
Few-Body Syst (2009) 45: 1–10
DOI 10.1007/s00601-008-0003-6

Ch. Elster · W. Glöckle · H. Witała

A New Approach to the 3D Faddeev Equation
for Three-body Scattering

Received: 10 July 2008 / Accepted: 9 September 2008 / Published online: 14 October 2008
© Springer-Verlag 2008

Abstract A novel approach to solve the Faddeev equation for three-body scattering at arbitrary energies is
proposed. This approach disentangles the complicated singularity structure of the free three-nucleon propagator
leading to the moving and logarithmic singularities in standard treatments. The Faddeev equation is formulated
in momentum space and directly solved in terms of momentum vectors without employing a partial wave
decomposition. In its simplest form the Faddeev equation for identical bosons, which we are using, is an
integral equation in five variables, magnitudes of relative momenta and angles. The singularities of the free
propagator and the deuteron propagator are now both simple poles in two different momentum variables, and
thus can both be integrated with standard techniques.

1 Introduction

In 1960 L.D. Faddeev formulated his mathematically rigorous scattering theory for three particles by proposing
a set of three coupled integral equations, which do have a unique solution [1–3]. In the first numerical reali-
zations of this approach, separable interactions were introduced, reducing the three-body equations to a set of
one-dimensional coupled integral equations, whose numerical solutions was feasible at the time [4,5]. Despite
a simplification due to the choice of the two-body interaction, the standard formulation of the momentum
space Faddeev equations in the continuum contains for the free three-body propagator a complicated singula-
rity structure within the integral kernel [6–8]. These complications arise because the position of the propagator
cut does not only depend on the total energy of the system but also on external momentum variables on a grid
(thus the term moving singularities). In addition branch points occur leading to logarithmic singularities.

It is possible to carry out the integration along a path in the complex plane, thus avoiding to directly deal
with these singularities, but indirectly imposing conditions on the analytical properties of the two-body force.
This method of contour deformation was introduced for separable potentials by Hetherington and Schick [9]
and perfected by Cahill and Sloan [10]. The need to use realistic forces, which are predominantly local, led to
methods integrating the singularities on the real momentum axis [11]. It took until the 1980s until the Faddeev
equations were solved in the continuum with a realistic nucleon–nucleon (NN) force as input [12,13].

During the last two decades calculations of nucleon–deuteron scattering experienced large improvements
and refinements. It is fair to say that below about the pion production projectile energy the momentum space
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Faddeev equations for three-nucleon scattering can now be solved with high accuracy for the most modern
two- and three-nucleon forces. A summary of these achievements can be found in [14–18]. The approach
described there is based on using angular momentum eigenstates for the two- and three-body systems. This
partial wave decomposition replaces the continuous angle variables by discrete orbital angular momentum
quantum numbers, and thus reduces the number of continuous variables to be discretized in a numerical treat-
ment to two. For low projectile energies the procedure of considering orbital angular momentum components
appears physically justified due to arguments related to the centrifugal barrier and the short range of the nuclear
force. However, when considering three nucleon scattering at higher energies, it appears natural to avoid a
partial wave representation completely and work directly with vector variables. Only recently exact Faddeev
calculations for three-body scattering in the intermediate energy regime became available. The formulation
and numerical realization based on vector variables for the nonrelativistic Faddeev equations [19,20] as well
as fully Poincaré invariant ones [21,22] have been carried out for scalar interactions up to projectile energies
of 2 GeV.

Despite the technical sophistication with which the Faddeev equations in the continuum are solved today, the
treatment of the singularity structure of the free three-nucleon propagator experienced only minor modifications
from the original suggestion [13], e.g. in [19] the logarithmic singularities are integrated semi-analytically with
splines in contrast to the earlier subtraction techniques. However, it would be most desirable to have a kernel
without any logarithmic singularities. In [23] a solution to this long lasting technical challenge is proposed and
successfully carried out in the context of the partial wave decomposed Faddeev equations. It is the purpose of
this paper to examine this suggestion in the context of a three-dimensional treatment of the Faddeev equation
and introduce a kernel in which only simple poles in one variable occur. Those poles can than be integrated
by standard subtraction techniques.

