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Abstract A dressed-quark core contribution to nucleon electromagnetic form factors is calculated. It is defined
by the solution of a Poincaré covariant Faddeev equation in which dressed-quarks provide the elementary degree
of freedom and correlations between them are expressed via diquarks. The nucleon-photon vertex involves
a single parameter; namely, a diquark charge radius. It is argued to be commensurate with the pion’s charge
radius. A comprehensive analysis and explanation of the form factors is built upon this foundation. A particular
feature of the study is a separation of form factor contributions into those from different diagram types and
correlation sectors, and subsequently a flavour separation for each of these. Amongst the extensive body of
results that one could highlight are: rn,u

1 > rn,d
1 , owing to the presence of axial-vector quark-quark correlations;

and for both the neutron and proton the ratio of Sachs electric and magnetic form factors possesses a zero.

1 Introduction

Owing in part to the relatively simple nature of the virtual photon as a probe, a reliable explanation of elec-
tromagnetic form factors provides information on the distribution of a nucleon’s characterising properties;
e.g., total- and angular-momentum, amongst its QCD constituents. Since contemporary experiments employ
Q2 > M2

N ; i.e., momentum transfers in excess of the nucleon’s mass, a veracious understanding of the body
of extant data requires a Poincaré covariant description of the nucleon. Poincaré covariance and the vector
exchange nature of QCD guarantee the existence of nonzero quark orbital angular momentum in a hadron’s
rest-frame bound-state amplitude [1,2].

In fact the challenge is compounded owing, e.g., to the running of the dressed-quark mass [3–8]. This
entails that a quantum field theoretic treatment of hadron structure and electromagnetic interactions is gener-
ally necessary in order to provide understanding in terms of QCD’s genuine elementary degrees of freedom.
The dressed light-quark mass function at infrared momenta is roughly 100 times larger than the current-quark
mass. This marked enhancement is a corollary of dynamical chiral symmetry breaking (DCSB) and owes pri-
marily to a dense cloud of gluons that clothes a low-momentum quark [9]. (The dressing gluons also acquire
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mass dynamically [10].) It means that the Higgs mechanism is largely irrelevant to the bulk of normal matter
in the universe. Instead the single most important mass generating mechanism for light-quark hadrons is the
strong interaction effect of DCSB; e.g., one can identify DCSB as being responsible for 98% of a proton’s
mass. It has long been argued that form factors are a sensitive probe of this effect [11].

Recent years have seen rapid experimental and theoretical progress in the study of nucleon electromagnetic
form factors, which is reviewed, e.g., in Refs. [12,13]. Despite this, questions remain unanswered, amongst
them: can one formulate an impulse-like approximation for hadron form factors and, if so, in terms of which
degrees of freedom; is there a valid mapping of form factors into statements about the distribution of charge and
magnetisation within a nucleon; and what role is played by pseudoscalar mesons in hadron electromagnetic
structure and can one describe this in a quantitative, model-independent fashion? Herein we contribute to the
discussion of these issues.

In Sect. 2 we recapitulate briefly upon a Poincaré covariant Faddeev equation for the nucleon, in which
the primary element is the dressed-quark with its strongly momentum dependent mass function. The Faddeev
equation solution defines a nucleon’s dressed-quark core. The study of baryons in this way sits squarely within
the ambit of the application of Dyson–Schwinger equations (DSEs) in QCD [14]. Since the DSEs admit a non-
perturbative symmetry-preserving truncation scheme [15–18], which, e.g. has enabled the proof of numerous
exact results for pseudoscalar mesons [19–22], the approach holds particular promise as a means of unifying
the treatment of meson and baryon observables that preserves all global and local corollaries of DCSB without
fine-tuning [23]. The coupling of a photon to the nucleon’s dressed-quark core is detailed in Sect. 3.

In Sect. 4 we discuss the interpretation of form factors and present a perspective on the circumstances
under which the three dimensional Fourier transform of a Breit-frame Sachs form factor can reasonably be
understood in terms of a charge or magnetisation density.

Sections 5–7 are extensive. They detail our computed results and the understanding they provide. All elec-
tromagnetic form factors of the proton and neutron are described along with their decomposition into individual
flavour, diagram and diquark contributions, the meaning of which will subsequently become apparent.

We consider form factor contributions arising from pseudoscalar meson loops in Sect. 8 and exemplify the
manner in which they add to the dressed-quark core results. We wrap-up in Sect. 9.

2 Nucleon Model

In quantum field theory a nucleon appears as a pole in a six-point quark Green function. The pole’s residue is
proportional to the nucleon’s Faddeev amplitude, which is obtained from a Poincaré covariant Faddeev equation
that sums all possible quantum field theoretical exchanges and interactions that can take place between three
dressed-quarks. Canonical normalisation of the Faddeev amplitude guarantees unit residue for the s-channel
nucleon pole in the J P = 1

2
+

three-quark vacuum polarisation diagram and entails unit charge for the proton.
A tractable truncation of the Faddeev equation is based [24] on the observation that an interaction which

describes mesons also generates diquark correlations in the colour-3̄ channel [25]. The dominant correlations
for ground state octet and decuplet baryons are scalar (0+) and axial-vector (1+) diquarks because, for example,
the associated mass-scales are smaller than the baryons’ masses [26,27], namely (in GeV)

m[ud]0+ = 0.7 − 0.8, m(uu)1+ = m(ud)1+ = m(dd)1+ = 0.9 − 1.0. (1)

The kernel of the Faddeev equation is completed by specifying that the quarks are dressed, with two of the
three dressed-quarks correlated always as a colour-3̄ diquark. As illustrated in Fig. 1, binding is then effected
by the iterated exchange of roles between the bystander and diquark-participant quarks.

The Faddeev equation that we employ is explained in Appendix A: Faddeev Equation. With all its ele-
ments specified, as described therein, the equation can be solved to obtain the nucleon’s mass and amplitude.
Owing to Eq. (A.34), in this calculation the masses of the scalar and axial-vector diquarks are the only variable
parameters. The axial-vector mass is chosen so as to obtain a desired mass for the ∆,1 and the scalar mass is
subsequently set by requiring a particular nucleon mass.

We have written here of desired rather than experimental mass values because it is known that the masses of
the nucleon and ∆ are materially reduced by pseudoscalar meson loop effects. This is detailed in Refs. [28,29].
Hence, a baryon represented by the Faddeev equation described above must possess a mass that is inflated with

1 This is natural because the spin- and isospin-3/2 ∆ contains only an axial-vector diquark. The relevant Faddeev equation is
not different in principle to that for the nucleon. It is described in Ref. [30].
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Fig. 1 Poincaré covariant Faddeev equation, Eq. (A.11), employed herein to calculate nucleon properties. Ψ in Eq. (A.1) is the
Faddeev amplitude for a nucleon of total momentum P = pq + pd . It expresses the relative momentum correlation between the
dressed-quark and -diquarks within the nucleon. The shaded region demarcates the kernel of the Faddeev equation, Sect. A.2,
in which the single line denotes the dressed-quark propagator, Sect. A.2.1; Γ is the diquark Bethe–Salpeter-like amplitude,
Sect. A.2.2; and the double line is the diquark propagator, Sect. A.2.3

Table 1 Mass-scale parameters (in GeV) for the scalar and axial-vector diquark correlations, fixed by fitting nucleon and ∆
masses offset to allow for “pion cloud” contributions [28]

MN M∆ m0+ m1+ ω0+ ω1+

1.18 1.33 0.796 0.893 0.56=1/(0.35 fm) 0.63=1/(0.31 fm)
1.46 0.796 0.56=1/(0.35 fm)

We also list ωJ P = 1√
2 m J P , the width-parameter in the (qq)J P Bethe–Salpeter amplitude, Eqs. (A.28) and (A.29): its inverse

is an indication of the diquark’s matter radius. Row 3 illustrates effects of omitting the 1+-diquark correlation: the ∆ cannot be
formed and MN is significantly increased. Evidently, the 1+-diquark provides significant attraction in the Faddeev equation’s
kernel

respect to experiment so as to allow for an additional attractive contribution from the pseudoscalar mesons.
As in previous work [30–33] and reported in Table 1, we require MN = 1.18 GeV and M∆ = 1.33 GeV.
The results and conclusions of our study are essentially unchanged should even larger masses and a smaller
splitting M∆ − MN be more realistic, a possibility suggested by Refs. [23,34]. The relationship between the
∆–N mass splitting and that between the axial-vector and scalar diquark correlations is sketched in Ref. [35].

3 Nucleon Electromagnetic Current

The nucleon’s electromagnetic current is

Jµ(P ′, P) = ie ū(P ′)Λµ(q, P) u(P) , (2)

= ie ū(P ′)
(

γµF1(Q2) + 1

2M
σµν Qν F2(Q2)

)
u(P) , (3)

where P (P ′) is the momentum of the incoming (outgoing) nucleon, Q = P ′ − P , and F1 and F2 are, respec-
tively, the Dirac and Pauli form factors. They are the primary calculated quantities, from which one obtains
the nucleon’s electric and magnetic (Sachs) form factors

G E (Q2) = F1(Q2) − Q2

4M2 F2(Q2), G M (Q2) = F1(Q2) + F2(Q2). (4)

Static electromagnetic properties are associated with the behaviour of these form factors in the neighbour-
hood of Q2 � 0. The nucleons’ magnetic moments are defined through

µn = κn = Gn
M (0), µp = 1 + κp = G p

M (0), (5)

where κN , N = n, p, are referred to as the anomalous magnetic moments; and the electric and magnetic rms
radii via

r2
p := −6

d

ds
G p

E (s)

∣∣∣∣
s=0

, r2
n := −6

d

ds
Gn

E (s)

∣∣∣∣
s=0

, (6)

(rµ
N )2 := −6

d

ds
ln G N

M (s)

∣∣∣∣
s=0

. (7)
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Fig. 2 Vertex which ensures a conserved current for on-shell nucleons described by the Faddeev amplitudes, Ψi, f , described
in Sect. 2 and Appendix A: Faddeev Equation. The single line represents S(p), the dressed-quark propagator, Sect. A.2.1, and
the double line, the diquark propagator, Sect. A.2.3; Γ is the diquark Bethe–Salpeter amplitude, Sect. A.2.2; and the remaining
vertices are described in Appendix C: the top left image is Diagram 1; the top right, Diagram 2; and so on, with the bottom right
image, Diagram 6

In order to calculate the electromagnetic form factors one must know the manner in which the nucleon
described in Sect. 2 couples to a photon. That is derived in Ref. [36], illustrated in Fig. 2 and detailed in
Appendix C: Nucleon-Photon Vertex. As apparent in that Appendix, the current depends on the electromag-
netic properties of the diquark correlations.

Estimates exist of the size of diquark correlations. For example, a first Faddeev equation study of nucleon
form factors [37] found a scalar diquark radius of r[ud]0+ = 0.8 rπ , where rπ is the pion charge radius within
the same model. One obtains a similar result in a DSE calculation [38] that provides a good description of
pseudoscalar and vector meson properties; i.e.,

r[ud]0+ ≈ 0.7 fm, r(ud)1+ ∼ 0.8 fm , (8)

where the last result is an estimate based on the ratio ρ-meson-radius/π-meson-radius [39,40]. From another
perspective, numerical simulations of quenched lattice-regularised QCD suggest a scalar-diquark matter-radius
[41]

rρ
[ud]0+ = 1.1 ± 0.2 fm. (9)

It is thus evident that diquark correlations within a baryon are not pointlike. Hence, with increasing Q2,
interaction diagrams in which the photon resolves a diquark’s substructure must be suppressed with respect
to contributions from diagrams that describe a photon interacting with a bystander or exchanged quark. These
latter are the only hard interactions with dressed-quarks allowed in a nucleon. One can therefore improve in
Refs. [31,32] by introducing a diquark form factor. This is expressed in Eqs. (C.13), (C.14) and (C.24).

We use a one-parameter dipole because the system involves two quarks. The parameter is a length-scale that
characterises the diquark radius. In the absence of an explicit calculation of the axial-vector diquark’s radius,
we employ the same value for scalar and axial-vector diquarks. Owing to differences between the formulation
of our nucleon model and the DSE truncation employed in Ref. [38], the values quoted in Eq. (8) provide only
a loose constraint on this parameter. It’s value does not have a large effect on form factors for Q2 � 2 GeV2
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but does influence their evolution thereafter. For example, it influences the position of the zero in G p
E (Q2):

a larger diquark radius shifting the zero further from the origin. Computations have been analysed with four
values: rqq = 0.0, 0.4, 0.8 and 1.2 fm. Unless otherwise stated, the results reported herein were obtained with

rqq = 0.8 fm. (10)

4 On Interpreting Form Factors

Now that the Faddeev equation and a consistent Ward–Takahashi-identity conserving current are completely
defined, the calculation of a nucleons’ electromagnetic form factors is a straightforward numerical exercise.
However, in light of Refs. [42,43] we judge it worthwhile to comment on their putative interpretation in terms
of charge and magnetisation densities before presenting our results.

