogonal and Eq. (15) does not hold. One then
has to consider an extra step to generate a basis. This is achieved, after having discretized the contour C, by
solving the matrix equation

Nsh∑

i=1

|Ψi 〉〈Ψ boc
i | = 1, (16)

where |Ψi 〉 is one of the Nsh discrete sp eigenstates of the potential, Eq. (12), and 〈Ψ boc
i | its bi-orthogonal

complement. By construction,

〈Ψ boc
i |Ψ j 〉 = δi j . (17)

A complication is that for sufficiently large values of the cutoff, Λnα ≥ Λb � 1.8 fm−1, the potential
Vnα(k0; Λnα) supports a bound state |Ψb〉. At Λnα = 1.8 fm−1 the energy of this bound state is Eb =
−20.941 MeV, that is, outside the range of validity of our EFT approach. As a consequence, we do not want
to include it in the valence space. From the practical point of view, we first tried to construct the bi-orthogonal
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basis by including the bound state in the bi-orthogonalization procedure, and then omitting it when constructing
the many-body basis to solve the three-body problem. This procedure turned out to give rather peculiar results
in the sense that the value obtained for the 6He ground state displayed a discontinuous behavior as Λnα varied
from values below to above Λb. We suspect that despite the fact that the bound state is not included in the
basis, it has an indirect effect, for it is present during the phase of construction of the sp basis according to Eq.
(16). One has then to figure out another way to generate the sp shells when a deep bound state is present.

For Λnα ≥ Λb, we generate the sp basis by converting the energy dependence of Vnα(k0; Λnα) into momen-
tum dependence by introducing an energy-independent potential V ′

nα(Λnα) that reproduces the half-on-shell
T matrix [37],

〈k′|V ′
nα(Λnα)|Ψ 〉 = 〈k′|Vnα(k0; Λnα)|Ψ 〉, (18)

where k0 is obtained from the energy of the Hsp eigenstate |Ψ 〉. For each discretized value k′
i along the contour

C, we solve Eq. (18) in order to generate V ′
nα(k′

i , k j ; Λnα) without considering the bound state |Ψb〉. For each
k′

i we have Nsh unknowns, V ′
nα(k′

i , k j ;Λnα) with j = 1, . . . , Nsh , and Nsh − 1 equations,

〈k′
i |V ′

nα(Λnα)|Ψ j 〉 = 〈k′
i |Vnα(k0 j ;Λnα)|Ψ j 〉, j = 1, . . . , Nsh, j 	= b. (19)

In order to solve this linear system we impose the condition

〈k′
i |V ′

nα(Λnα)|kNsh 〉 = 0, (20)

with |kNsh 〉 being the state with the largest momentum on the contour C. This leads to a small error, since
at such high momentum, kNsh ∼ kmax ∼ 3Λnα , the influence of the potential is negligible. Moreover this
error can be made arbitrarily small by increasing kmax . The potential V ′

nα(Λnα) is non-Hermitian and has right

eigenvectors |Ψi 〉 and left eigenvectors 〈Ψ le f t
i |. The right eigenvectors are by construction the eigenvectors of

the original energy-dependent potential Vnα(k0;Λnα), and we now have the following completeness relation:

∑
|Ψi 〉〈Ψ le f t

i | = 1. (21)

For Λnα < Λb, the two previous procedures for constructing the sp basis are completely identical, the left
eigenvectors 〈Ψ le f t

i | of V ′
nα(Λnα) obtained with the second method being equal to the bi-orthogonal comple-

ment states 〈Ψ boc
i | obtained in the first method by solving Eq. (16).

From the sp basis, we construct the antisymmetrized three-body basis states coupled to good total angular
momentum J, |(Ψi , Ψ j )

J
i≤ j 〉, which are eigenstates of the Hamiltonian Hsp

1 + Hsp
2 with eigenvalues Ei + E j :

(
Hsp

1 + Hsp
2

) |(Ψi , Ψ j )
J
i≤ j 〉 = (

Ei + E j
) |(Ψi , Ψ j )

J
i≤ j 〉. (22)

The corresponding bi-orthogonal complement is 〈(Ψ le f t
i , Ψ

le f t
j )J

i≤ j |.
The interaction Vnn(Λnn) is defined in terms of relative coordinates between the two neutrons. Since our

Hamiltonian was written in terms of nα coordinates, a transformation is necessary to express the matrix ele-
ments Vnn(Λnn) in the shell model basis |(Ψi , Ψ j )