In Sect. 2, we briefly revisit the form of the nonrelativistic Faddeev equation used in previous work [19]
to allow an easy comparison of the differences in our new approach. In Sect. 3, we describe in detail the
simplification of the singularity structure of the free three-body propagator, and in Sect. 4 we complete the
calculation with the remaining angular integrations and connect to previous work in calculating the operators
for elastic and breakup scattering. We conclude in Sect. 5.

2 The Faddeev Equation for Three Identical Bosons

There are various presentations of three-body scattering in the Faddeev scheme [1–3] presented in the litera-
ture [8,14,24]. We consider here the Faddeev equation for identical particles in the form

T |φ〉 = t P|φ〉 + t PG0T |φ〉. (1)

The driving term of this integral equation consists of a two-body t-matrix t , the sum P of a cyclic and anticyclic
permutation of three identical particles, and the initial state |φ〉 = |ϕdq0〉, composed of a two-body bound
state and the momentum eigenstate of the projectile particle. The kernel of Eq. (1) contains the free three-body
propagator, G0 = (E − H0 + iε)−1, where E is the total energy in the center-of-momentum (c.m.) frame. The
operator T determines both the full breakup amplitude

U0 = (1 + P)T (2)

and the amplitude for elastic scattering

U = PG−1
0 + PT . (3)

For the explicit solution of Eq. (1) the standard Jacobi momenta p, the relative momentum in the subsystem,
and q, the relative momentum of the spectator to the subsystem are introduced. The momentum states are
normalized according to 〈p′q′|pq〉 = δ3(p′ − p) δ3(q′ − q). Projecting Eq. (1) onto these basis states leads to

T (p, q; q0) = T0(p, q; q0)+
∫

d3 p′d3 p′′d3q ′′t (p, p′; ε)〈p′q|P|p′′q ′′〉 1

E + iε − E ′′ T (p′′, q′′; q0). (4)

Here we abbreviate 〈pq|T |ϕdq0〉 ≡ T (p, q; q0) and the driving term as 〈pq|t P|ϕdq0〉 ≡ T0(p, q; q0). Under
the integral we take advantage of the fact that the two-body t-matrix only depends on the relative momenta p
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and p′ of the subsystem, and the thus the t-matrix is evaluated at the energy ε = E − 3
4m q2. The energy E ′′

of the free three-body propagator is given by

E ′′ = 1

m

(
p′′2 + 3

4
q ′′2

)
. (5)

The permutation operator is explicitly given as

〈p′q|P|p′′q′′〉 = δ(p′ + π1) δ(p′′ − π2) + δ(p′ − π1) δ(p′′ + π2), (6)

with the ‘shifted’ momenta

π1 = 1

2
q + q′′,

(7)
π2 = q + 1

2
q′′.

Inserting Eqs. (5)–(7) into Eq. (4) leads to

T (p, q, q0) = T0(p, q, q0) +
∫

d3 p′d3 p′′d3q ′′ t (p, p ′; ε)

× [
δ(p′ + π1) δ(p′′ − π2) + δ(p′ − π1) δ(p ′′ + π2)

]

× 1

E + iε − E ′′ T (p′′, q′′, q0). (8)

The direct evaluation of the matrix elements of the permutation operator gives

T (p, q, q0) = T0(p, q, q0) +
∫

d3q ′′

×
[

t (p, −π1; ε)
1

E + iε − E ′′ T (π2, q′′, q0)

+ t (p, π1; ε)
1

E + iε − E ′′ T (−π2, q′′, q0)

]
. (9)

Defining a symmetrized t-matrix

ts(p,π1; ε) = t (p, π1; ε) + t (p,−π1; ε) (10)

and realizing that for identical bosons T (π2, q′′; q0) = T (−π2, q′′; q0) one arrives at the expression