Such an interpretation rests on the existence of a quantitatively reliable expression for the form factors in
terms of a current in which the interacting constituents are well-defined and distinct, for then the charge and
current carrying quanta are unambiguous. This is achieved through a current of impulse approximation type,
which may include small non-single-particle contributions that arise owing to the Ward–Takahashi identity.

In QCD the relevant degrees of freedom change as the wavelength of the probe evolves. This feature is
encoded, e.g., in the dressed-quark mass function, which is discussed in connection with Eq. (A.18). The
nature of the mass function is model-independent and one consequence is that to a long wavelength probe a
light-quark appears to have a large inertial mass ∼350 MeV.

Figure 2 expresses a nucleon current in which the primary degrees of freedom are dressed-quarks. Along
with the Faddeev equation described in Appendix. A, it is an extension to baryons of the systematic and sym-
metry preserving rainbow-ladder truncation of QCD’s DSEs that provides a sound description of pseudoscalar
and vector mesons and, in particular, a veracious description of the pion as both a Goldstone mode and a bound
state of dressed-quarks [14]. It is a valid impulse approximation, which provides a systematically improvable
continuum prediction for nucleon form factors.

Subject to this understanding the question of whether a connection exists between the spatial distribution
of charge or magnetisation and the three-dimensional Fourier transform of a Sachs form factor involves a
consideration of recoil-corrections experienced by dressed-quarks. The interpretation is appropriate if recoil
corrections are small and can be calculated perturbatively. In that case the relevant expectation values in
quantum mechanics are validly approximated by the Fourier transform of the Sachs form factor.

Consider the Breit frame and a photon probe with momentum Q = (0, 0, q, 0). In the scattering process
this momentum is absorbed by the dressed-quarks within the proton. It is elastic scattering so all the dressed-
quarks must recoil together, which means they can each be considered as absorbing a momentum fraction2

Q/3. The magnitude of a recoil correction is then measured by the mass-squared scale

sr := q2

9
. (11)

We will consider that recoil corrections are small so long as

sr <
1

9
M2(sr ), (12)

where M(s) is the dressed-quark mass function. This constraint means

q ∼< M

(
q2

9

)
⇒ q ∼< 0.4GeV, (13)

a value determined from Eqs. (A.18) to (A.22). This momentum bound corresponds to a length-scale

λ0.1 = 0.49 fm = 0.57 rp, (14)

where rp is the proton’s charge radius. Hence in the three-dimensional Fourier transform of a Sachs form
factor, recoil corrections are on the order of 10% or less throughout the domain r ∼> 0.57 rp; namely, over
81% of the nucleons’ volume.

2 Faddeev and Bethe–Salpeter amplitudes are peaked at zero relative momentum. Hence, the domain of greatest support in the
impulse approximation calculation is that with each quark absorbing Q/3. This is demonstrated explicitly, e.g., in Ref. [11].
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In measuring the total charge one must evaluate

QN = lim
a→0

4π

∞∫
a

dr r2ρN (r). (15)

It is interesting to reckon the amount of charge that is contained within the domain on which recoil corrections
are not negligible. It is

Q0.1
N = 4π

0.57r p∫
0

dr r2ρN (r). (16)

A Gaußian charge form factor can be used to obtain an algebraic and hence easily understood estimate; viz.,

G p(q
2) = e− 1

6 q2r2
p , (17)

yields

ρp(r) = 3
√

6π

4π2r3
p

e−3r2/[2r2
p], (18)

from which follows

Q0.1
p = 0.19 . (19)

It is apparent that this region contains only 19% of the proton’s charge. Expressed another way, the domain on
which recoil corrections can be neglected contains 81% of the proton’s charge. (For the neutron’s charge form
factor the illustration can be made using a difference of two Gaußians, each of which may be said to represent
either the u- or d-quark contribution to the form factor.) If instead of Eq. (12) one were to consider recoil
corrections as small for sr < M2(sr )/6, then the upper bound in Eq. (16) is 0.48rp and the region contains
only 12% of the proton’s charge.

On the other hand, recoil corrections are certainly large and essentially nonperturbative for

sr � M2(sr ) ⇒ q � 1 GeV, (20)

a momentum boundary which corresponds to lengths

λ1.0 � 0.2 fm = 0.23 rp. (21)

On this domain no quantum mechanical connection can be made between three-dimensional Fourier trans-
forms of Sachs form factors and the density distribution of distinct charge and current carriers. It corresponds
to 1.2% of the nucleon’s volume and contains just 1.6% of the proton’s charge.

This analysis elucidates the circumstances under which the three-dimensional Fourier transform of a
Breit-frame Sachs form factor can be viewed as providing a useful, qualitatively and semi-quantitatively reli-
able description of the configuration space distribution of a nucleon’s charge or magnetisation over dressed-
quarks. Dressed-quarks are an emergent feature of QCD. The requisite conditions pertain within 81–99% of a
nucleon’s volume. Moreover, notwithstanding any caveats, Poincaré invariant form factors are always a gauge
of a hadron’s structure because they are a measurable and physical manifestation of the nature of the hadron’s
constituents and the dynamics that binds them together.
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5 Calculated Form Factors

In the following two sections we present and discuss the results that our model of the dressed-quark core
produces for nucleon form factors. Importantly, we made significant modifications to the computer codes used
to obtain the results in Ref. [31]. In addition to that described in Appendix D, which defines a convergent
continuation of the Faddeev amplitude into the Breit frame, we succeeded in reducing execution times by an
order of magnitude. These two improvements enabled us to use a desk-top computer and obtain, within hours,
numerically accurate results for the form factors on the domain Q2 ∈ [0, 12] GeV2.

In order to explain our results we must introduce our notation. The Pauli, Dirac and Sachs form factors are
all represented by their usual symbols. Hence, the notation can be introduced by a single example. We choose
the proton’s Dirac form factor, F p

1 , and list the definitions in Appendix E: Form Factor Notation.
It is also worth noting here that our analysis assumes mu = md . Hence the only difference between the

u- and d-quarks is their electric charge. Our equations, computer codes and results therefore exhibit the
following charge symmetry relations:

ed F p,u
i = eu Fn,d

i , eu F p,d
i = ed Fn,u

i ; i = 1, 2. (22)

6 Proton Form Factors

6.1 Dirac Proton

In Fig. 3 we depict the proton’s Dirac form factor and a breakdown into contributions from various subclasses
of diagrams. The figures deserve careful study.

The upper left panel shows the Q2-evolution of the quark, diquark and exchange (or two-body) contribu-
tions to the form factor. Their Q2 = 0 values measure, respectively, the probability that the photon interacts
with a bystander quark or a diquark correlation, or acts in association with diquark breakup:

quark−P p,q
1 = 0.47 : diquark−P p,c

1 = 0.35 : exchange−P p,e
1 = 0.18. (23)

These and analogous probabilities are collected in Table 2. For F p
1 the diquark and exchange contributions

switch in importance at Q2 ∼ 3 GeV2. Moreover, while the net result is always positive, the diquark contri-
bution becomes negative at Q2 ∼ 9 GeV2. This panel here, and in kindred figures to follow, also displays a
parametrisation of experimental results [44] for illustrative comparison with our computation. The manner by
which that comparison should be understood is canvassed in Sect. 8.

A radius can be associated with each of the form factors. We exemplify its definition via F p,q
1 ; viz.,

(r p,q
1 )2 := − 6

F p,q
1 (0)

d

d Q2 F p,q
1 (Q2)

∣∣∣∣
Q2=0

, (24)

and remark that

(r p
1 )2 = P p,q

1 (r p,q
1 )2 + P p,c

1 (r p,c
1 )2 + P p,e

1 (r p,e
1 )2. (25)

The calculated Dirac radii are reported in Table 3. Their values emphasise that so far as the Dirac form factor
is concerned, the diquark component of the nucleon is softest.

The lower left panel provides a flavour decomposition of the quark, diquark and exchange contributions
to the form factor. While the other two u-quark components are positive definite, F p,c,u

1 changes sign at
Q2 ∼ 9 GeV2. Up quarks are doubly represented in the proton and from Table 2 it is evident that they are
almost equally likely to be struck by a photon whether a bystander or a diquark participant. This explains the
near equality of the radii associated with each term in the subclass of these form factor contributions in which
a u-quark is struck.

The same is not true for the d-quark, for which the probabilities show that it is more likely to be struck
while a diquark participant. This signals that the d-quark is less free to move throughout the proton’s volume
and hence explains the small value of r p,c,d

1 .
The upper right panel of Fig. 3 shows the Q2-evolution of the contributions to F p

1 that involve a scalar
diquark, an axial-vector diquark, or one of each. It is clear from Table 2 that the scalar diquark component
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Fig. 3 Proton’s Dirac form factor. Upper left full result and decomposition according to diagram classes; lower left flavour break-
down of these contributions, expressed in units of the magnitude of the relevant quark’s charge; viz., |eu | = 2

3 or |ed | = 1
3 . Upper

right full result and decomposition according to diagram diquark content; lower right flavour breakdown of these contributions.
A parametrisation of experimental data [44] is also presented in the upper left. A full explanation of the notation is provided in
Appendix E

Table 2 Probabilities, defined in Appendix E, associated with the F p
1 form factors evaluated at Q2 = 0

P p,q
1 P p,c

1 P p,e
1 P p,s

1 P p,a
1 P p,m

1

0.474 0.346 0.180 0.602 0.254 0.144

P p,q,u
1 P p,c,u

1 P p,e,u
1 P p,s,u

1 P p,a,u
1 P p,m,u

1

0.441 0.371 0.188 0.561 0.294 0.145

P p,q,d
1 P p,c,d

1 P p,e,d
1 P p,s,d

1 P p,a,d
1 P p,m,d

1

0.345 0.444 0.210 0.437 0.414 0.149

of the proton is dominant. All contributions are positive definite, and the relative strength of the axial-vector
and mixed contributions switches at Q2 ∼ 5 GeV2. From Table 3 one reads that the softest contribution to the
proton’s Dirac form factor is provided by diagrams involving an axial-vector diquark. One can picture this as
stemming from the axial-vector correlation being more massive than the scalar and hence a bystander quark
of any flavour ranges further from a collective centre-of-mass.

The lower right panel provides a flavour decomposition of the diquark contributions just discussed. All
u-quark components are positive definite. For the singly-represented d-quark, however, each of the form factors
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Table 3 Radii associated with F p
1 , defined by analogy with Eq. (24)

r p
1 r p,q

1 r p,c
1 r p,e

1 r p,s
1 r p,a

1 r p,m
1

0.615 0.598 0.673 0.537 0.526 0.766 0.623

r p,u
1 r p,q,u

1 r p,c,u
1 r p,e,u

1 r p,s,u
1 r p,a,u

1 r p,m,u
1

0.617 0.620 0.615 0.614 0.520 0.749 0.656

r p,d
1 r p,q,d

1 r p,c,d
1 r p,e,d

1 r p,s,d
1 r p,a,d

1 r p,m,d
1

0.624 0.696 0.454 0.745 0.494 0.715 0.665

All entries in fm

Table 4 Flavour and diagram breakdown of contributions to the proton’s anomalous magnetic moment; viz., the F p
2 form factors

evaluated at Q2 = 0, measured in magnetons defined by the calculated nucleon mass, MN

κp κ
q
p κc

p κe
p κs

p κa
p κm

p

1.674 1.445 −0.297 0.526 1.460 0.0556 0.159

κu
p κ

q,u
p κ

c,u
p κ

e,u
p κ

s,u
p κ

a,u
p κ

m,u
p

1.174 1.235 −0.441 0.381 1.199 −0.211 0.187

κd
p κ

q,d
p κ

c,d
p κ

e,d
p κ

s,d
p κ

a,d
p κ

m,d
p

0.500 0.210 0.145 0.145 0.260 0.268 −0.0284

Fig. 4 Proton’s Pauli form factor. Left panel full result and decomposition according to diagram classes; right panel full result
and decomposition according to diagram diquark content. Form factors are expressed in magnetons defined by the calculated
nucleon mass, MN in Table 1. A parametrisation of experimental data [44] is also presented in the left panel. A full explanation
of the notation is provided in Appendix E

changes sign: F p,s,d
1 becomes positive at Q2 ∼ 8 GeV2; F p,a,d

1 at Q2 ∼ 5 GeV2; and F p,m,d
1 at Q2 ∼ 3 GeV2.