J
i≤ j 〉. For this purpose we use an expansion on a set of

harmonic-oscillator (HO) wave functions, as in Ref. [30]. That is, we project Vnn(Λnn) on a HO set |ab〉,
where a and b label sp states of HOs in the nα coordinate, and consider the nn interaction

V osc
nn (Λnn) =

∑

a<b

∑

c<d

|ab〉〈ab|Vnn(Λnn)|cd〉〈cd|, (23)

where the restriction in the sum is due to the antisymmetry of the two-neutron state. Using Moshinsky trans-
formations [38], one can easily calculate 〈ab|V |cd〉. Results for the three-body energy are independent of the
values of the HO frequency, as long as enough HO states are included in the expansion.
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Fig. 3 Ground-state energy of 6He from the LO two-body potentials Vnα(k0; Λnα) and Vnn(Λnn). For each value of Λnn the
cutoff Λnα is varied

4 Results for the 6He Ground State

The ground state of 6He is coupled to Jπ = 0+ and the three-body basis states are constructed from the sp
states of the Vnα(k0;Λnα) potential as described in the previous section. At LO, only p3/2 shells are included
in the valence space and, as a consequence, all matrix elements of the recoil term in Eq. (11) vanish. For each
value of Λnα the coupling constants A(Λnα) and B(Λnα) are fixed such that the ERE in the p3/2 channel
truncated at the level of the effective “range” is reproduced. Similarly, C0(Λnn) is fixed such that the 1s0 nn
scattering length is reproduced.

Figure 3 shows the energy Ennα of the ground state in 6He for different values of Λnα and Λnn . For each
value of Λnn the cutoff Λnα is increased. One can see that the energy initially quickly decreases, then slowly
rises. For Λnn = 1.6 fm−1, for example, Ennα goes from −0.034 MeV for Λnα = 2.1 fm−1 to −0.475 MeV for
Λnα = 6.1 fm−1, then to −0.400 MeV for Λnα = 12.1 fm−1. As Λnn increases, the initial decrease becomes
steeper, and the increase is postponed to higher values of Λnα . For instance, at Λnn = 2.5 fm−1, the energy
goes from −0.182 to −2.251 to −2.524 MeV in the same range of Λnα values.

This behavior can be understood from the qualitative renormalization features of the system. As Λnα

increases, the phase space of the three-body system increases, the attractive nn interaction is better resolved,
and the binding energy increases. This is consistent with the pattern observed in Ref. [39] for the energy of
a three-fermion system interacting via a two-body force constructed with EFT at LO. In that case, for a fixed
cutoff of the two-body interaction, the total energy of the system decreases as the size of the model space
increased. As Λnn increases, presumably more correlations are cut off for too small a value of Λnα , generating
the faster decrease. However, there is also a residual dependence on Λnα from Vnα(k0; Λnα). Even though the
potential has been properly renormalized, that is, the coupling constants A(Λnα) and B(Λnα) have been fixed
so that the truncated ERE is reproduced, there still is a dependence for finite values of the cutoff, as seen in
Fig. 2. The energy of the p3/2 resonance goes from k = 0.7714−0.2947i to k = 0.7696−0.2896i MeV when
Λnα goes from 6.1 fm−1 to 12.1 fm−1. This means that, as Λnα is varied within this range, there is a variation
� 0.005 MeV, or about 7 %, in the norm of the energies of the p3/2 resonance, which is consistent with a
variation of about 15 % in the three-body energy in the same range—for example a variation of � 0.075 MeV
for Λnn = 1.6 fm−1.

One can clearly see from Fig. 3 that as the cutoffs Λnn and Λnα are increased, the energy decreases without
reaching a stabilized value. To stress this fact, in Fig. 4 we plot the 6He ground-state energy as function of
Λnn = Λnα . We have checked that the results are similar if other relations are assumed between Λnn and Λnα ,
for example, if we take the minimum energy for each Λnn , which is equivalent to choosing Λnα large enough
so that all correlations of the nn interaction have been resolved by the three-body system.