T (p, q, q0) = T0(p, q, q0) +
∫

d3q ′′ts(p, π1; ε)
1

E + iε − 1
m (q2 + q ′′2 + q · q′′)

T (π2, q′′, q0), (11)

which is the starting point for the numerical calculations presented in [19]. The free propagator in Eq. (11)
clearly displays the difficulties inherent in numerically solving the three-body scattering problem in this form.
The propagator depends on the magnitude of q ′′ and through the scalar product q · q′′ on the angle between
q′′ and a fixed axis given by q. The integration over d3q ′′ leads to singularities with respect to that angle for
each fixed value of q ′′ and q . These singularities are integrable, but lead to logarithmic singularities in the
variable q ′′. However, despite being integrable, they pose numerical challenges. For scattering calculations in
a three-dimensional approach these challenges were met in [19,20] for the nonrelativistic Faddeev equation
and in [21,22] for Poincaré invariant Faddeev equation. Nonetheless, three-body scattering calculations would
be less challenging, if these singularities in the angles could be extricated from the ones in the momenta. A
suggestion for accomplishing this task is made in Sect. 3, following [23].
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3 A New Look at the Singularity Structure of the Free Three-body Propagator

As demonstrated in the previous section, using the vector variables in the evaluation of the matrix elements of
the permutation operator of Eq. (6) leads to the representation of the free three-body propagator of Eq. (11),
containing both integration variables q ′′ and q̂ · q̂′′. If we want to disentangle those two variables, we should
start by separating the angular piece of the delta functions from the piece containing magnitudes of momenta
and write

δ(p′ + π1) δ(p′′ − π2) = δ(p′ − π1)

p′2
δ(p′′ − π2)

p′′2 δ(p̂′ + π̂1)δ(p̂′′ − π̂2),

(12)

δ(p′ − π1) δ(p′′ + π2) = δ(p′ − π1)

p′2
δ(p′′ − π2)

p′′2 δ(p̂′ − π̂1)δ(p̂′′ + π̂2).

This leads to

T (p, q, q0) = T0(p, q, q0) +
∫

dp′ p′2dp̂′ dp′′ p′′2dp̂′′ d3q ′′t (p, p′, ε)

× [
δ(p̂′ + π̂1) δ(p̂′′ − π̂2) + δ(p̂′ − π̂1) δ(p̂′′ + π̂2)

]

×δ(p′ − π1)

p′2
δ(p′′ − π2)

p′′2
1

E + iε − E ′′ T (p′′, q′′, q0)

= T0(p, q, q0) +
∫

d3q ′′ dp′ dp′′δ(p′ − π1) δ(p′′ − π2)

× 1

E + iε − 1
m (p′′2 + 3

4 q ′′2)
(ts(p, p′π̂1; ε)T (p′′π̂2, q′′, q0). (13)

We arrived at the last expression by integrating over the angles and taking into account the symmetrized
two-body t-matrix from Eq. (10). The magnitudes of the two vectors π1 and π2 are given by

|π1| =
√

1

4
q2 + q ′′2 + qq ′′x ′′,

(14)

|π2| =
√

q2 + 1

4
q ′′2 + qq ′′x ′′,

where x ′′ = q̂ · q̂′′. The above relations can be used to rewrite the two delta functions of Eq. (13) in a form
better suited for our further considerations. We rewrite

δ(p′ − π1) = 2p′

qq ′′ δ(x ′′ − x0) �(1 − |x0|), (15)

where

x0 = 1

qq ′′

(
p′2 − 1

4
q2 − q ′′2

)
= 1

qq ′′

(
p′′2 − 1

4
q ′′2 − q2

)
, (16)

and

δ(p′ − π2) = δ

(
p′′ −

√
p′2 + 3

4
q2 − 3

4
q ′′2

)
�

(
p′′ −

√
p′2 + 3

4
q2 − 3

4
q ′′2

)
. (17)

Inserting these expressions into Eq. (13) gives

T (p, q, q0) = T0(p, q, q0)