Axial-vector contributions to the Dirac form factor are the softest in each flavour sector.
Evident in Table 3 is a notable feature of our calculation; viz.,

r p,d
1 > r p,u

1 . (26)

Owing to charge symmetry this entails

rn,u
1 > rn,d

1 , (27)

a result also obtained and explained in Ref. [23]. Equation (26) follows from the presence of axial-vector
diquark correlations in the nucleon. One reads from Table 2 that the proton’s singly represented d-quark is
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Fig. 5 Proton’s Pauli form factor: left panels—flavour breakdown of left panel in Fig. 4; and right panels—flavour breakdown
of right panel in Fig. 4. A full explanation of the notation is provided in Appendix E

more likely to be struck in association with an axial-vector diquark correlation than with a scalar, and form
factor contributions involving an axial-vector diquark are soft. On the other hand, the doubly-represented
u-quark is predominantly linked with harder scalar-diquark contributions.

6.2 Pauli Proton

In Figs. 4 and 5 we depict the proton’s Pauli form factor and a breakdown into contributions from various
subclasses of diagrams.

The left panel of Fig. 4 shows the Q2-evolution of the quark, diquark and exchange contributions to the
form factor. Listed in Table 4, their Q2 = 0 values measure, respectively, the contribution to the proton’s
anomalous magnetic moment from the photon interacting with a bystander quark, a diquark or in association
with diquark breakup. The net contribution from Diagrams 2 and 4 in Fig. 2 is negative. This remains the case
until Q2 ∼ 9 GeV2, at which point the net diquark contribution changes sign, as was also the case in F p

1 . The
Pauli radii are listed in Table 5, from which it is evident that Diagrams 3, 5 and 6 in Fig. 2 provide the softest
contribution.
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Table 5 Radii associated with F p
2 , defined by analogy with Eq. (24)

r p
2 r p,q

2 r p,c
2 r p,e

2 r p,s
2 r p,a

2 r p,m
2

0.490 0.469 0.456 0.528 0.493 0.596 0.399

r p,u
2 r p,q,u

2 r p,c,u
2 r p,e,u

2 r p,s,u
2 r p,a,u

2 r p,m,u
2

0.449 0.432 0.434 0.485 0.489 0.573 0.399

r p,d
2 r p,q,d

2 r p,c,d
2 r p,e,d

2 r p,s,d
2 r p,a,d

2 r p,m,d
2

0.577 0.644 0.378 0.628 0.511 0.616 0.394

All entries in fm

The left panels in Fig. 5 provide a flavour decomposition of the quark, diquark and exchange contributions
to the proton’s Pauli form factor. We remark that F p,q,u

2 is positive definite whereas F p,c,u
2 changes sign at

Q2 � 10 GeV2 and F p,e,u
2 at Q2 � 17 GeV2. (The latter should be interpreted qualitatively because our

calculations are not truly reliable beyond 12 GeV2.) It is evident upon comparison between Tables 3 and 5 that
the pattern exhibited by the Pauli radii is kindred to that of the Dirac radii, with the origin alike.

The right panel of Fig. 4 shows the Q2-evolution of the contributions to F p
2 that involve a scalar diquark,

an axial-vector diquark, or one of each. It is apparent from the figure and Table 4 that diagrams involving
the scalar correlation are dominant on a material Q2 domain. These contributions to a nucleon’s Faddeev
amplitude have the simplest rest-frame spin–angular-momentum structure [2,45]. We find that the scalar and
axial-vector contributions are positive definite whereas the mixed contribution changes sign at Q2 � 8 GeV2.
The latter provides a larger contribution to the proton’s magnetic moment than the axial-vector diagram. One
reads from Table 5 that the softest contribution to the proton’s Pauli form factor is provided by the axial-vector
diquark diagrams. This was also the case for the Dirac form factor. However, in contrast to F p

1 , the mixed
contribution to F p

2 is hardest, a result which owes primarily to Diagram 4 and the simple Ansatz we have made
for the interaction therein; viz., Eq. (C.35).

The right panels of Fig. 5 provide a flavour decomposition of the diquark contributions just discussed. It is
curious that κa,u

p < 0, a feature which highlights the presence and role of correlations in the nucleon’s Faddeev
amplitude. The associated form factor becomes positive at Q2 ≈ 1.5 GeV2. The contribution with the simplest
structure, F p,s,u

2 , is positive definite whereas F p,m,u
2 becomes negative at Q2 � 10 GeV2. In association with

the proton’s d-quark, the axial-vector diagrams make a positive definite contribution, the scalar diquark form
factor becomes negative at Q2 ≈ 12 GeV2 and the mixed contribution is negative definite but small.

It is apparent from Table 5 that

r p,d
2 > r p,u

2 , (28)

which entails rn,u
2 > rn,d

2 . These orderings are the same as those exhibited by the Dirac radii, Eq. (26), but the
separation in magnitudes is larger. The presence of axial-vector diquark correlations again plays a large role
in producing these results. We note in addition that r p,u

2 < r p,u
1 and r p,d

2 < r p,d
1 , with the greater reduction

in r p,u
2 . Indeed, it is almost uniformly true that the quark-core Pauli form factors are harder than their Dirac

counterparts. The reduction is marked for r p,a,u
2 and the only exception to the rule is r p,s,d

2 .

6.3 Pauli–Dirac Proton Ratio

In Fig. 6 we plot a weighted ratio of Pauli to Dirac form factors; viz.,

R p
21(Q̂2) := Q̂2

(ln[Q̂2/Λ̂2])2

F p
2 (Q̂2)

F p
1 (Q̂2)

, Q̂2 = Q2

M2
N

, Λ̂2 = Λ2

M2
N

. (29)

A perturbative analysis that considers effects arising from both the proton’s leading- and subleading-twist
light-cone wave functions, the latter of which represents quarks with one unit of orbital angular momentum,
suggests that this ratio should be constant for Q2 
 Λ2, where Λ is a mass-scale that is said to correspond to
an upper-bound on the domain of soft momenta [46].
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Fig. 6 Solid curve Calculated dimensionless ratio in Eq. (29) with Λ̂ = 0.44 and MN in Table 1. Short-dashed line constant at
0.21. Long dashed curve ratio evaluated with the experimental nucleon mass using the parametrisations in Ref. [44]. Boxes ratio
evaluated with data from Ref. [47]; and circles from Ref. [48]. Dash-dot line constant at 0.15

We analysed our calculated result in this context and found that with Λ̂ = 0.44 this weighted ratio is a
constant = 0.21 on Q̂2 ≥ 4.3; by which we mean that the rms relative error with respect to the straight-line fit
is 0.34% with an associated standard deviation of 0.24%. These numbers increase as the minimum value of
Q̂2 included in the fit is decreased and, moreover, the value of Λ̂ comes to depend on this minimum value.

In the figure we also plot the ratio in Eq. (29) as evaluated from extant experimental data, available on the
domain Q̂2 ∈ [3.9, 6.3]. Using Λ̂ = 0.44, the result is described by a constant = 0.15 with rms relative error
1.5% and an associated standard deviation of 0.98%. It is evident in the figure that on the domain for which the
ratio is well described by a constant, our model produces a result that lies above the experimental data. This
is because thereupon our calculation underestimates experimental results for F p

1 by ∼15% and overestimates
those for F p

2 by a similar amount. (See Sect. 8 for details).
It is curious that what might appear to be a low mass-scale, Λ = 0.44MN , should serve to produce a

constant value for the ratio in Eq. (29) [31]. In seeking to understand the origin of this scale we analysed the
pointwise behaviour of our calculated Faddeev amplitude. The dominant functions are s1, A3, A5, which was
to be expected given the associated Dirac structures [see Eqs. (A.8)–(A.10)]. A Gaußian can be fitted to the
leading Chebyshev moment of each of these functions. That procedure yields the following widths (in units
of MN ):

ωs1
1

= 0.48, ωA1
3

= 0.47, ωA1
5

= 0.46. (30)

The similarity between these widths and Λ is notable. It highlights the point that while Λ per se is not an
elemental input to our calculation, such a mass-scale can arise dynamically as a derivative quantity which may
be expressed in the relative-momentum support of the Faddeev amplitude. A challenge now is to determine
whether an algebraic relationship exists between Λ in Eq. (29) and the widths characterising the Faddeev
amplitude.

6.4 Sachs Proton Electric

In Fig. 7 we present the proton’s Sachs electric form factor and a separation into contributions from various
subclasses of diagrams. While in principle, given Eq. (4), these panels contain no information that cannot be
constructed from material already presented, they are nevertheless practically useful and informative.

The upper left panel shows the Q2-evolution of the quark, diquark and exchange (or two-body) contribu-
tions to G p

E (Q2). Their Q2 = 0 values have precisely the same value and interpretation as those associated
with the Dirac form factor, which are presented in Table 2. It is notable that the quark contribution; namely,
Diagram 1 in Fig. 2, possesses a zero at Q2 ≈ 3.0 GeV2. It is only because the diquark contribution remains
positive until Q2 ≈ 9.0 GeV2 and the exchange contribution is positive definite that the complete result for
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Fig. 7 Proton’s Sachs electric form factor. Upper left full result and decomposition according to diagram classes; lower left flavour
breakdown of these contributions, expressed in units of the magnitude of the relevant quark’s charge. Upper right full result and
decomposition according to diagram diquark content; lower right flavour breakdown of these contributions. A parametrisation
of experimental data [44] is also presented in the upper left panel. A full explanation of the notation is provided in Appendix E

G p
E (Q2) does not exhibit a zero until Q2 ≈ 8.0 GeV2.3 We list the Sachs radii in Table 6. In comparison with

the Dirac radii in Table 3, they are relatively uniform owing to Foldy-term contributions.
The lower left panel provides a flavour decomposition of the quark, diquark and exchange contributions

to the form factor. Once more their Q2 = 0 values have precisely the same value and interpretation as those
associated with the Dirac form factor. G p,u

E has a zero at Q2 ≈ 9.0 GeV2 and no contribution to G p,u
E is positive

definite: G p,q,u
E possesses a zero at Q2 ≈ 3.0 GeV2; G p,c,u

E at Q2 ≈ 10.0 GeV2; and G p,e,u
E is negative on the

domain 4.0 ∼< Q2 ∼< 7.0GeV2. On the other hand, G p,d
E has a zero at Q2 ≈ 10.0 GeV2 but G p,q,d

E is negative

definite. G p,c,d
E possesses a zero at Q2 ≈ 11.0 GeV2 and G p,e,d

E at Q2 ≈ 2.0 GeV2. We list the u- and d-quark
Sachs radii in Table 6. Their values are readily computed and understood from Tables 3 and 4.

3 A zero in G p
E (Q2) was seen in the light-front constituent-quark model of Ref. [50]. In Ref. [51] it was shown to be a property

of the scalar-diquark Faddeev model of Ref. [37] but its appearance and location were argued to be dependent on dynamics,
consistent with Refs. [52,53] and the present study.



14 I. C. Cloët et al.

Table 6 Radii associated with G p
E , defined by analogy with Eq. (24)

r p
E r p,q

E r p,c
E r p,e

E r p,s
E r p,a

E r p,m
E

0.666 0.681 0.645 0.639 0.613 0.767 0.681

r p,u
E r p,q,u

E r p,c,u
E r p,e,u

E r p,s,u
E r p,a,u

E r p,m,u
E

0.645 0.675 0.583 0.660 0.581 0.733 0.681

r p,d
E r p,q,d

E r p,c,d
E r p,e,d

E r p,s,d
E r p,a,d

E r p,m,d
E

0.573 0.644 0.405 0.706 0.410 0.663 0.679

NB. The value in this table yields MN r p
E = 4.01 cf. experiment [49] MN r p

E = 4.18. Tabulated entries in fm

Fig. 8 Proton’s Sachs magnetic form factor. Left full result and decomposition according to diagram classes; and right full result
and decomposition according to diagram diquark content. Form factors are expressed in magnetons defined by the calculated
nucleon mass, MN in Table 1. A parametrisation of experimental data [44] is also presented in the left panel. A full explanation
of the notation is provided in Appendix E

The upper right panel of Fig. 7 shows the Q2-evolution of the contributions to G p
E that involve a scalar diqu-

ark, an axial-vector diquark, or one of each. G p,s
E has a zero at Q2 ≈ 10.0 GeV2 and G p,a

E at Q2 ≈ 3.0 GeV2,
whereas G p,m

E is positive definite. The lower right panel provides a flavour decomposition of the diquark
contributions. G p,s,u

E exhibits a zero at Q2 ≈ 10.0 GeV2, G p,a,u
E at Q2 ≈ 5.0 GeV2 and G p,m,u

E is negative

on the domain 2.0 ∼< Q2 ∼< 6.0GeV2. On the other hand, G p,s,d
E passes through zero at Q2 ≈ 11.0 GeV2 and

G p,m,d
E at Q2 ≈ 2.0 GeV2 but G p,a,d

E is negative definite. The associated Sachs radii are listed in Table 6.

6.5 Sachs Proton Magnetic

In Figs. 8 and 9 we depict the proton’s Sachs magnetic form factor and a separation into contributions from
various subclasses of diagrams. Again, while in principle these panels only contain information that can be
constructed from material already presented, they are nonetheless practically useful and informative.