The nearly linear dive of the ground state seen in Fig. 4 is reminiscent of the behavior observed with LO
two-body forces in EFTs for systems of three bosons or three-or-more-component fermions [14–16]. There, the
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Fig. 4 Ground-state energy of 6He from the LO two-body potentials Vnα(k0; Λnα) and Vnn(Λnn), for Λnn = Λnα

dive is even faster, more like quadratic in the cutoff, stemming from the strong s-wave interactions among the
three pairs. In either case, what we see is a collapse of the ground state under short-range two-body interactions
similar to the one first observed by Thomas [13]. It is an indication that the three-body problem has not been
properly renormalized with only two-body interactions [14–16]. The cutoff dependence is not decreasing as
the cutoffs increase, as one would expected from residual cutoff dependence in a renormalized system that has
been truncated correctly, but is instead increasing with positive powers of the cutoffs.

The solution to this problem has to be found outside the two-body subsystems, which are perfectly well
defined and well described by the EFT. We thus add to LO a three-body force to renormalize the three-body
problem. An s-wave three-body force does not have any impact on the structure of 6He at this order since the
nα subsystems are in a relative p3/2 wave. The lowest-derivative three-body force that does not vanish in the
channel of interest can be written, in the coordinates we are using, as

Vnnα(k′
1, k′

2, k1, k2) = D(Λnnα) k′
1k1k′

2k2 F
(
k′2

1 /Λ2
nnα

)
F

(
k′2

2 /Λ2
nnα

)
F

(
k2

1/Λ2
nnα

)
F

(
k2

2/Λ2
nnα

)
, (24)

with k′
i (ki ) the outgoing (incoming) momentum for the i th nα subsystem. Here Λnnα is a three-body cutoff

and D is a low-energy coupling constant with dimensions of mass−9, whose dependence on Λnnα is adjusted
so that three-body observables be (nearly) cutoff independent.

Here for simplicity we take Λnnα = Λnn = Λnα . We find that we can then keep the 6He ground-state
energy Ennα constant as the cutoff is varied. We show in Fig. 5 the resulting running of the coupling constant
D(Λnnα) when the 6He ground-state energy is fixed to its experimental value E6gs = −0.98 MeV [40]. At
low cutoffs, D is negative. From Fig. 4 we see that at a cutoff Λ0 � 2.9 fm−1 the energy calculated with only
two-body forces agrees with the experimental value, so D(Λ0) = 0. Above Λ0, D(Λnnα)Λ2

nnα is positive and
approximately constant in the region of cutoffs we could probe. We cannot, however, exclude a limit-cycle-like
behavior at higher cutoffs, as observed for s-wave systems in Refs. [14–16].

Again like for three bosons or three-or-more-component fermions [14–16], RG invariance requires the
three-body force to appear at LO. Naturalness together with naive dimensional analysis suggests that D would
scale as M−9, with M a large mass scale such as the alpha-particle binding momentum or the pion mass. If
that were the case after renormalization, the three-body force (24) would be a very high-order effect. Instead
here, as for the three-nucleon system [14–16], a certain amount of fine-tuning is present: the low-energy scale
responsible for the existence of the shallow two-nucleon 1s0 virtual bound state and the shallow 5 He p3/2
resonance must appear in the renormalized three-body force as well. The infrared enhancement of the LO
two-body interactions dominates the running of the LO three-body force, making its effects much larger than
the naturalness expectation. While in the pure s-wave case the enhancement is proportional to the square of
the large scattering length [14–16], here it must be roughly the square of the large scattering volume.

With the three-body force so determined, we have looked for other 0+ bound states and found none within
the cutoff range we investigated. This is perhaps not surprising. It has been argued that the Efimov effect
[12] is present if both the scattering volume and the effective momentum in a system with pairwise p-wave
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interactions are large, although there is debate about whether this can be realized [19,20]. Since rnα is not
particularly large, we would not expect here an Efimov tower of shallow three-body states anyway.

5 Conclusions and Outlook

In this paper we have described for the first time the ground state of 6He using interactions derived from
Halo/Cluster Effective Field Theory, where the alpha-particle core is treated as an explicit field [2,3]. The two-
body nα and nn interactions are of the contact type, with parameters determined from two-body scattering
data. The three-body dynamics of the system was solved using the formalism of the Gamow Shell Model
[24,25], where the set of single-particle states (resonant and continuum) is given by the nα potential. We had
to adapt the formalism to accommodate the energy dependence of the LO nα EFT potential. This is also the
first time the GSM has been applied to the solution of EFT.