+
∫

d3q ′′ dp′ dp′′ 2p′

qq ′′ δ(x ′′ − x0) �(1 − |x0|)

×δ

(
p′′ −

√
p′2 + 3

4
q2 − 3

4
q ′′2

)
�

(
p′2 + 3

4
q2 − 3

4
q ′′2

)

× 1

E + iε − 1
m (p′′2 + 3

4 q ′′2)
ts(p, p′π̂1; ε) T (p′′π̂2, q′′, q0). (18)
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Fig. 1 The domain for the integration over the momenta p′ and q ′′ as function of the external momentum q . Here q = 40 MeV/c
is chosen. The area of integration is the rectangle enclosed by the three lines

Before we continue, we remember that the underlying two-body force supports one bound state with energy
Ed . This means, that ts(p, p′; z) has a pole at z = Ed . Because the transition operator T of Eq. (18) is needed
for all values of q, one will encounter this pole of ts . Extracting the residue explicitly by defining

ts(p, p′; z) ≡ t̂s(p, p′; z)

z − Ed
(19)

and similarly for T and T0 one can rewrite Eq. (18) as

T̂ (p, q, q0) = T̂0(p, q, q0)

+
∫

d3q ′′ dp′ dp′′ 2p′

qq ′′ δ(x ′′ − x0) �(1 − |x0|)

×δ

(
p′′ −

√
p′2 + 3

4
q2 − 3

4
q ′′2

)
�

(
p′2 + 3

4
q2 − 3

4
q ′′2

)

× 1

E + iε − 1
m (p′′2 + 3

4 q ′′2)
t̂s(p, p′π̂1; ε)

T̂ (p′′π̂2, q′′, q0)

E + iε − Ed − 3
4m q ′′2 . (20)

Now we carry out the integration in p′′ and arrive at

T̂ (p, q, q0) = T̂0(p, q, q0)

+ 2

q

∫
dq̂′′ dq ′′ dp′ δ(x ′′ − x0) �(1 − |x0|) �

(
p′2 + 3

4
q2 − 3

4
q ′′2

)

× p′q ′′

E + iε − 1
m (p′2 + 3

4 q2)
t̂s(p, p′π̂1; ε)

T̂ (p′′π̂2, q′′, q0)

E + iε − Ed − 3
4m q ′′2 , (21)

where p′′ ≡
√

p′2 + 3
4 q2 − 3

4 q ′′2. The two theta-functions in Eq. (21) restrict the integration in the magnitudes

of q ′′ and p′ into an area whose size depends on the magnitude of the spectator momentum q . An example of
this area is indicated in Fig. 1 for the choice of q = 40 MeV/c.

Next we consider the product of propagators in Eq. (21) and separate this product as in [23]

1

E + iε − 1
m (p′2 + 3

4 q2)

1

E + iε − Ed − 3
4m q ′′2 =

[
1

E + iε − 1
m (p′2 + 3

4 q2)
− 1

E + iε − Ed − 3
4m q ′′2

]

× 1

−Ed − 3
4m q ′′2 + 1

m (p′2 + 3
4 q2)

.
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The new denominator function,

Ḡ(q, q ′′, p′) = 1

−Ed − 3
4m q ′′2 + 1

m

(
p′2 + 3

4 q2
) (22)

cannot become singular inside the integration domain p′ − q ′′. Using the relation from Eq. (17) we see that

Ḡ(q, q ′′, p′) = 1

−Ed + 1
m p′′2 = 1

|Ed | + 1
m p′′2 > 0. (23)

With this separation of propagators the three-body transition amplitude from Eq. (21) consists now of two
integrals and can be written as

T̂ (p, q, q0) = T̂0(p, q, q0)

+ 2

q

∞∫

0

dp′ p′ 1

E + iε − 1
m

(
p′2 + 3

4 q2
)

q/2+p′∫

|q/2−p′|
dq ′′q ′′ Ḡ(q, q ′′, p′)

