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Abstract The relativistic problem of spinless particles with position-dependent mass subject to kink-like
potentials (∼ tanh αx) is investigated. By using the basic concepts of the supersymmetric quantum mechan-
ics formalism and the functional analysis method, we solve exactly the position-dependent effective mass
Klein–Gordon equation with the vector and scalar kink-like potential coupling, and obtain the bound state
solutions in the closed form. It is found that in the presence of position-dependent mass there exists the sym-
metry that the discrete positive energy spectra and negative energy spectra are symmetric about zero energy
for the case of a mixed vector and scalar kink-like potential coupling, and in the presence of constant mass
this symmetry only appears for the cases of a pure scalar kink-like potential coupling or massless particles.

1 Introduction

The problem of the non-relativistic and relativistic wave equations with spatially dependent masses has been
attracting much intention in the literature. Systems with position-dependent mass have been found to be very
useful in studying the physical properties of various microstructures, such as semiconductor heterostructure
[1], quantum liquids [2], quantum wells and quantum dots [3], 3He clusters [4], compositionally graded crys-
tals [5], etc. The ordering ambiguity of the mass and momentum operators exists in the non-relativistic case
[6]. However, it is usually expected that this ordering ambiguity should disappears in the relativistic ambi-
ance. In this regard, some authors investigated the exact solutions of the position-dependent effective mass
Dirac equations [7–21] and spatially dependent mass Klein–Gordon equations for various potential models
[22–31]. In Ref. [22], the authors investigated the exact solution of the one-dimensional spatially dependent
mass Klein–Gordon equation with the inversely linear scalar potential. Dai and Cheng [23] studied the bound
state solutions of the Klein–Gordon equation with position-dependent mass for inversely linear scalar and
vector potentials that are equal in magnitude. Ikhdair and Sever [24] investigated the solutions of the Klein–
Gordon equations with position-dependent mass for the scalar and vector Hulthén potentials and unequal
scalar-vector Coulomb-like potentials [25]. Arda et al. [26] studied the solutions of the spatially dependent
mass Klein–Gordon equations for the Hulthén potential, modified Woods–Saxon potential [27], q-parameter
Pöschl–Teller potential [28] and non-Hermitian generalized Morse potential [29]. With the framework of a
D-dimensional spatially dependent mass Klein–Gordon equation, Hassanabadi et al. investigated the behavior
of spin-zero particles for a general exponential form of scalar and vector fields [30] and for both Coulomb and
Cornell interactions [31].

Recently, de Castro and Hott [32] investigated the relativistic problem of neutral fermions subject to a
pseudoscalar kink-like potential (∼ tanh αx). In Ref. [33], de Castro investigated the relativistic problem of
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spinless particles subject to a general mixing of vector and scalar kink-like potentials in the case of a constant
mass. The parity-conserving pseudoscalar potential is of interest in quantum field theory where a classically
stable and a finite localized energy solution of the motion equation can be in topologically stable sectors. Kink
models are obtained in quantum field theory as the continuum limit of linear polymer models [34–36]. For
this kink-like potential, there exists no bound state in a non-relativistic quantum theory because it gives rise to
a ubiquitous repulsive potential. However, bound states of this kink-like potential exist in (1+1)-dimensional
Dirac equation with a pseudoscalar potential coupling [32] and in (1+1)-dimensional Klein–Gordon equation
with a mixed vector-scalar potential coupling [33]. The PT-symmetric version of the kink-like potential has
also been investigated within the framework of the Dirac equation with a vector potential coupling [12,37].
As far as we know, one has not reported the investigation of solving the Klein–Gordon equation with position-
dependent mass for the kink-like potential. In the present work, we investigated the relativistic problem of
spinless particles subject to the scalar and vector kink-like potentials in the presence of position-dependent
mass.