We have seen that, at leading order, two-body forces are not sufficient to properly renormalize the three-
body system, even though they provide a systematic expansion for two-body scattering [2,3]. Indeed, as the
cutoffs are increased the energy of the three-body ground state does not stabilize and would collapse for an
arbitrarily large cutoff. The addition of a single three-body counterterm is enough to achieve renormalization-
group invariance 2. We have obtained the RG running of the corresponding coupling constant by demanding
that the binding energy be fixed at its experimental value. These results are similar to what happens in systems
with s-wave interactions [14–16]. However, because the two-body interactions are different such similarity
was not granted a priori, and indeed the results differ in detail. In any case, we have shown here that three-body
forces are necessary at LO for consistency of the H/CEFT.

Our work thus provides a unique RG approach to 6He and paves the way for more comprehensive studies of
halo nuclei with H/CEFT. For the future, we plan to carry out a more extensive investigation of 6He, including
higher-order corrections and calculation of other observables (such as the ground-state radius and the first
excited-state energy). At the cost of more computational resources, other members of the He isotope family
could be investigated as well, along the lines of Refs. [26–29]. More generally, we hope that the combination
of EFT and GSM will prove to be a valuable tool in the study of other three-body resonant states, such as the
Hoyle state in 12C.

Acknowledgments We thank Scott Bogner and Georgios Papadimitriou for useful discussions. This research was supported in
part by the European Research Council (ERC StG 240603) under the FP7 (JR), the US NSF under grant PHY-0854912 (JR), and
the US DOE under grant DE-FG02-04ER41338 (JR and UvK).

2 It is our understanding that the same conclusion was reached by Ji et al. [33] (Phillips, D.R., personal communication).



Effective Field Theory and the Gamow Shell Model 735

References

1. Bedaque, P.F., van Kolck, U.: Effective field theory for few nucleon systems. Annu. Rev. Nucl. Part. Sci. 52, 339 (2002)
2. Bertulani, C.A., Hammer, H.-W., van Kolck, U.: Effective field theory for halo nuclei. Nucl. Phys. A 712, 37 (2002)
3. Bedaque, P.F., Hammer, H.-W., van Kolck, U.: Narrow resonances in effective field theory. Phys. Lett. B 569, 159 (2003)
4. Higa, R., Hammer, H.-W., van Kolck, U.: αα Scattering in halo effective field theory. Nucl. Phys. A 809, 171 (2008)
5. Lensky, V., Birse, M.C.: Coupled-channel effective field theory and proton-7Li scattering. Eur. Phys. J. A 47, 142 (2011)
6. Rupak, G., Higa, R.: Model-independent calculation of radiative neutron capture on Lithium-7. Phys. Rev.

Lett. 106, 222501 (2011)
7. Fernando, L., Rupak, G., Higa, R.: Resonance contribution to radiative neutron capture on Lithium-7. arXiv:1109.1876
8. Hammer, H.-W., Phillips, D.R.: Electric properties of the Beryllium-11 system in Halo EFT. Nucl. Phys. A 865, 17 (2011)
9. van Kolck, U.: Effective field theory of short range forces. Nucl. Phys. A 645, 273 (1999)

10. Chen, J.-W., Rupak, G., Savage, M.J.: Nucleon–nucleon effective field theory without pions. Nucl. Phys. A 653, 386 (1999)
11. Zhukov, M.V., Danilin, B.V., Fedorov, D.V., Bang, J.M., Thompson, I.J., Vaagen, J.S.: Bound state properties of Borromean

halo nuclei: 6He and 11Li. Phys. Rep. 231, 151 (1993)
12. Efimov, V.: Energy levels arising form the resonant two-body forces in a three-body system. Phys. Lett. B 33, 563 (1970)
13. Thomas, L.H.: The interaction between a neutron and a proton and the structure of H3. Phys. Rev. 47, 903 (1935)
14. Bedaque, P.F., Hammer, H.-W., van Kolck, U.: Renormalization of the three-body system with short range interactions. Phys.

Rev. Lett. 82, 463 (1999)
15. Bedaque, P.F., Hammer, H.-W., van Kolck, U.: The three boson system with short range interactions. Nucl. Phys.

A 646, 444 (1999)
16. Bedaque, P.F., Hammer, H.-W., van Kolck, U.: Effective theory of the triton. Nucl. Phys. A 676, 357 (2000)
17. Canham, D.L., Hammer, H.-W.: Universal properties and structure of halo nuclei. Eur. Phys. J. A 37, 367 (2008)
18. Canham, D.L., Hammer, H.-W.: Range corrections for two-neutron halo nuclei in effective theory. Nucl. Phys.