×
∫

dq̂′′ δ(x ′′ − x0)t̂s(p, p′π̂1; ε) T̂ (p′′π̂2, q′′, q0)

− 2

q

∞∫

0

dq ′′q ′′ 1

E + iε − Ed − 3
4m q ′′2

q/2+q ′′∫

|q/2−q ′′|
dp′ p′ Ḡ(q, q ′′, p′)

×
∫

dq̂′′δ(x ′′ − x0)t̂s(p, p′π̂1; ε) T̂ (p′′π̂2, q′′, q0) . (24)

In the second part of the kernel we changed the sequence of integrations over p′ and q ′′.
This new form of the kernel now exhibits only simple poles in the p′ and q ′′ integration, and the angle

integration does not contain any singularity any more. As a remark, the simultaneous occurrence of poles in
the angle and momentum integration when solving Eq. (11) leads to the logarithmic singularities, which are
not present in Eq. (24). The poles of the free propagator occur in the variable p′ and the deuteron pole in the
variable q ′′.

4 The Angle Integration

Since we ignore spin and isospin dependencies, the matrix element T (p, q, q0) is a scalar function of the
variables p and q for a given projectile momentum q0. As was shown in [19], one needs five variables to
uniquely specify the geometry of those three vectors. For the clarity of presentation we repeat some of the
arguments here. Having in mind that with three vectors one can span two planes, i.e. the p − q0-plane and the
q − q0-plane, a natural choice of independent variables is

p = |p|, q = |q|, x p = p̂ · q̂0, xq = q̂ · q̂0, xq0
pq = ̂(q0 × q) · ̂(q0 × p). (25)

The last variable, xq0
pq , is the angle between the two normal vectors of the p − q0-plane and the q − q0-plane.

It should further be pointed out, that the angle between the vectors p and q, ypq = p̂ · q̂ is not an independent
variable, but can by related to the ones given above as

ypq = x pxq +
√

1 − x2
p

√
1 − x2

q xq0
pq . (26)

For the special case where q̂0 is parallel to the z-axis (q0-system) one can write

ypq = x pxq +
√

1 − x2
p

√
1 − x2

q cos ϕpq , (27)

where the angle ϕpq is the difference of the azimuthal angles of p̂ and q̂ related to the specified z-axis.
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The δ-function in the angle integration of Eq. (24), δ(x ′′ − x0) = δ(q̂ · q̂′′ − x0) suggests to choose for the
q̂′′ integration the z-axis parallel to the vector q (q-system). The angle dependence of the two-body t-matrix
is then explicitly given as

t̂s(p, p′π̂1; E(q)) ≡ t̂s(p, p′, p̂ · π̂1; ε), (28)

where

p̂ · π̂1 =
1
2 qypq + ypq ′′√

1
4 q2 + q ′′2 + qq ′′x ′′

(29)

and

ypq ′′ = p̂ · q̂′′ = ypq x ′′ +
√

1 − y2
pq

√
1 − x ′′2 cos(ϕp − ϕ′′). (30)

The angle ϕp is the azimuthal angle of p̂ in the q-system. As mentioned before, x ′′ = q̂ · q̂′′ and q ′′ = |q′′|.
The angle dependence of the three-body transition amplitude is more intricate and can be written as

T̂ (p′′π̂2, q′′, q0) ≡ T̂ (p′′, xπ2 , xq0
π2 yq0q′′ , yq0q ′′, q ′′; q0). (31)

Explicitly these angles are given as

π̂2 · q0 ≡ xπ2 = qxq + 1
2 q ′′yq0q ′′√

q2 + 1
4 q ′′2 + qq ′′x ′′

,

q̂′′ · q0 ≡ yq0q ′′ = xq x ′′ +
√

1 − x2
q

√
1 − x ′′2 cos(ϕq0 − ϕ′′),

xq0
π2 yq0q′′ ≡ π̂2 · q̂ ′′ − (π̂2 · q̂0)(q̂ ′′ · q̂0)√

1 − (π̂2 · q̂0)2
√

1 − (q̂ ′′ · q̂0)2

=
qx ′′− 1

2 q ′′√
q2+ 1

4 q ′′2+qq ′′x ′′
− xπ2 yq0q ′′

√
1 − x2

π2

√
1 − y2

q0q ′′
. (32)