The left panel of Fig. 8 shows the Q2-evolution of the quark, diquark and exchange contributions to the
form factor. G p

M , G p,q
M and G p,e

M are positive definite and monotonically decreasing. On the other hand, the
net contribution from Diagrams 2 and 4 in Fig. 2; namely, G p,c

M , is uniformly small, negative in the vicinity of
Q2 ∼ 0.5 GeV2 and again for Q2 ∼> 8 GeV2. The pattern is qualitatively similar in the flavour breakdown of
these form factors, depicted in the left panels of Fig. 9.

The right panel of Fig. 8 exhibits the Q2-evolution of the contributions to G p
M that involve a scalar diqu-

ark, an axial-vector diquark, or one of each. All contributions are positive definite, diagrams involving only
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Fig. 9 Proton’s Sachs magnetic form factor. Left flavour breakdown of contributions in left panel of Fig. 8. Right flavour breakdown
of contributions in right panel of Fig. 8. A full explanation of the notation is provided in Appendix E

Table 7 Flavour and diagram decomposition of contributions to the proton’s magnetic moment; viz., the G p
M form factors

evaluated at Q2 = 0, measured in magnetons defined by the calculated nucleon mass, MN

µp µ
q
p µc

p µe
p µs

p µa
p µm

p

2.674 1.919 0.0495 0.706 2.061 0.311 0.303

µu
p µ

q,u
p µ

c,u
p µ

e,u
p µ

s,u
p µ

a,u
p µ

m,u
p

2.507 1.824 0.0527 0.631 1.947 0.181 0.381

µd
p µ

q,d
p µ

c,d
p µ

e,d
p µ

s,d
p µ

a,d
p µ

m,d
p

0.168 0.210 −0.00322 0.0751 0.115 0.131 −0.0779

Experimentally [49], µp = 2.79

a scalar diquark are dominant and contributions involving at least one axial-vector diquark are uniformly of
comparable magnitude. The flavour breakdown is contained in the right panels of Fig. 9: all contributions are
positive definite except G p,m,d

M , which is uniformly small but becomes positive at Q2 ≈ 9.0 GeV2 and remains
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Table 8 Radii associated with G p
M , defined by analogy with Eq. (24)

r p
M r p,q

M r p,c
M r p,e

M r p,s
M r p,a

M r p,m
M

0.540 0.504 1.385 0.531 0.503 0.760 0.534

r p,u
M r p,q,u

M r p,c,u
M r p,e,u

M r p,s,u
M r p,a,u

M r p,m,u
M

0.544 0.500 1.424 0.539 0.502 0.936 0.544

r p,d
M r p,q,d

M r p,c,d
M r p,e,d

M r p,s,d
M r p,a,d

M r p,m,d
M

0.470 0.571 1.749 0.455 0.531 0.486 0.580

NB. The value in this table yields MN r p
M = 3.23 cf. experiment [54] MN r p

M = 3.99. Tabulated entries in fm

Fig. 10 Result for the normalised ratio of Sachs electric and magnetic form factors computed with four different diquark radii,
r1+ . Data: diamonds [48]; squares [55]; triangles [56]; and circles [57]

so until Q2 ≈ 17 GeV2. (NB. The latter should be interpreted qualitatively because the feature appears at a
larger value of Q2 than we consider our computation reliable).

In Table 7 we list the Q2 = 0 values of all the form factors, which measure, respectively, the contribu-
tions to the proton’s magnetic moment. These values can be obtained from µα

p = Fα
1 (0) Pα

1 + κα
p , where, e.g.,

α = (p, q), (p, c), etc. The magnetic radii are listed in Table 8. The general pattern has electric radii exceeding
magnetic radii. The few exceptions are easily explained. For example, r p,a,u

E < r p,a,u
M : this is primarily because

F p,a,u
2 (Q2) < 0 and of significant magnitude in the neighbourhood of Q2 = 0. As already noted, it is curious

that this contribution to the proton’s anomalous magnetic moment is negative.

6.6 Sachs Electric–Magnetic Proton Ratio

We plot µp G p
E (Q2)/G p

M (Q2) in Fig. 10 in comparison with contemporary data. A sensitivity to the proton’s
electromagnetic current is evident, here expressed via the diquarks’ radius. Irrespective of that radius, how-
ever, the proton’s electric form factor possesses a zero and the magnetic form factor is positive definite. On
Q2 ∼< 3 GeV2 our result lies below experiment. As discussed in Sect. 8, this can likely be attributed to our
omission of so-called pseudoscalar-meson-cloud contributions.

7 Neutron Form Factors

7.1 Dirac Neutron

In Fig. 11 we depict the neutron’s Dirac form factor and a decomposition into contributions from various
subclasses of diagrams. Owing to charge symmetry, Eq. (22), it is unnecessary to present a flavour breakdown.
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Fig. 11 Neutron’s Dirac form factor. Left full result and decomposition according to diagram classes; Right full result and decom-
position according to diagram diquark content. A parametrisation of experimental data [44] is also presented in the left panel. A
full explanation of the notation is provided in Appendix E

Table 9 Radii associated with Fn
1 , defined by analogy with Eq. (24) except when the form factor vanishes at Q2 = 0, in which

case r2 = −6F ′(Q2 = 0)

rn
1 rn,q

1 rn,c
1 rn,e

1 rn,s
1 rn,a

1 rn,m
1

0.102 0.112 i 0.812 i 1.577 0.595 0.642 1.056

An imaginary result signifies a negative mean-square radius. This convention enables a straightforward comparison between the
length-scale associated with different radii. All entries in fm

For example, with the normalisation used in our figures, the curve that would be denoted by Fn,u
1 (Q2) is simply

negative-F p,d
1 (Q2) drawn from Fig. 3.

In addition to that of Fn
1 itself, the left panel depicts the Q2-evolution of the quark, diquark and exchange

contributions to this form factor. Fn
1 and Fn,q

1 are negative definite, and Fn,e
1 is only positive for Q2 ∼< 0.5 GeV2.

On the other hand, the diquark contribution; viz., Fn,d
1 , is positive until Q2 ≈ 12 GeV2. The right panel renders

the Q2-dependence of contributions from diagrams containing a scalar diquark, an axial-vector diquark or one
of each. Fn,s

1 is negative definite and Fn,a
1 is negative for Q2 ∼> 2 GeV2. Fn,m

1 is small at Q2 = 0 (only 3% of
the other two form factors) and negative for Q2 ∼> 0.1 GeV2. These features reflect: the dominant role played
in the Faddeev amplitude by the positively charged [ud] scalar diquark; the fact that the u-quark is singly
represented and only a bystander in combination with an axial-vector diquark; and the softness of the diquark
correlations, which ensures that only a bystander quark can participate in the scattering process at large-Q2.

We list computed Dirac radii connected with the neutron in Table 9. Two entries are imaginary because
the associated form factors have an inflexion point away from Q2 = 0. We do not currently attribute any
real significance to this local feature, which for the neutron is particularly sensitive to details of the Ansatz
employed for Diagrams 5 and 6 in Fig. 2; namely, the as yet poorly constrained two-body piece of the current.

7.2 Pauli Neutron

In Fig. 12 we depict the neutron’s Pauli form factor and a decomposition into contributions from various
subclasses of diagrams. Once more, owing to charge symmetry, Eq. (22), it is unnecessary to present a flavour
breakdown. For example, with the normalisation used in our figures, the curve that would be denoted by
Fn,u

2 (Q2) is simply negative-F p,d
2 (Q2) drawn from Fig. 4.

The left panel depicts the Q2-evolution of Fn
2 itself, and that of the quark, diquark and exchange contribu-

tions to this form factor. Fn
2 , Fn,q

2 and Fn,e
2 are negative definite on the domain within which we consider our
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Fig. 12 Neutron’s Pauli form factor. Left full result and decomposition according to diagram classes; Right full result and decom-
position according to diagram diquark content. A parametrisation of experimental data [44] is also presented in the left panel. A
full explanation of the notation is provided in Appendix E

Table 10 Upper rows: diagram decomposition of contributions to the neutron’s anomalous magnetic moment; viz., the Fn
2 form

factors evaluated at Q2 = 0, measured in magnetons defined by the calculated nucleon mass, MN

κn κ
q
n κc

n κe
n κs

n κa
n κm

n

−1.588 −1.038 −0.0686 −0.481 −1.120 −0.430 −0.0368

rn
2 rn,q

2 rn,c
2 rn,e

2 rn,s
2 rn,a

2 rn,m
2

0.533 0.529 0.120 i 0.576 0.500 0.621 0.405

Experimentally [49], µn = −1.91. Lower rows: radii associated with Fn
2 , defined by analogy with Eq. (24). These entries in fm.

An imaginary result signifies a negative mean-squared radius

calculations accurate, and Fn,c
2 is negative until Q2 ≈ 12 GeV2. The right panel portrays the Q2-dependence

of contributions from diagrams containing a scalar diquark, an axial-vector diquark or one of each. Fn,s
2 and

Fn,a
2 are negative definite, and Fn,m

2 is negative for Q2 ∼< 5 GeV2 and always small in magnitude. These
features are consistent with those of the Dirac form factor.

We list computed anomalous magnetic moments and Pauli radii connected with the neutron in Table 10.
The small value of κd

n may be understood via a cancellation between d(ud)1+ and u(dd)1+ contributions.
Along with the small value of κT , Eq. (C.36), this explains the size of κm

n . With the exception of the uniformly
small Fn,c

2 , the Pauli radii follow the same pattern as those of the proton.

7.3 Neutron Pauli–Dirac Neutron Ratio

In Fig. 13 we plot the weighted ratio of Pauli to Dirac form factors in Eq. (29) for the neutron. This ratio is
constant for the proton, Fig. 6, however, that is not the case for the neutron. Moreover, with our calculated
neutron form factors there is no value of Λ̂ for which this ratio assumes a constant value.

The apparent cause of this behaviour is a zero in Fn
2 (Q2) at Q2 ≈ 18 GeV2. This point lies beyond the

upper bound of the domain within which we consider our computation reliable. On the other hand, its presence
does influence the evolution of the ratio. This can be seen by analysing the ratio using Padé approximants on
subdomains of Q2 ∈ [4, 12] GeV2, which consistently yields a best fit that possesses a zero at Q2 ≈ 18 GeV2;
e.g.,

Rn
21(Q̂2) := Q̂2

(ln Q̂2/Λ̂2)2

Fn
2 (Q̂2)

Fn
1 (Q̂2)

= 2.85 + 0.274Q̂2 − 0.0409Q̂4

−1 + 1.93Q̂2
. (31)
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Fig. 13 Solid circles and solid curve Dimensionless ratio in Eq. (29) calculated for the neutron, with Λ̂ = 0.44 and MN in
Table 1. Dashed curve Right-hand-side of Eq. (31). Experimental results: down triangles Ref. [58]

Fig. 14 Neutron’s Sachs electric form factor. Left full result and decomposition according to diagram classes. Right full result
and decomposition according to diagram diquark content. A parametrisation of experimental data [44] is also presented in the
left panel. A complete explanation of the notation is provided in Appendix E

It seems therefore that the zero is not simply the result of inaccurate numerical analysis but either a property
of the model itself or an artefact of the numerical method; namely, the Chebyshev expansion described in
Appendix D: Chebyshev Expansion. We are working to resolve this issue.

7.4 Sachs Neutron Electric

In Fig. 14 we present the neutron’s Sachs electric form factor and a separation into contributions from various
subclasses of diagrams. Once more, owing to charge symmetry, Eq. (22), it is unnecessary to present a flavour
breakdown. For example, with the normalisation used in our figures, the curve that would be denoted by
Gn,d

E (Q2) is simply negative-G p,u
E (Q2) drawn from Fig. 7.

In addition to that of Gn
E itself, the left panel depicts the Q2-evolution of the quark, diquark and exchange

contributions to this form factor. Each exhibits a zero, with that for the net result lying at Q2 ≈ 11 GeV2. In
the right panel we plot the Q2-dependence of contributions from diagrams containing a scalar diquark, an
axial-vector diquark or one of each. Gn,s

E is positive on the domain Q2 ∈ [0.1, 11] GeV2 and Gn,m
E is negative

for Q2 ∼> 1 GeV2, whereas Gn,a
E is positive definite.
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Fig. 15 Neutron’s Sachs magnetic form factor. Left full result and decomposition according to diagram classes. Right full result
and decomposition according to diagram diquark content. A parametrisation of experimental data [44] is also presented in the
left panel. A complete explanation of the notation is provided in Appendix E

These features are again consistent with intuition. For example, the behaviour of Gn,q
E . It is negative at

small-Q2 because the scalar diquark component of the Faddeev amplitude is dominant and that is paired with
a d-quark bystander in the neutron. This dressed-quark is responsible for the preponderance of negative charge
at long range. Gn,q

E is positive at large Q2 because Fn
2 dominates on that domain, which focuses attention on

the axial-vector diquark component of the Faddeev amplitude. The positively charged u-quark is most likely
the bystander quark in these circumstances.