A 836, 275 (2010)
19. Braaten, E., Hagen, P., Hammer, H.-W., Platter, L.: Renormalization in the three-body problem with resonant P-wave

interactions. arXiv:1110.6829
20. Nishida, Y.: On the Efimov effect for p-wave interactions. arXiv:1111.6961
21. Esbensen, H., Bertsch, G.F., Hencken, K.: Application of contact interactions to Borromean halos. Phys. Rev.

C 56, 3054 (1997)
22. Cobis, A., Fedorov, D.V., Jensen, A.S.: Three-body halos. V. Computations of continuum spectra for Borromean nuclei. Phys.

Rev. C 58, 1403 (1998)
23. Thompson, I.J., Danilin, B.V., Efros, V.D., Vaagen, J.S., Bang, J.M., Zhukov, M.V.: Pauli blocking in three-body models of

halo nuclei. Phys. Rev. C 61, 024318 (2000)
24. Michel, N., Nazarewicz, W., Płoszajczak, M., Vertse, T.: Shell model in the complex energy plane. J. Phys. G

36, 013101 (2009)
25. Michel, N., Nazarewicz, W., Okołowicz, J., Płoszajczak, M.: Open problems in theory of nuclear open quantum systems. J.

Phys. G 37, 064042 (2010)
26. Michel, N., Nazarewicz, W., Płoszajczak, M., Bennaceur, K.: Gamow shell model description of neutron rich nuclei. Phys.

Rev. Lett. 89, 042502 (2002)
27. Michel, N., Nazarewicz, W., Płoszajczak, M., Okołowicz, J.: Gamow shell model description of weakly bound nuclei and

unbound nuclear states. Phys. Rev. C 67, 054311 (2003)
28. Hagen, G., Hjorth-Jensen, M., Vaagen, J.S.: Effective interaction techniques for the Gamow shell model. Phys. Rev.

C 71, 044314 (2005)
29. Papadimitriou, G., Kruppa, A.T., Michel, N., Nazarewicz, W., Płoszajczak, M., Rotureau, J.: Charge radii and neutron

correlations in helium halo nuclei. Phys. Rev. C 84, 051304(R) (2011)
30. Hagen, G., Hjorth-Jensen, M., Michel, N.: Gamow shell model and realistic nucleon-nucleon interactions. Phys. Rev.

C 73, 064307 (2006)
31. Berggren, T.: On the use of resonant states in eigenfunction expansions of scattering and reaction amplitudes. Nucl. Phys.

A 109, 265 (1968)
32. Rotureau, J.: Invited talks at the workshop on nuclear many-body open quantum systems, Trento and at the fall meeting of

the APS Division of Nuclear Physics, East Lansing (2011)
33. Ji, C., Elster, C., Phillips, D.: Contributed talk at the 2011 fall meeting of the APS Division of Nuclear Physics, East Lansing

(2011). http://meetings.aps.org/Meeting/DNP11/Event/151071
34. Arndt, R.A., Long, D.L., Roper, L.D.: Nucleon-alpha elastic scattering analyses: (I). Low-energy n-α and p-α analyses. Nucl.

Phys. A 209, 429 (1973)
35. González Trotter, D.E. et al.: New measurement of the 1S0 neutron-neutron scattering length using the neutron–proton

scattering length as a standard. Phys. Rev. Lett. 83, 3788 (1999)
36. Suzuki, Y., Ikeda, K.: Cluster-orbital shell model and its application to the He isotopes. Phys. Rev. C 38, 410 (1988)
37. Bogner, S.K., Furnstahl, R.J., Ramanan, S., Schwenk, A.: Low-momentum interactions with smooth cutoffs. Nucl. Phys.

A 784, 79 (2007)
38. Moshinsky, M.: Transformation brackets for harmonic oscillator functions. Nucl. Phys. 13, 104 (1959)
39. Rotureau, J., Stetcu, I., Barrett, B.R., Birse, M.C., van Kolck, U.: Three and four harmonically trapped particles in an

effective-field-theory framework. Phys. Rev. A 82, 032711 (2010)
40. Tilley, D.R. et al.: Energy levels of light nuclei A = 5, A = 6, A = 7. Nucl. Phys. A 708, 3 (2002)

http://meetings.aps.org/Meeting/DNP11/Event/151071

	Effective Field Theory and the Gamow Shell Model
	The 6He Halo Nucleus
	Abstract
	1 Introduction
	2 Two-Body Potentials
	3 Schrödinger Equation with the Gamow Shell Model
	4 Results for the 6He Ground State
	5 Conclusions and Outlook
	Acknowledgments
	References