Like ϕp in Eq. (30) the angle ϕq0 is the azimuthal angle of q̂0 in the q-system. It was shown in [19] that
because of the ϕ′′ integration, only the knowledge of cos(ϕq0 − ϕp) is required. This difference can be
explicitly represented as

cos(ϕq0 − ϕp) = q̂0 · p̂ − (q̂ · q̂0)(q̂ · p̂)√
1 − (q̂ · q̂0)2

√
1 − ( p̂ · q̂)2

= x p − ypq xq√
1 − y2

pq

√
1 − x2

q

. (33)

Since only difference of the angles enters, one can choose ϕq0 arbitrarily, e.g. ϕq0 = 0. Furthermore, cos ϕp
and sin ϕp required in Eq. (30) are then also uniquely given [19].

With these preparations we are ready to carry out the angle integration
∫

dq̂′′ = ∫ 1
−1 dx ′′ ∫ 2π

0 dϕ′′ of
Eq. (24) explicitly. The x ′′ integration is fixed by the δ-function in terms of x0 = x0(q, p′, q ′′) from Eq. (16),
leaving only an integration over ϕ′′. Explicitly, the variables of Eqs. (30) and (32) need only be evaluated at a
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fixed x ′′ = x0(q, p′, q ′′). Thus, the explicit representation for the transition amplitude T̂ reads

T̂ (p, x p, xq0
pq , xq , q; q0) = T̂0(p, x p, xq0

pq , xq , q; q0)

+ 2

q

∞∫

0

dp′ p′ 1

E + iε − 1
m (p′2 + 3

4 q2)

q/2+p′∫

|q/2−p′|
dq ′′q ′′ Ḡ(q, q ′′, p′)

×
2π∫

0

dϕ′′ t̂s

⎛
⎝p, p′,

1
2 qypq + ypq ′′(x0)√
1
2 q2 + q ′′2 + qq ′′x0

; ε

⎞
⎠

×T̂

⎛
⎝p′′,

qxq + 1
2 q ′′yq0q ′′(x0)√

q2 + 1
4 q ′′2 + qq0x0

, xq0
π2 yq0q′′ (x0), yq0q ′′(x0), q ′′; q0

⎞
⎠

− 2

q

∞∫

0

dq ′′q ′′ 1

E + iε − Ed − 3
4m q ′′2

q/2+q ′′∫

|q/2−q ′′|
dp′ p′ Ḡ(q, q ′′, p′)

×
2π∫

0

dϕ′′ t̂s

⎛
⎝p, p′,

1
2 qypq + ypq ′′(x0)√
1
2 q2 + q ′′2 + qq ′′x0

; ε

⎞
⎠

×T̂

⎛
⎝p′′,

qxq + 1
2 q ′′yq0q ′′(x0)√

q2 + 1
4 q ′′2 + qq0x0

, xq0
π2 yq0q′′ (x0), yq0q ′′(x0), q ′′; q0

⎞
⎠, (34)

where p′′ =
√

p′2 + 3
4 q2 − 3

4 q ′′2 is fixed.
The only remaining detail is to provide an explicit expression for the Born term,

T (p, q, q0) ≡ 〈pq|t P|ϕdq0〉, (35)

where ϕd stands for the deuteron bound state. Projecting on Jacobi momenta and evaluating the permutation
operator leads to

T (p, q, q0) = ϕd

(
q + 1

2
q0

)
ts

(
p,

1

2
q + q0, ε

)
. (36)

Using the invariant variables of Eq. (25) one arrives at

T̂0(p, x p, xq0
pq , xq , q; q0) = ϕd

(√
q2 + 1

4
q2

0 + qq0xq

)