Another interesting illustrative case is provided by Gn,a
E , which is positive definite. As already noted, the

u-quark is the most probable bystander in the neutron’s axial-vector diquark configuration and this explains
the preponderance of positive charge at small Q2. This plus the fact that the current’s only hard component is
that involving a bystander quark also explains the positive charge at large Q2. The form factor remains positive
in the intermediate region because the term which could interfere; viz., d[ud]0+ , involves individual charges
with smaller magnitude.

We list computed Dirac radii connected with the neutron in Table 9. Two entries are imaginary because the
associated form factors have an inflexion point away from Q2 = 0. As just explained, such behaviour stems
from interference, mediated by the current, between components in the incoming and outgoing neutrons’
Faddeev amplitudes.

7.5 Sachs Neutron Magnetic

In Fig. 15 we present the neutron’s Sachs magnetic form factor and a decomposition into contributions from
various subclasses of diagrams. Again, owing to charge symmetry, Eq. (22), it is unnecessary to present a
flavour breakdown. For example, with the normalisation used in our figures, the curve that would be denoted
by Gn,u

M (Q2) is simply negative-G p,d
M (Q2) drawn from Fig. 8.

In the left panel we draw the Q2-evolution of Gn
M itself, and that of the quark, diquark and exchange

contributions to this form factor. Gn
M , Gn,q

M and Gn,e
M are negative definite. On the other hand, Gn,c

M is uni-
formly small, owing to cancellations between Fn

1 and Fn
2 . It begins negative, is positive in the vicinity of

Q2 = 0.5 GeV2 and again for Q2 ∼> 10 GeV2. The right panel portrays the Q2-dependence of contributions
from diagrams containing a scalar diquark, an axial-vector diquark or one of each. All are negative definite.

We list the computed magnetic radii connected with the neutron in Table 11. The magnetic moments are
the same as the anomalous moments in Table 10. With the exception of Gn,m

M , which at small Q2 is roughly a
factor of five smaller than G p,m

M , the neutron radii follow the same pattern as those of the proton.
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Table 11 Upper rows—radii associated with Gn
E , defined by analogy with Eq. (24) except when the form factor vanishes at

Q2 = 0, in which case r2 = −6F ′(Q2 = 0)

rn
E rn,q

E rn,c
E rn,e

E rn,s
E rn,a

E rn,m
E

0.227 i 0.812 0.847 i 1.069 0.961 0.430 0.674

rn
M rn,q

M rn,c
M rn,e

M rn,s
M rn,a

M rn,m
M

0.529 0.513 1.254 0.514 0.507 0.614 0.316

An imaginary result signifies a negative mean-squared radius. NB. The value in this table yields M2
N (r E

n )2 = −(1.36)2 cf. exper-
iment [49] M2

n (r E
n )2 = −(1.62)2. Lower rows—radii associated with Gn

M , defined by analogy with Eq. (24): MN r M
n = 3.17 cf.

experiment [54] Mnr M
n = 4.24. Tabulated entries in fm
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Fig. 16 Result for the normalised ratio of Sachs electric and magnetic form factors for the neutron computed with two different
diquark radii. Short-dashed curve parametrisation of Ref. [44]. Down triangles data from Ref. [58]

7.6 Sachs Electric–Magnetic Neutron Ratio

We plot µnGn
E (Q2)/Gn

M (Q2) in Fig. 16. The figure illustrates a quantitative sensitivity of our results to the
neutron’s electromagnetic current, here expressed via the diquarks’ radius. Notwithstanding this, the qualitative
features are robust, with Gn

E (Q2) possessing a zero at Q2 ∼> 10 GeV2. In contrast to the behaviour in Fig. 10,
here the zero moves to smaller Q2 with increasing diquark radius. The effect of our omission of meson cloud
contributions is again evident at small Q2.

8 Chiral Corrections

The framework we have described hitherto defines a dressed-quark core contribution to the nucleons’ electro-
magnetic form factors. As with the mass [28,29], the nucleons’ magnetic moments, and charge and magnetic
radii receive material contributions from the so-called pseudoscalar meson cloud [59,60]. There are two types of
contribution: regularisation-scheme-dependent terms, which are analytic functions of m in the neighbourhood
of vanishing current-quark mass, m = 0; and nonanalytic scheme-independent terms.

For magnetic moments and radii the leading-order scheme-independent contributions are [61]

(µn/p)
1−loop
N A

mπ�0= ± g2
A MN

4π2 f 2
π

mπ , (32)

〈r2
n/p〉1−loop

N A
mπ�0= ±1 + 5g2

A

32π2 f 2
π

ln

(
m2

π

M2
N

)
, (33)

〈(rµ
N )2〉1−loop

N A
mπ�0= −1 + 5g2

A

32π2 f 2
π

ln

(
m2

π

M2
N

)
+ g2

A MN

16π f 2
π µv

1

mπ

, (34)
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Table 12 Quark-core and pseudoscalar meson loop [Eqs. (35)–(37)] contributions to the moments and radii, calculated at the
physical current-quark mass, Eq. (A.23)

µn µp 〈r2
n 〉 〈r2

p〉 〈(rµ
n )2〉 〈(rµ

p )2〉
q(qq) −1.59 2.67 −(0.23)2 (0.67)2 (0.53)2 (0.54)2

π-loop −0.40 0.24 −(0.47)2 (0.47)2 (0.61)2 (0.61)2

Total −1.99 2.91 −(0.52)2 (0.82)2 (0.81)2 (0.81)2

Experiment −1.91 2.79 −(0.34)2 (0.88)2 (0.89)2 (0.84)2

The radii are listed in fm2. Experimental values are quoted from Ref. [49], where available, and otherwise from Ref. [54]

where, experimentally, gA = 1.26, fπ = 0.0924 GeV = 1/(2.13 fm) and µv = µp − µn = 4.7. These terms
reduce the magnitude of both neutron and proton magnetic moments, and increase the magnitudes of the radii.

Whilst these scheme-independent terms are important, at physical values of the pseudoscalar meson masses
they do not usually provide the dominant contribution to observables. That arises from the regularisation-param-
eter-dependent terms, as is apparent for baryon masses in Ref. [28] and for the pion charge radius in Ref. [62].
This is particularly significant for the neutron’s charge radius [31] and for the magnetic moments, in which
connection the regularisation-scheme-dependent terms provide a nonzero contribution in the chiral limit and
have the net effect of increasing |µN |.

Owing to the importance of the chiral loops’ regularisation-parameter-dependent parts we estimate the cor-
rections using modified formulae, which incorporate a single parameter that mimics the effect of regularising
the integrals; namely [31,33,63],

(µn/p)
1−loopR =

(
µπ0

n/p ± g2
A MN

4π2 f 2
π

mπ

)
2

π
arctan

(
λ3

m3
π

)
, (35)

〈r2
n/p〉1−loopR = ±1 + 5g2

A

32π2 f 2
π

ln

(
m2

π

m2
π + λ2

)
, (36)

〈(rµ
N )2〉1−loopR = −1 + 5g2

A

32π2 f 2
π

ln

(
m2

π

m2
π + λ2

)
+ g2

A MN

16π f 2
πµv

1

mπ

2

π
arctan

(
λ

mπ

)
, (37)

wherein µπ0
n/p are the chiral limit values of the meson loop contributions and λ = 0.3 GeV = 1/[0.66 fm] is a

regularisation mass-scale. NB. As required physically, the loop contributions vanish when the meson mass is
much larger than the regularisation scale: very massive states must decouple from low-energy phenomena.

In Table 12 we exemplify the effect of the corrections in Eqs. (35)–(37) to nucleon static properties. The
quark-core values are collected from Tables 6, 7, 8, 10 and 11 herein. The sensitivity of the neutron’s charge
radius is apparent. In relation to the magnetic moments, a recent estimate from numerical simulations of
lattice-regularised QCD [64] gives the following chiral-loop contributions to the nucleons’ magnetic moments
at the physical pion mass: µπ

n = −0.40, µπ
p = 0.24, which are obtained with µπ0

n = −1.05, µπ0
p = 0.88 in

Eq. (35). These results in conjunction with the experimental values point to quark-core magnetic moments of
µ

q(qq)
n = −1.51, µ

q(qq)
p = 2.55, which compare well with our computed moments.4

It is plain in Table 12 that pseudoscalar meson loops alter the proton’s magnetic radius more than its electric
radius. Indeed, without fine tuning, these two initially rather different radii are brought into agreement. As
observed in Ref. [31], this is important in relation to Fig. 10 because it explains why the quark core result
disagrees with data at small momentum transfers. Namely, in the neighbourhood of Q2 = 0 one has

µp
G p

E (Q2)

G p
M (Q2)

= 1 − Q2

6

[
(rp)

2 − (rµ
p )2

]
, (38)

and so with rp > rµ
p , as is the case for the quark core contribution, the ratio falls immediately with increasing

Q2. This is the behaviour in Fig. 10. However, experimentally, and with addition of a pseudoscalar meson
cloud to our quark core, rp = rµ

p . Therefore the complete ratio varies little on 0 < Q2 < 0.6 GeV2.

4 The magnetic moment values in Row 2 of the Table differ slightly (<8%) in magnitude from those reported in Ref. [33]
because an extrapolation is necessary to obtain G M (0) and herein we’ve used a [0, 2] Padé as opposed to a simple quadratic.
Were this significant, it could be corrected by a minor (∼10%) adjustment of µ1+ and κT .
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Fig. 17 Difference between our calculated Pauli form factor and the parametrisation of experimental data in Ref. [44], each
normalised by the appropriate anomalous magnetic moment at Q2 = 0: dashed curve proton; solid curve neutron. The Q2 for
which the difference reaches 20% of its peak value is indicated in each case by a vertical dotted line

The analysis in this section is rudimentary. Nonetheless it illustrates that the dressed-quark core defined by
our Faddeev equation is uniformly compatible with augmentation by a sensibly regulated pseudoscalar meson
cloud. We emphasise that by construction our Faddeev equation explicitly excludes all diagrams that can be
associated with that cloud and so a question of overcounting cannot arise.

It is nevertheless reasonable to inquire into the domain of momentum transfer upon which pseudoscalar
meson loops can contribute materially to nucleon form factors. Regarding this it is relevant to observe that in a
meson-nucleon coupled-channels analysis of the γ N → ∆ transition form factors the cloud contributes 50%
of the M1 form factor’s magnitude at Q2 = 0 but is insignificant by Q2 ≈ 2M2

N [65]. We address this question
via Fig. 17, which compares our computed dressed-quark core Pauli form factors with a contemporary para-
metrisation of experimental data [44]. The differences depicted are consistent with loop corrections providing
a necessary quantitative contribution that is important until Q2 ≈ 2–3M2

N . An analogous figure for the Dirac
form factors presents a comparable picture, although the differences are an order of magnitude smaller and
have longer tails.

9 Epilogue

We described a calculation of a dressed-quark core contribution to nucleon electromagnetic form factors. This
core is defined by the solution of a Poincaré covariant Faddeev equation in which dressed-quarks provide
the elementary degree of freedom and quark-quark correlations are formed therefrom. The two parameters
in the Faddeev equation are diquark masses. They are set by fitting to required nucleon and ∆ masses. We
allowed one parameter in the nucleon-photon vertex; viz., the diquark charge radius. Contemporary continuum
calculations and comparison with extant data indicate that this radius should be commensurate with the pion’s
charge radius. From this foundation we provided a comprehensive analysis and explanation of the form factors.

A feature of our study is the separation of form factor contributions into those from different diagram types
and correlation sectors, and subsequently a flavour separation for each of these. In this way we obtained, for
example, Table 2, which shows amongst other things that the probability of the photon striking a bystander
quark in the proton is 47%. It also enables us to determine, Eq. (27), that rn,u

1 > rn,d
1 ; i.e., that the neutron’s

u-quark Dirac radius is greater than that of the d-quark, and explain the result in terms of the presence of
axial-vector diquark correlations. The dressed-quark magnetic radii have the same ordering.

From our extensive body of results we will here highlight just a few more. For the proton a weighted ratio
of Pauli to Dirac form factors is constant on a domain that begins at Q2/M2

N ≈ 4, Fig. 6. We correlated
this behaviour with the momentum space width of the dominant elements in the proton’s Faddeev amplitude,
Eq. (30). On the other hand, the same ratio for the neutron is not constant on any domain accessible in our
calculation, Fig. 13. In addition, the ratio of Sachs electric and magnetic form factors for the proton exhibits a
zero, Fig. 10. Its position depends on correlations in the Faddeev amplitude and details of the nucleon-photon
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current. Our current best estimate for the zero’s location is Q2 ≈ 8 GeV2. A similar ratio for the neutron
passes through zero at Q2 ≈ 11 GeV2, Fig. 16.