2 Position-Dependent Mass Effective Klein–Gordon Equation with Vector and Scalar Potentials

The one-dimensional time-independent Klein–Gordon equation for a spinless particle coupled to a scalar
potential S(x) and a vector potential V (x) reads [22]

− h̄2c2 d2�(x)

dx2 + (M(x)c2 + S(x))2�(x) = (E − V (x))2�(x), (1)

where E is the energy and M(x) denotes the position-dependent effective mass. Equation (1) can also be
written as

− d2�

dx2 + 1

h̄2c2

[
S2(x) − V 2(x) + 2M(x)c2S(x) + 2EV (x) + M2(x)c4] � = E2

h̄2c2
�. (2)

We consider the one-dimensional kink-like scalar and vector potentials in the forms

S(x) = αβs tanh αx, V (x) = αβv tanh αx (3)

where the skew parameter, α, and the coupling constants, βs and βv , are real numbers. We take the mass
function M(x) as the smooth step mass [9]

M(x) = M0(1 + η tanh αx), (4)

where η is a very small non-negative parameter. The mass increases from the value M = M0(1 − η) for
x = −∞ to the value M = M0(1 + η) for x = +∞. The significant variations occur in the range of
− 1

α
< x < 1

α
, i.e., M(−1/α) ∼= M0(1 − 0.762η), M(1/α) ∼= M0(1 + 0.762η). The smooth step mass has

been studied by Peng et al. [9] in the Dirac equation with spatially dependent mass for the generalized Hulthén
potential. Substituting Eqs. (3) and (4) into Eq. (2), we obtain a Schrödinger-like equation

− d2�

dx2 + Veff(x)� = Ẽ�, (5)

where the effective potential Veff(x)can be recognized as the exactly solvable Rosen–Morse-like well [38,39].
The effective potential Veff(x) and the effective energy Ẽ are given by

Veff = −V1sech2αx + V2 tanh αx, (6)

Ẽ = 1

h̄2c2
(E2 − M2

0 c4(1 + η2) + α2β2
s − α2β2

v − 2M0 c2αβsη), (7)

where the parameters V1 and V2 are defined as

V1 = 1

h̄2c2
(M2

0 c4η2 + α2β2
s − α2β2

v + 2M0c2αβsη), (8)

V2 = 1

h̄2c2
(2M2

0 c4η2 + 2M0c2αβs + 2αβv E), (9)
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The Rosen–Morse-like well is a binding potential well only if V1 > 0 and |V2| < 2V1, and it possesses
the possible discrete effective energies in the range of Ẽ ≤ −|V2| [33]. We solve Eq. (5) by employing the
supersymmetric quantum mechanics approach [40–42]. The supersymmetric approach has been extensively
used to solving the Schrödinger equation [42–47], Klein–Gordon [48–50], Dirac equation [51–54] and DKP
equation [55] in the presence of a constant mass. By making the proper replacements of the parameters in the
energy spectrum expression and eigenfunctions of the corresponding Rosen–Morse problem reported in Ref.
[42], one can easily obtain solutions of the Rosen–Morse-like problem expressed in Schrödinger-like equation
(5). However, considering that Schrödinger-like equation (5) is reduced from the spatially dependent mass
Klein–Gordon equation (1), and not from a Klein–Gordon equation with a constant mass, we solve Eq. (5) in
terms of the supersymmetric approach step by step. Writing the ground-state wave function �0(x) in the form
of �0(x) = exp(− ∫

W (x)dx) and substituting it into Eq. (5), we arrive at the following non-linear Riccati
equation for W (x),

W 2(x) − dW (x)

dx
= −V1sech2αx + V2 tanh αx − Ẽ0, (10)

where Ẽ0 is the effective ground-state energy, and W (x) is a superpotential. Letting the superpotential
W (x) as

W (x) = A + B tanh αx, (11)

and substituting it into the expression �0(x) = exp(− ∫
W (x)dx), one gets

�0(x) = e−Ax (cosh αx)−B/α. (12)

Considering the bound state boundary conditions, �0(±∞) = 0, we obtain the restriction conditions: B/α > 0
and |A| < B. Substituting Eq. (11) into Eq. (10) and comparing equal powers of two sides in Eq. (10), we get
a set of equations

A2 + B2 = −Ẽ0, B2 + αB = V1, 2AB = V2. (13)

Solving these equations, we obtain

A = V2

2B
, B = α

2

(

−1 +
√

1 + 4V1

α2

)

, Ẽ0 = −
(

V 2
2

4B2 + B2

)

. (14)

In terms of the superpotential W (x) given in Eq. (11) and the expression A = V2
2B , one can construct the

following two supersymmetric partner potentials

Veff+(x) = W 2(x) + dW (x)

dx
= −(B2 − αB)sech2αx + V2 tanh αx + V 2

2

4B2 + B2, (15)

Veff−(x) = W 2(x) − dW (x)

dx
= −(B2 + αB)sech2αx + V2 tanh αx + V 2

2

4B2 + B2, (16)