× t̂s

⎛
⎝p,

√
1

4
q2 + q2

0 + qq0xq ,

1
2 qypq + q0x p√

1
4 q2 + q2

0 + qq0xq

; ε

⎞
⎠. (37)

The transition amplitude of Eq. (34) together with the Born term given above has as far as the angle integration
is concerned a structure very similar to the one given in Eq. (2.19) of [19]. Even in the case where logarithmic
singularities have to be integrated, they are independent of the angle ϕ′′. Thus, in the numerical realization
demonstrated in [19] the ϕ′′-integration of the kernel is carried out for each fixed value x ′′ and q ′′ on their
respective grids. Then the singularity structure depending only on the x ′′ and q ′′ variables is explicitly dealt
with. In Eq. (34) the ϕ′′-integration needs to be carried out for each fixed value q ′′ and p′ given on their
respective grids. These grids also fix x0(q, p′, q ′′). Since the functional dependence on ϕ′′ is the same in both
integrals over ϕ′′ as is the area of integration in the p′ − q ′′-plane, the integral over ϕ′′ in the kernel needs
to be evaluated only once if both integrals of Eq. (34) are calculated on the same p′ − q ′′-grid. Under these
conditions the numerical effort as far as the angle integration is concerned is similar to the one of [19].
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Once the transition operator T (p, q, q0) is explicitly calculated as function of the five independent variables,
the amplitude for elastic scattering is obtained by calculating the matrix elements of the operator U given in
Eq. (2) as

〈qϕd |U |q0ϕd〉 = 2ϕd

(
1

2
q + q0

) (
E − 1

m
(q2 + q · q0 + q2

0 )

)
ϕd

(
q + 1

2
q0

)

+ 2
∫

d3q ′′ϕd

(
1

2
q + q′′

) 〈
q + 1

2 q′′, q′′|T̂ |q0ϕd

〉

E − 3
4m q ′′2 − Ed + iε

. (38)

The amplitude for the full breakup process is given according to Eq. (3) by

〈pq|U0|q0ϕd〉 =
〈
pq|T̂ |q0ϕd

〉

E − 3
4m q2 − Ed

+
〈
− 1

2 p + 3
4 q, −p − 1

2 q|T̂ |q0ϕd

〉

E − 3
4m (−p − 1

2 q)2 − Ed
+

〈
− 1

2 p − 3
4 q, +p − 1

2 q|T̂ |q0ϕd

〉

E − 3
4m (+p − 1

2 q)2 − Ed
. (39)

Both operators are explicitly given in [19] using the independent variables of Eq. (25), and can be directly
applied with the expression of Eq. (34).

5 Summary and Conclusions

In [19] the formulation of the nonrelativistic Faddeev equation for three identical bosons as function of vector
variables was introduced and successfully solved for laboratory projectile energies up to the GeV regime.
The key point allowing the calculation at those higher energies is to neglect the partial-wave decomposition
generally used at lower energies and to work directly with momentum vectors, thus including all partial waves
automatically. In the formulation of the Faddeev integral equation in the continuum which is most widely used,
the singularities of the free three-body propagator occur simultaneously in an angle and momentum integration,
leading to the socalled logarithmic singularities. They require special care in numerical applications. Although
sophisticated algorithms have been developed to integrate those singularities along the real axis, it still is
desirable to have a formulation of the Faddeev kernel, in which the singularity structure is simpler.

Starting from the formulation given in [19,23] we propose a new formulation of the Faddeev kernel which
does not contain this technical obstacle of logarithmic singularities. Instead, the singularities of the free three-
nucleon propagator appear as poles in a single variable. Those kind of poles can be integrated with standard
techniques as, e.g. used in integrating the two-body Lippmann–Schwinger equation. The singularity given
by the deuteron pole is a simple pole (as before), but is now cleanly separated in a separate integration. The
integration over the angle variable not affected by the pole structure remains very similar. This simplification in
handling the singularities of the three-body continuum in a similar fashion as the two-body continuum should
ease applications of the Faddeev integral equations in different areas of physics.
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