We have defined the nucleon’s dressed-quark core via a Poincaré covariant Faddeev equation and have
seen that pseudoscalar meson loops can be added in a sensible fashion. The framework is successful and
instructive, and unifies a phenomenological description of mesons with that of baryons. Yet it is simple enough
to allow access to numerous form factors and large values of momentum transfer. Importantly, our approach
enables one to chart the interplay between the firmly established and material momentum-dependent dressing
of QCD’s elementary excitations and the observable properties of hadrons. In the near term it will be applied
to nucleon excited states and transition form factors so as to elucidate their dependence on these fundamental
features of QCD. A medium term goal is to extend Ref. [23] and provide a simultaneous description of meson
and baryon observables using a single interaction in a truncation of QCD’s Dyson–Schwinger equations that
can systematically be improved.
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Appendix A: Faddeev Equation

A.1 General structure

The nucleon is represented by a Faddeev amplitude

Ψ = Ψ1 + Ψ2 + Ψ3, (A.1)

where the subscript identifies the bystander quark and, e.g., Ψ1,2 are obtained from Ψ3 by a cyclic permutation
of all the quark labels. We employ the simplest realistic representation of Ψ . The spin- and isospin-1/2 nucleon
is a sum of scalar and axial-vector diquark correlations:

Ψ3(pi , αi , τi ) = N 0+
3 + N 1+

3 , (A.2)

with (pi , αi , τi ) the momentum, spin and isospin labels of the quarks constituting the bound state, and P =
p1 + p2 + p3 the system’s total momentum.

The scalar diquark piece in Eq. (A.2) is

N 0+
3 (pi , αi , τi ) =

[
Γ 0+

(
1

2
p[12]; K

)]τ1τ2

α1α2

∆0+
(K )[S(�; P)u(P)]τ3

α3
, (A.3)

where: the spinor satisfies (Appendix B: Euclidean Conventions)

(iγ · P + M)u(P) = 0 = ū(P)(iγ · P + M), (A.4)

with M the mass obtained by solving the Faddeev equation, and it is also a spinor in isospin space with
ϕ+ = col(1, 0) for the proton and ϕ− = col(0, 1) for the neutron; K = p1+ p2 =: p{12}, p[12] = p1− p2, � :=
(−p{12} + 2p3)/3;∆0+

is a pseudoparticle propagator for the scalar diquark formed from quarks 1 and 2, and
Γ 0+

is a Bethe–Salpeter-like amplitude describing their relative momentum correlation; and S, a 4 × 4 Di-
rac matrix, describes the relative quark-diquark momentum correlation. (S, Γ 0+

and ∆0+
are discussed in

Sect. A.2.) The colour antisymmetry of Ψ3 is implicit in Γ J P
, with the Levi–Civita tensor, εc1c2c3 , expressed

via the antisymmetric Gell–Mann matrices; viz., defining

{H1 = iλ7, H2 = −iλ5, H3 = iλ2}, (A.5)

then εc1c2c3 = (Hc3)c1c2 . [See Eqs. (A.28), (A.29)].
The axial-vector component in Eq. (A.2) is

N 1+
(pi , αi , τi ) =

[
ti Γ 1+

µ

(
1

2
p[12]; K

)]τ1τ2

α1α2
∆1+

µν(K )[Ai
ν(�; P)u(P)]τ3

α3
, (A.6)
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where the symmetric isospin-triplet matrices are

t+ = 1√
2
(τ 0 + τ 3), t0 = τ 1, t− = 1√

2
(τ 0 − τ 3), (A.7)

and the other elements in Eq. (A.6) are straightforward generalisations of those in Eq. (A.3).
The general forms of the matrices S(�; P) and Ai

ν(�; P), which describe the momentum space correlation
between the quark and diquark in the nucleon are described in Refs. [2,45]. The requirement that S(�; P)
represent a positive energy nucleon entails

S(�; P) = s1(�; P) ID +
(

iγ · �̂ − �̂ · P̂ ID

)
s2(�; P) , (A.8)

where (ID)rs = δrs , �̂2 = 1, P̂2 = −1. In the nucleon rest frame, s1,2 describe, respectively, the upper, lower
component of the bound-state nucleon’s spinor. Placing the same constraint on the axial-vector component,
one has

Ai
ν(�; P) =

6∑
n=1

pi
n(�; P)γ5 An

ν(�; P), i = +, 0,− , (A.9)

where (�̂⊥
ν = �̂ν + �̂ · P̂ P̂ν, γ

⊥
ν = γν + γ · P̂ P̂ν)

A1
ν = γ · �̂⊥ P̂ν, A2

ν = −i P̂ν, A3
ν = γ · �̂⊥ �̂⊥,

A4
ν = i �̂⊥

µ, A5
ν = γ ⊥

ν − A3
ν, A6

ν = iγ ⊥
ν γ · �̂⊥ − A4

ν.
(A.10)

One can now write the Faddeev equation satisfied by Ψ3 as
[

S(k; P) u(P)

Ai
µ(k; P) u(P)

]
= − 4

∫
d4�

(2π)4 M(k, �; P)

[S(�; P) u(P)

A j
ν(�; P) u(P)

]
. (A.11)

The kernel in Eq. (A.11) is

M(k, �; P) =
[

M00 (M01)
j
ν

(M10)
i
µ (M11)

i j
µν

]
, (A.12)

with

M00 = Γ 0+
(kq − �qq/2; �qq) ST(�qq − kq) Γ̄ 0+

(�q − kqq/2;−kqq)S(�q)∆0+
(�qq), (A.13)

where: �q = � + P/3, kq = k + P/3, �qq = −� + 2P/3, kqq = −k + 2P/3 and the superscript “T” denotes
matrix transpose; and

(M01)
j
ν = t j Γ 1+

µ (kq − �qq/2; �qq)

×ST(�qq − kq) Γ̄ 0+
(�q − kqq/2;−kqq)S(�q) ∆1+

µν(�qq), (A.14)

(M10)
i
µ = Γ 0+

(kq − �qq/2; �qq)

×ST(�qq − kq)ti Γ̄ 1+
µ (�q − kqq/2;−kqq)S(�q)∆0+

(�qq), (A.15)

(M11)
i j
µν = t jΓ 1+

ρ (kq − �qq/2; �qq)

×ST(�qq − kq)ti Γ̄ 1+
µ (�q − kqq/2;−kqq)S(�q)∆1+

ρν (�qq). (A.16)

A.2 Kernel of the Faddeev equation

To complete the Faddeev equations, Eq. (A.11), one must specify the dressed-quark propagator, the diquark
Bethe–Salpeter amplitudes and the diquark propagators.
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A.2.1 Dressed-Quark Propagator

The dressed-quark propagator has the general form

S(p) = −iγ · pσV (p2) + σS(p2) = 1/[iγ · p A(p2) + B(p2)] (A.17)

and can be obtained from QCD’s gap equation; namely, the Dyson–Schwinger equation for the dressed-quark
self-energy [5]. It is a longstanding prediction of DSE studies in QCD that for light-quarks the wave function
renormalisation and dressed-quark mass:

Z(p2) = 1/A(p2), M(p2) = B(p2)/A(p2), (A.18)

respectively, receive strong momentum-dependent corrections at infrared momenta [3–5]: Z(p2) is suppressed
and M(p2) enhanced. These features are an expression of dynamical chiral symmetry breaking (DCSB) and,
plausibly, of confinement [14]. The enhancement of M(p2) is central to the appearance of a constituent-
quark mass-scale and an existential prerequisite for Goldstone modes. These DSE predictions are confirmed
in numerical simulations of lattice-regularised QCD [6], and the conditions have been explored under which
pointwise agreement between DSE results and lattice simulations may be obtained [7,8,66].

The impact of this infrared dressing on hadron phenomena has long been emphasised [11] and, while
numerical solutions of the quark DSE are now readily obtained, the utility of an algebraic form for S(p) when
calculations require the evaluation of numerous multidimensional integrals is self-evident. An efficacious para-
metrisation of S(p), which exhibits the features described above, has been used extensively in hadron studies
[67]. It is expressed via

σ̄S(x) = 2m̄F(2(x + m̄2)) + F(b1x)F(b3x) [b0 + b2F(εx)] , (A.19)

σ̄V (x) = 1

x + m̄2

[
1 − F(2(x + m̄2))

]
, (A.20)

with x = p2/λ2, m̄ = m/λ,

F(x) = 1 − e−x

x
, (A.21)

σ̄S(x) = λσS(p2) and σ̄V (x) = λ2σV (p2). The mass-scale, λ = 0.566 GeV, and parameter values5

m̄ b0 b1 b2 b3
0.00897 0.131 2.90 0.603 0.185 , (A.22)

were fixed in a least-squares fit to light-meson observables [68,69]. The dimensionless u = d current-quark
mass in Eq. (A.22) corresponds to

m = 5.08 MeV =: mphys. (A.23)

The parametrisation yields a Euclidean constituent-quark mass

M E
u,d = 0.33 GeV, (A.24)

defined as the solution of p2 = M2(p2).
The ratio M E/m = 65 is one expression of DCSB in the parametrisation of S(p). It emphasises the

dramatic enhancement of the dressed-quark mass function at infrared momenta. Another is the chiral-limit
vacuum quark condensate [11]

− 〈q̄q〉0
ζ = λ3 3

4π2

b0

b1b3
ln

ζ 2

Λ2
QCD

, (A.25)

which assumes the value (ΛQCD = 0.2 GeV)

− 〈q̄q〉0
ζ=1 GeV = (0.221 GeV)3. (A.26)

A detailed discussion of the vacuum quark condensate in QCD can be found in Ref. [70,71]

5 ε = 10−4 in Eq. (A.19) acts only to decouple the large- and intermediate-p2 domains.
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A.2.2 Diquark Bethe–Salpeter Amplitudes

The rainbow-ladder DSE truncation yields asymptotic diquark states in the strong interaction spectrum. Such
states are not observed and their appearance is an artefact of the truncation. Higher-order terms in the quark–
quark scattering kernel, whose analogue in the quark–antiquark channel do not much affect the properties of
vector and flavour non-singlet pseudoscalar mesons, ensure that QCD’s quark–quark scattering matrix does
not exhibit singularities which correspond to asymptotic diquark states [18]. Nevertheless, studies with kernels
that don’t generate diquark bound states do support a physical interpretation of the masses, m(qq)J P , obtained
using the rainbow-ladder truncation: the quantity l(qq)J P = 1/m(qq)J P may be interpreted as a range over
which the diquark correlation can propagate within a baryon. These observations motivate an Ansatz for the
quark-quark scattering matrix that is employed in deriving the Faddeev equation:

[Mqq(k, q; K )]tu
rs =

∑
J P=0+,1+,...

Γ̄ J P
(k;−K )∆J P

(K )Γ J P
(q; K ). (A.27)

One manner of specifying the Γ J P
in Eq. (A.27) is to employ the solutions of a rainbow-ladder quark-quark

Bethe–Salpeter equation (BSE), as e.g. in Refs. [23,27,38]. Using the properties of the Gell–Mann matrices
one finds easily that Γ J P

C := Γ J P
C† satisfies exactly the same equation as the J−P colour-singlet meson but

for a halving of the coupling strength [25]. This makes clear that the interaction in the 3̄c(qq) channel is strong
and attractive.

A solution of the BSE equation requires a simultaneous solution of the quark-DSE. However, since we
choose to simplify the calculations by parametrising S(p), we also employ that expedient with Γ J P

, using the
following one-parameter forms:

Γ 0+
(k; K ) = 1

N 0+ HaCiγ5iτ2F(k2/ω2
0+), (A.28)

tiΓ 1+
µ (k; K ) = 1

N 1+ HaiγµCtiF(k2/ω2
1+), (A.29)

with the normalisation, N J P
, fixed by requiring

2 Kµ =
[

∂

∂ Qµ

Π(K , Q)

]K 2=−m2
J P

Q=K
, (A.30)

Π(K , Q) = tr
∫

d4q

(2π)4 Γ̄ (q;−K )S(q + Q/2)Γ (q; K )ST(−q + Q/2). (A.31)

The Ansätze of Eqs. (A.28), (A.29) retain only that single Dirac-amplitude which would represent a point
particle with the given quantum numbers in a local Lagrangian density. They are usually the dominant ampli-
tudes in a solution of the rainbow-ladder BSE for the lowest mass J P diquarks [26,27] and mesons [20,72,73].