These two supersymmetric partner potentials satisfy the following relationship

Veff+(x, a0) = Veff−(x, a1) + R(a1), (17)

where a0 = B, a1 is a function of a0, i.e., a1 = f (a0) = a0 − α, and the remainder R(a1) is independent of

x , R(a1) =
(

V 2
2

4a2
0

+ a2
0

)
−

(
V 2

2
4a2

1
+ a2

1

)
. Equation (17) tells us that the two partner potentials Veff+(x) and

Veff−(x) possess similar shapes and they are shape-invariant in the senses of Ref. [41]. For the shape-invari-
ant-like potential Veff−(x), we use the shape invariance approach [41] to determine the exact energy spectra,
which are given by

Ẽ (−)
0 = 0, (18)
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Ẽ (−)
n =

n∑

k=1

R(ak) = R(a1) + R(a2) + · · · + R(an)

=
(

V 2
2

4a2
0

+a2
0

)

−
(

V 2
2

4a2
1

+ a2
1

)

+
(

V 2
2

4a2
1

+ a2
1

)

−
(

V 2
2

4a2
2

+ a2
2

)

· · · +
(

V 2
2

4a2
n−1

+ a2
n−1

)

−
(

V 2
2

4a2
n

+ a2
n

)

=
(

V 2
2

4a2
0

+ a2
0

)

−
(

V 2
2

4a2
n

+ a2
n

)

=
(

V 2
2

4B2 + B2

)

−
(

V 2
2

4a2
n

+ a2
n

)

, (19)

where the quantum number n = 0, 1, 2, . . . . Combining Eqs. (10) and (16) and using Eq. (14), we have the
following relation

Veff(x) = −V1sech2αx + V2 tanh αx = Veff−(x) + Ẽ0. (20)

It is obvious that the effective energy Ẽ in Eq. (5) can be written as

Ẽ = Ẽ (−)
n + Ẽ0 = −

(
V 2

2

4a2
n

+ a2
n

)

. (21)

Inserting the expression Ẽ = 1
h̄2c2 (E2 − M2

0 c4(1 + η2) + α2β2
s − α2β2

v − 2M0c2αβsη) into Eq. (21) and
using expression (9), we obtain a second-degree algebraic equation for the Klein–Gordon energies

(
1 + α2β2

v

h̄2c2a2
n

)
E2

n + αβvδ

h̄2c2a2
n

En + δ2

4h̄2c2a2
n

+ h̄2c2a2
n − ε = 0, (22)

where δ = 2(M2
0 c4η + M0c2αβs) and ε = (1 + η2)M2

0 c4 +2M0c2αβsη+α2β2
s −α2β2

v . By solving Eq. (22),
we find the following relativistic energy spectra for a spinless particle in the context of the spatially dependent
mass Klein–Gordon equation with the vector and scalar kink-like potentials,

En = − αβvδ

2(h̄2c2a2
n + α2β2

v )
±

√
α2β2

v δ2 − 4(h̄2c2a2
n + α2β2

v )(δ2/4 + h̄4c4a4
n − h̄2c2a2

nε)

2(h̄2c2a2
n + α2β2

v )
. (23)

Substituting Eq. (21) into Eq. (5), we obtain the following equation

− d2�(x)

dx2 + (−V1sech2αx + V2 tanh αx)�(x) = −
(

V 2
2

4a2
n

+ a2
n

)

�(x). (24)

Introducing the new variable z = − tanh αx and writing the wave function �(x) as �(x) = ( 1−z
2 )−p( 1+z

2 )−w

P(z), Eq. (24) can be reduced to the following equation satisfied by P(z),

(1 − z2)
d2 P

dz2 + [−2w + 2p − (2 − 2p − 2w)z]d P

dz
+ n(n − 2p − 2w + 1)P = 0, (25)

where p and w are defined as p = V2
2αan

− an
α

and w = − V2
2αan

− an
α

, respectively. Equation (25) is the well-

known differential equation satisfied by the Jacobi polynomials P−2p,−2w
n (z). Thus, the wave function �(x)

can be written as,

�n(x) =
(

1 + tanh αx

2

)−p (
1 − tanh αx

2

)−w

P−2p,−2w
n (− tanh αx). (26)

In order to compare our results with those reported by de Castro in Ref. [33], we write βs and βv in the
forms [33]