A.2.3 Diquark Propagators

Solving for the quark–quark scattering matrix using the rainbow-ladder truncation yields free particle prop-
agators for ∆J P

in Eq. (A.27). As already noted, however, higher-order contributions remedy that defect,
eliminating asymptotic diquark states from the spectrum. The attendant modification of ∆J P

can be modelled
efficiently by simple functions that are free-particle-like at spacelike momenta but pole-free on the timelike
axis [18]; namely,6

∆0+
(K ) = 1

m2
0+

F(K 2/ω2
0+), (A.32)

∆1+
µν(K ) =

(
δµν + KµKν

m2
1+

)
1

m2
1+

F(K 2/ω2
1+), (A.33)

6 These forms satisfy a sufficient condition for confinement because of the associated violation of reflection positivity. See
Sect. 2 of Ref. [14] for a brief discussion.
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where the two parameters m J P are diquark pseudoparticle masses and ωJ P are widths characterising Γ J P
.

Herein we require additionally that

d

d K 2

(
1

m2
J P

F(K 2/ω2
J P )

)−1
∣∣∣∣∣∣
K 2=0

= 1 ⇒ ω2
J P = 1

2
m2

J P , (A.34)

which is a normalisation that accentuates the free-particle-like propagation characteristics of the diquarks
within the hadron.

Appendix B: Euclidean Conventions

In our Euclidean formulation:

p · q =
4∑

i=1

pi qi ; (B.1)

{γµ, γν} = 2δµν; γ †
µ = γµ; σµν = i

2
[γµ, γν]; tr[γ5γµγνγργσ ] = −4εµνρσ , ε1234 = 1. (B.2)

A positive energy spinor satisfies

ū(P, s)(iγ · P + M) = 0 = (iγ · P + M)u(P, s), (B.3)

where s = ± is the spin label. It is normalised:

ū(P, s)u(P, s) = 2M, (B.4)

and may be expressed explicitly:

u(P, s) = √
M − iE

(
χs

σ · P
M − iE χs

)
, (B.5)

with E = i
√

P2 + M2,

χ+ =
(

1
0

)
, χ− =

(
0
1

)
. (B.6)

For the free-particle spinor, ū(P, s) = u(P, s)†γ4.
The spinor can be used to construct a positive energy projection operator:

Λ+(P) := 1

2M

∑
s=±

u(P, s)ū(P, s) = 1

2M
(−iγ · P + M) . (B.7)

A negative energy spinor satisfies

v̄(P, s)(iγ · P − M) = 0 = (iγ · P − M)v(P, s), (B.8)

and possesses properties and satisfies constraints obtained via obvious analogy with u(P, s).
A charge-conjugated Bethe–Salpeter amplitude is obtained via

Γ̄ (k; P) = C†Γ (−k; P)TC, (B.9)

where “T” denotes a transposing of all matrix indices and C = γ2γ4 is the charge conjugation matrix, C† = −C .
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Appendix C: Nucleon–Photon Vertex

In order to explicate the vertex depicted in Fig. 2 we write the scalar and axial-vector components of the
nucleons’ Faddeev amplitudes in the form [cf. Eq. (A.11)]

Ψ (k; P) =
[

Ψ s(k; P)

Ψ k
µ(k; P)

]
=

[
S(k; P)u(P)

Ak
µ(k; P)u(P)

]
, k = +, 0,−. (C.1)

For explicit calculations, we work in the Breit frame: Pµ = P B F
µ − Qµ/2, P ′

µ = P B F
µ + Qµ/2 and P B F

µ =
(0, 0, 0, i

√
M2

n + Q2/4), and write the electromagnetic current matrix element as [cf. Eq. (2)]

〈
P ′| Ĵ em

µ |P
〉
= Λ+(P ′)

[
γµG E + Mn

P B F
µ

P2
B F

(G E − G M )

]
Λ+(P), (C.2)

=
∫

d4 p

(2π)4

d4k

(2π)4 Ψ̄ (−p, P ′)J em
µ (p, P ′; k, P)Ψ (k, P). (C.3)

In Fig. 2 we have separated the current, J em
µ (p, P ′; k, P), into a sum of six terms, each of which we sub-

sequently make precise. NB. Diagrams 1, 2 and 4 are one-loop integrals, which we evaluate by Gaußian
quadrature. The remainder, Diagrams 3, 5 and 6, are two-loop integrals, for whose evaluation Monte–Carlo
methods are employed. A technical aspect concerning the computation is described in Appendix D: Chebyshev
Expansion.

C.1 Diagram 1

This represents the photon coupling directly to the bystander quark. It is expressed as

J qu
µ = S(pq)Γ̂ qu

µ (pq; kq)S(kq)
(
∆0+

(ks) + ∆1+
(ks)

)
(2π)4δ4(p − k − η̂Q), (C.4)

where Γ̂
qu
µ (pq; kq) = QqΓµ(pq; kq), with Qq = diag[2/3,−1/3] being the quark electric charge matrix,

and Γµ(pq ; kq) is the dressed-quark-photon vertex. In Eq. (C.4) the momenta are

kq = ηP + k, pq = ηP ′ + p,
kd = η̂P − k, pd = η̂P ′ − p,

(C.5)

with η + η̂ = 1. The results reported herein were obtained with η = 1/3, which provides a single quark with
one-third of the baryon’s total momentum and is thus a natural choice. Notably, as our approach is manifestly
Poincaré covariant, the precise value is immaterial so long as the numerical methods preserve that covariance.
Calculations converge most quickly with the natural choice.

It is a necessary condition for current conservation that the quark-photon vertex satisfy the Ward–Takahashi
identity:

QµiΓµ(�1, �2) = S−1(�1) − S−1(�2), (C.6)

where Q = �1 − �2 is the photon momentum flowing into the vertex. Since the quark is dressed, Sect. A.2.1,
the vertex is not bare; i.e., Γµ(�1, �2) �= γµ. It can be obtained by solving an inhomogeneous Bethe–Salpeter
equation, which was the procedure adopted in the DSE calculation that successfully predicted the electromag-
netic pion form factor [39,73]. However, since we have parametrised S(p), we follow Ref. [11] and write
[74]

iΓµ(�1, �2) = iΣA(�2
1, �

2
2)γµ + 2kµ

[
iγ · kµ∆A(�2

1, �
2
2) + ∆B(�2

1, �
2
2)

] ; (C.7)

with k = (�1 + �2)/2, Q = (�1 − �2) and

ΣF (�2
1, �

2
2) = 1

2

[
F(�2

1) + F(�2
2)

]
, ∆F (�2

1, �
2
2) = F(�2

1) − F(�2
2)

�2
1 − �2

2

, (C.8)

where F = A, B; viz., the scalar functions in Eq. (A.17). It is critical that Γµ in Eq. (C.7) satisfies Eq. (C.6)
and very useful that it is completely determined by the dressed-quark propagator.
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C.2 Diagram 2

This figure depicts the photon coupling directly to a diquark correlation. It is expressed as

J dq
µ = ∆i (pd)

[
Γ̂ dq

µ (pd ; kd)
]i j

∆ j (kd)S(kq)(2π)4δ4(p − k + ηQ) , (C.9)

i, j = s, +, 0,−, with [Γ̂ dq
µ (pd; kd)]i j = diag[Q0+Γ 0+

µ , Q1+Γ 1+
µ ], where Q0+ = 1/3 and Γ 0+

µ is given in

Eq. (C.14), and Q1+ = diag[4/3, 1/3,−2/3] with Γ 1+
µ given in Eq. (C.16). Naturally, the diquark propagators

match the line to which they are attached.
In the case of a scalar correlation, the general form of the diquark-photon vertex is

Γ 0+
µ (�1, �2) = 2 kµ f+(k2, k · Q, Q2) + Qµ f−(k2, k · Q, Q2) . (C.10)

If one is dealing with an elementary scalar correlation, then the Ward–Takahashi identity reads:

Qµ Γ 0+
µ (�1, �2) = Π0+

(�2
1) − Π0+

(�2
2), Π J P

(�2) = {∆J P
(�2)}−1. (C.11)

However, for a composite system of the type we consider this identity is modified; viz. [75],

Qµ Γ 0+
µ (�1, �2) =

[
Π0+

(�2
1) − Π0+

(�2
2)

]
Fqq(Q2) , (C.12)

where

Fqq(Q2) = 1

1 + 1
6r2

qq Q2
(C.13)

is a form factor describing the distribution of charge within the correlation.
The evaluation of scalar diquark elastic electromagnetic form factors in Ref. [38] is a first step toward calcu-

lating Γ 0+
µ (�1, �2). However, in providing only an on-shell component, it is insufficient for our requirements.

We choose to adapt Eq. (C.7) to our needs and employ

Γ 0+
µ (�1, �2) = kµ ∆

Π0+ (�2
1, �

2
2) Fqq(Q2) , (C.14)

with the definition of ∆
Π0+ (�2

1, �
2
2) apparent from Eq. (C.8) and the value of rqq given in Eq. (10).

Equation (C.14) is an Ansatz that satisfies Eq. (C.12), is completely determined by quantities introduced
already and is free of kinematic singularities on the relevant domain. It implements f− ≡ 0, which is a
requirement for elastic form factors, and guarantees a valid normalisation of electric charge; viz.,

lim
�′→�

Γ 0+
µ (�′, �) = 2 �µ

d

d�2 Π0+
(�2)

�2∼0= 2 �µ , (C.15)

owing to Eq. (A.34). NB. We have factored the fractional diquark charge, which therefore appears subsequently
in our calculations as a simple multiplicative factor.

For the case in which the struck diquark correlation is axial-vector and the scattering is elastic, the vertex
assumes the form [76]: 7

Γ 1+
µαβ(�1, �2) = −

3∑
i=1

Γ
[i]
µαβ(�1, �2), (C.16)

with (Tαβ(�) = δαβ − �α�β/�2)

Γ
[1]
µαβ(�1, �2) = (�1 + �2)µTαλ(�1)Tλβ(�2)F1(�

2
1, �

2
2), (C.17)

Γ
[2]
µαβ(�1, �2) = [

Tµα(�1)Tβρ(�2)�1ρ + Tµβ(�2)Tαρ(�1)�2ρ

]
F2(�

2
1, �

2
2), (C.18)

Γ
[3]
µαβ(�1, �2) = − 1

2m2
1+

(�1 + �2)µTαρ(�1)�2ρTβλ(�2)�1λF3(�
2
1, �

2
2). (C.19)

7 If the scattering is inelastic the general form of the vertex involves eight scalar functions [77]. For simplicity, we ignore the
additional structure in this Ansatz.
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This vertex satisfies:

�1αΓ 1+
µαβ(�1, �2) = 0 = Γ 1+

µαβ(�1, �2)�2β, (C.20)

which is a general requirement of the elastic electromagnetic vertex of axial-vector bound states and guarantees
that the interaction does not induce a pseudoscalar component in the axial-vector correlation. We note that the
electric, magnetic and quadrupole form factors of an axial-vector bound state are expressed [76]

G1+
E (Q2) = F1 + 2

3
τ1+ G1+

Q (Q2), τ1+ = Q2

5 m2
1+

, (C.21)

G1+
M(Q2) = −F2(Q2), (C.22)

G1+
Q (Q2) = F1(Q2) + F2(Q2) + (1 + τ1+) F3(Q2). (C.23)

Owing to the fact that Γ J P

C := Γ J P
C† satisfies exactly the same Bethe–Salpeter equation as the J−P

colour-singlet meson but for a halving of the coupling strength, the vector meson form factor calculation in
Ref. [40] might become useful as a guide in understanding the form factors in Eqs. (C.16)–(C.19). However, in
providing only an on-shell component, that information is insufficient for our requirements. Hence we employ
the following Ansätze:

F1(�
2
1, �

2
2) = ∆

Π1+ (�2
1, �

2
2)Fqq(Q2), (C.24)

F2(�
2
1, �

2
2) = −F1 + (1 − τ1+)(τ1+ F1 + 1 − µ1+)d(τ1+), (C.25)

F3(�
2
1, �

2
2) = −(χ1+(1 − τ1+)d(τ1+) + F1 + F2)d(τ1+), (C.26)

with d(x) = 1/(1 + x)2. This construction ensures a valid electric charge normalisation for the axial-vector
correlation; viz.,

lim
�′→�

Γ 1+
µαβ(�′, �) = Tαβ(�)

d

d�2 Π1+
(�2)

�2∼0= Tαβ(�)2�µ , (C.27)

owing to Eq. (A.34), and current conservation

lim
�2→�1

QµΓ 1+
µαβ(�1, �2) = 0. (C.28)

The diquark’s static electromagnetic properties follow:

G1+
E (0) = 1, G1+

M(0) = µ1+, G1+
Q (0) = −χ1+ . (C.29)

For an on-shell or pointlike axial-vector: µ1+ = 2; and χ1+ = 1. In addition, Eqs. (C.16)–(C.19) with
Eqs. (C.24)–(C.26) realise the constraints of Ref. [78]; namely, independent of the values of µ1+ and χ1+ , the
form factors assume the ratios

G1+
E (Q2) : G1+

M(Q2) : G1+
Q (Q2)

Q2→∞=
(

1 − 2

3
τ1+

)
: 2 : −1. (C.30)

It is noteworthy that within a nucleon the diquark correlation is not on-shell. Hence, in contrast with
Ref. [31], we do not assume herein that a point-particle value for the magnetic moment in Eq. (C.29) serves
as a good reference point. Instead we employ the value determined in Ref. [33]:

µ1+ = 0.37 , (C.31)

which is in accord with that obtained following the approach in Ref. [23]. While equally one need not employ
the point-particle value for χ1+ , changing to χ1+ = 0 has little impact on the results [31]. We therefore stay
with χ1+ = 1.
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C.3 Diagram 3

This image depicts a photon coupling to the quark that is exchanged as one diquark breaks up and another is
formed. It is expressed as

J ex
µ = −1

2
S(kq)∆i (kd)Γ i (p1, kd)ST (q)Γ̂ quT

µ (q ′, q)ST (q ′)Γ̄ jT (p′
2, pd)∆ j (pd)S(pq), (C.32)

wherein the vertex Γ̂
qu
µ appeared in Eq. (C.4). While this is the first two-loop diagram we have described,

no new elements appear in its specification: the dressed-quark-photon vertex was discussed in Sect. C.1. In
Eq. (C.32) the momenta are

q = η̂P − ηP ′ − p − k, q ′ = η̂P ′ − ηP − p − k,
p1 = (pq − q)/2, p′

2 = (−kq + q ′)/2,
p′

1 = (pq − q ′)/2, p2 = (−kq + q)/2.
(C.33)

It is noteworthy that the process of quark exchange provides the attraction necessary in the Faddeev equa-
tion to bind the nucleon. It also guarantees that the Faddeev amplitude has the correct antisymmetry under the
exchange of any two dressed-quarks. This key feature is absent in models with elementary (noncomposite)
diquarks. The full contribution is obtained by summing over the superscripts i, j , which can each take the
values 0+, 1+.

C.4 Diagram 4

This differs from Diagram 2 in expressing the contribution to the nucleons’ form factors owing to an elec-
tromagnetically induced transition between scalar and axial-vector diquarks. The explicit expression is given
by Eq. (C.9) with [Γ̂ dq

µ (pd ; kd)]i= j = 0, and [Γ̂ dq
µ (pd; kd)]1,2 = ΓS A and [Γ̂ dq

µ (pd; kd)]2,1 = ΓAS . This
transition vertex is a rank-2 pseudotensor, kindred to the matrix element describing the ρ γ ∗π0 transition [79],
and can therefore be expressed

Γ
γα

S A (�1, �2) = −Γ
γα

AS (�1, �2) = i

MN
T (�1, �2)εγαρλ�1ρ�2λ, (C.34)

where γ, α are, respectively, the vector indices of the photon and axial-vector diquark. For simplicity we
proceed under the assumption that

T (�1, �2) = κT ; (C.35)

A typical on-shell value for the dimensionless normalisation is κT ∼ 2 [80]. However, as with µ1+ , we rec-
ognise herein that this value is not a useful reference point because, for the processes described by Fig. 2, κT
can be much smaller in magnitude. We use the value determined in Ref. [33]:

κT = 0.12. (C.36)

This diagram impacts upon the nucleons’ magnetic form factors [2,31,33].

C.5 Diagrams 5 and 6

These two-loop diagrams are the so-called “seagull” terms, which appear as partners to Diagram 3 and arise
because binding in the nucleons’ Faddeev equations is effected by the exchange of a dressed-quark between
nonpointlike diquark correlations [36]. The explicit expression for their contribution to the nucleons’ form
factors is

J sg
µ = 1

2
S(kq)∆i (kd)

(
Xi

µ(pq , q ′, kd)ST (q ′)Γ̄ jT (p′
2, pd)

− Γ i (p1, kd)ST (q)X̄ j
µ(−kq ,−q, pd)

)
∆ j (pd)S(pq), (C.37)

where, again, the superscripts are summed.
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The new elements in these diagrams are the couplings of a photon to two dressed-quarks as they either
separate from (Diagram 5) or combine to form (Diagram 6) a diquark correlation. As such they are components
of the five point Schwinger function which describes the coupling of a photon to the quark-quark scattering
kernel. This Schwinger function could be calculated, as is evident from the computation of analogous Schw-
inger functions relevant to meson observables [81]. However, such a calculation provides relevant input only
when a uniform truncation of the DSEs has been employed to calculate each of the elements described hitherto.
We must instead employ an algebraic parametrisation [36], which for Diagram 5 reads

X J P

µ (k, Q) = eby
4kµ − Qµ

4k · Q − Q2

[
Γ J P

(k − Q/2) − Γ J P
(k)

]

+eex
4kµ + Qµ

4k · Q + Q2

[
Γ J P

(k + Q/2) − Γ J P
(k)

]
, (C.38)

with k the relative momentum between the quarks in the initial diquark, eby the electric charge of the quark
which becomes the bystander, and eex the charge of the quark that is reabsorbed into the final diquark. Diagram 6
has

X̄ J P

µ (k, Q) = eby
4kµ + Qµ

4k · Q + Q2

[
Γ̄ J P

(k + Q/2) − Γ̄ J P
(k)

]

+eex
4kµ − Qµ

4k · Q − Q2

[
Γ̄ J P

(k − Q/2) − Γ̄ J P
(k)

]
, (C.39)

where Γ̄ J P
(�) is the charge-conjugated amplitude, Eq. (B.9). Plainly, these terms vanish if the diquark correla-

tion is represented by a momentum-independent Bethe–Salpeter-like amplitude; i.e., the diquark is pointlike.
It is naturally possible to use more complicated Ansätze [23]. However, like Eq. (C.14), Eqs. (C.38) and

(C.39) are simple forms, free of kinematic singularities and sufficient to ensure the nucleon-photon vertex
satisfies the Ward–Takahashi identity when the composite nucleon is obtained from the Faddeev equation.

Appendix D: Chebyshev Expansion

In solving the Faddeev equation we employ a Chebyshev expansion of the scalar functions appearing in the
Faddeev amplitude and wave function in order to restrain the use of computer memory. (See, e.g., Ref. [20].)
The results herein were obtained with twelve terms in both. The Chebyshev-expanded functions then define
the Faddeev amplitude that appears and is evaluated in the expressions for the form factors. Without due care,
this can lead to a problem; namely, with increasing Q2 a function can be computed outside the expansion’s
domain of convergence.

Consider a function F(k2, k · P; P2), which represents a term in the Faddeev amplitude. It is a function of
only two variables: k2 and k · P , where k is the relative quark-diquark momentum, because the total momentum
always satisfies P2 = −M2, where M is the bound-state’s mass. In the bound-state’s rest frame one can define
an angle α through

i |k|M cos α := k · P. (D.1)

Then, with {Ui (x), j = 1 . . . ∞} being Chebyshev polynomials of the second kind,

F(k2, k · P; −M2) = lim
Nm→∞

Nm∑
j=0

jF(|k|, i M;−M2) U j (cos β) . (D.2)

For any finite Nm the expansion in Eq. (D.2) is a true approximation to the k · P-dependence of the function F
in the sense that, with increasing Nm , the right-hand-side (rhs) is uniformly pointwise an increasingly accurate
representation of the function. The lhs of Eq. (D.2) is Poincaré invariant. Hence, in the limit Nm → ∞, so is
the rhs. These statements are true so long as cos α defined in Eq. (D.1) satisfies −1 ≤ cos α ≤ 1.

In calculating a form factor one must compute the Faddeev amplitude of a bound-state that is not at
rest. In the Breit frame, e.g., the total momentum can be written as P = (0, 0,±Q/2, i E(Q/2)), where
E2(Q/2) = M2 + Q2/4, the bound-state is moving with three momentum ±Q/2 and

k · P = ±1

2
|k|Q cos θ sin β + i |k|E(Q) cos β, (D.3)
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with k expressed using the standard definition of hyperspherical coordinates. In principle, as demonstrated in
Ref. [40], this is not a problem in a Poincaré covariant framework. However, it can consume large amounts of
computer memory and time. We therefore proceed by writing

k · P = i |k|E(Q)

[
∓ i Q

2E(Q)
cos θ sin β + cos β

]
=: i |k|E(Q)z, (D.4)

in which case the real and imaginary parts of z are bounded in magnitude by one, and then define

F(k2, k · (P ± Q/2);−M2) =
Nm∑
j=0

j F(|k|, i E(Q); −M2)U j (z). (D.5)

Appendix E: Form Factor Notation

We represent all form factors by their usual symbols. Hence, the notation can be introduced via an exemplar;
viz., the proton’s Pauli form factor, F p

1 .

• F p,q
1 –Sum of all contributions to F p

1 that can be represented by Diagram 1 in Fig. 2; i.e., in which the
photon interacts with a bystander quark, either u or d . P p,q

1 = F p,q
1 (Q2 = 0) gauges the probability that

the photon interacts with a bystander quark.
• F p,c

1 –Sum of all contributions to F p
1 that can be represented by either Diagram 2 or 4; i.e., in which the

photon interacts with a diquark correlation, either scalar or axial-vector, or excites a transition between
them. P p,c

1 = F p,c
1 (Q2 = 0) gauges the probability that the photon interacts with a diquark.

• F p,e
1 –Sum of all contributions to F p

1 that can be represented by one of Diagrams 3, 5 or 6; i.e., in which
the photon interacts with a diquark in association with its breakup. P p,e

1 = F p,e
1 (Q2 = 0) gauges the

probability that the photon acts in association with diquark breakup.
NB. F p,q

1 + F p,c
1 + F p,e

1 = F p
1 .

• F p,u
1 –Sum of all contributions to F p

1 in Fig. 2 that are proportional to the charge of a u-quark, eu ; i.e., the
total u-quark contribution F p

1 .
• F p,q,u

1 –Sum of all contributions to F p,u
1 that can be represented by Diagram 1 in Fig. 2; i.e., in which the

photon interacts with a bystander u-quark.
• F p,c,u

1 –Sum of all contributions to F p
1 that can be represented by either Diagram 2 or 4 and are proportional

to eu ; i.e., in which the photon resolves a u-quark within a diquark correlation.
• F p,e,u

1 –Sum of all contributions to F p,u
1 that can be represented by one of Diagrams 3, 5 or 6 and are

proportional to eu ; i.e., in which the photon interacts with a u-quark in association with the breakup of a
diquark.
NB. F p,q,u

1 + F p,c,u
1 + F p,e,u

1 = F p,u
1 ; F p,u

1 (0) = 2eu; 2eu P p,α,u
1 := F p,α,u

1 (Q2 = 0), α = q, d, e.

• F p,d
1 and related functions are defined in direct analogy with those connected to F p,u

1 .

NB. F p,q,d
1 + F p,c,d

1 + F p,e,d
1 = F p,d

1 ; F p,d
1 (0) = ed; ed P p,α,d

1 := F p,α,d
1 (Q2 = 0), α = q, d, e.

• F p,s
1 —Sum of all contributions to F p

1 in Fig. 2 that involve a scalar diquark component in both Ψi and Ψ f .
P p,s

1 = F p,s
1 (Q2 = 0) gauges the probability that the photon interacts with a scalar diquark component of

the nucleon.
• F p,a

1 —Sum of all contributions to F p
1 that involve an axial-vector diquark component in both Ψi and

Ψ f . P p,a
1 = F p,a

1 (Q2 = 0) gauges the probability that the photon interacts with an axial-vector diquark
component of the nucleon.

• F p,m
1 —Sum of all contributions to F p

1 in which the diquark component of Ψi is different to that in Ψ f .
P p,m

1 = F p,m
1 (Q2 = 0) gauges the probability that the photon induces a transition between diquark

components of the incoming and outgoing nucleon.
NB. F p,s

1 + F p,a
1 + F p,m

1 = F p
1 .

• F p,s,u
1 —Sum of all contributions to F p

1 in Fig. 2 that involve a scalar diquark component in both Ψi and
Ψ f , and are proportional to eu ; i.e., in which a u-quark is resolved in the presence of a scalar diquark.

• F p,a,u
1 —Sum of all contributions to F p

1 that involve an axial-vector diquark component in both Ψi and Ψ f ,
and are proportional to eu .
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• F p,m,u
1 —Sum of all contributions to F p

1 that are proportional to eu and in which the diquark component
of Ψi is different to that in Ψ f .
NB. F p,s,u

1 + F p,a,u
1 + F p,m,u

1 = F p,u
1 ; 2eu P p,α,u

1 := F p,α,u
1 (Q2 = 0), α = s, a, m.

• F p,s,d
1 and similar functions are defined in direct analogy with those connected to F p,s,u

1 .

NB. F p,s,d
1 + F p,a,d

1 + F p,m,d
1 = F p,d

1 ; ed P p,α,d
1 := F p,α,d

1 (Q2 = 0), α = s, a, m.
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