βs = h̄cg, βv = h̄cg sin

(
πξ

2

)
, (27)
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where the variable ξ is defined into the interval (−1, 1). Making the replacements ofδ = 2(M2
0 c4η + M0c2αβs),

ε = (1 + η2)M2
0 c4 + 2M0c2αβsη + α2β2

s − α2β2
v and an = B − nα = α

2

(
−1 +

√
1 + 4V1

α2

)
− nα in

Eq. (23), and employing the expressions for V1, V2, βs and βv given in Eqs. (7), (8) and (27), the Klein–Gor-
don energy formula (23) can be written in the form of

En = −
M0c2

(
M0c
h̄α

η + g
)

g sin
(

πξ
2

)

ã2
n + g2 sin2

(
πξ
2

)

±
c

√
(

M0c
(

M0c
h̄α

η+g
)

g sin
(

πξ
2

))2−
(

ã2
n +g2 sin2

(
πξ
2

))(
M2

0 c2
(

M0c
h̄α

η+g
)2+h̄2α2ã4

n −ã2
n ε̃

)

ã2
n +g2 sin2

(
πξ
2

)

(28)

where ãn and ε̃ are defined as

ãn = α

[

−n − 1

2
+ 1

2

√

1 + 4

h̄2c2α2

(
M2

0 c4η2 + 2M0c3h̄αgη + h̄2c2α2g2 cos2

(
πξ

2

))]

, (29)

ε̃ = (1 + η2)M2
0 c2 + 2M0h̄cαgη + h̄2α2g2 cos2

(
πξ

2

)
. (30)

For the bound states, we can obtain the constraint condition satisfied by the quantum number n from Ẽ ≤ −|V2|
and in terms of Eqs. (21), (29) and (30),

n = 0, 1, 2, . . . ≤ 1

2

(

−1 +
√

1 + 4

h̄2c2α2

(
c2ε̃ − M2

0 c4η2
)
)

−
√|V2|
2
√

α
. (31)

In the case of constant mass, η = 0, expression (28) becomes into

En = −
M0c2g2 sin

(
πξ
2

)

ã2
n + g2 sin2

(
πξ
2

)

±
can

√
M2

0 c2
(

ã2
n − g2 cos2

(
πξ
2

))
+ h̄2α2

(
g2

4 sin2(πξ) + ã2
n g2 cos(πξ) − ã4

n

)

ã2
n + g2 sin2

(
πξ
2

) . (32)

This is just consistent with expression (17) of Ref. [33].
From Eq. (28), we can see that when M0 = 0 (massless particle), the discrete positive energy spectra and

negative energy spectra are symmetric about En = 0. This symmetry also happens for the case of a pure scalar
kink-like potential coupling (ξ = 0). When g = − M0c

h̄α
η and ξ �= 0, the same symmetry occurs for a mixed

scalar and vector kink-like potential coupling. However, in the presence of a constant mass, this symmetry does
not occur for a mixed scalar and vector coupling [33]. When g = − M0c

h̄α
η, the Klein–Gordon eigenenergies

are plotted in Fig. 1 for the two lowest bound states as a function of ξ . The parameter are chosen for furnishing
the two bounded solutions, which are taken as h̄ = c = 1, M0 = 3, α = 1/2, and η = 0.15. Figure 1 shows
that the positive energy levels and negative energy levels are symmetric about En = 0.

3 Conclusion

In this work we have investigated the relativistic problem of spinless particles with position-dependent mass
subject to kink-like potentials. The position-dependent effective mass Klein–Gordon equation with a mixed
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Fig. 1 A plot of the Klein-Gordon energy levels for the kink-like potential as a function of ξ in the two cases: n = 0 (red solid
line) and n = 1 (black cross line)

vector and scalar kink-like potential coupling can been solved exactly by using the basic concepts of the super-
symmetric quantum mechanics formalism and the functional analysis method. We give the exact bound state
solutions in the closed form. The kink-like potential is absent of bound states in the context of the non-relativis-
tic Schrödinger equation with a constant mass, but it possesses discrete relativistic energy spectra in the context
of the Klein–Gordon theory with the vector and scalar coupling scheme in the presence of position-dependent
mass. Under the condition of constant mass, there exists the symmetry that the discrete positive energy spectra
and negative energy spectra are symmetric about zero energy only for the cases of a pure scalar coupling or
massless particles. However, in the presence of position-dependent mass, this symmetry also appears for the
case of a mixed vector and scalar kink-like potential coupling.
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