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Abstract The three-nucleon (NNN) interaction derived within the chiral effec-
tive field theory at the next-to-next-to-leading order (N2LO) is regulated with a
function depending on the magnitude of the momentum transfer. The regulated
NNN interaction is then local in the coordinate space, which is advantageous
for some many-body techniques. Matrix elements of the local chiral NNN in-
teraction are evaluated in a three-nucleon basis. Using the ab initio no-core
shell model (NCSM) the NNN matrix elements are employed in 3H and 4He
bound-state calculations.

1 Introduction

Interactions among nucleons are governed by quantum chromodynamics (QCD). In
the low-energy regime relevant to nuclear structure, QCD is non-perturbative, and,
therefore, hard to solve. Thus, theory has been forced to resort to models for the
interaction, which have limited physical basis. New theoretical developments, how-
ever, allow us to connect QCD with low-energy nuclear physics. The chiral effec-
tive field theory (�EFT) [1] provides a promising bridge. Beginning with the pionic
or the nucleon-pion system [2], one works consistently with systems of increasing
nucleon number [3–5]. One makes use of spontaneous breaking of chiral symmetry
to systematically expand the strong interaction in terms of a generic small momen-
tum and takes the explicit breaking of chiral symmetry into account by expanding
in the pion mass. Thereby, the NN interaction, the NNN interaction and also �N
scattering are related to each other. At the same time, the pion mass dependence of
the interaction is known, which will enable a connection to lattice QCD calcula-
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tions in the future [6]. Nuclear interactions are non-perturbative, because dia-
grams with purely nucleonic intermediate states are enhanced [1]. Therefore,
the chiral perturbation expansion is performed for the potential (note, however,
the discussion in [7–9] that points out some potential inconsistencies of this
approach). Solving the Schr€oodinger equation for this potential then automatically
sums diagrams with purely nucleonic intermediate states to all orders. The �EFT
predicts, along with the NN interaction at the leading order, an NNN interaction at
the 3rd order (next-to-next-to-leading order or N2LO) [1, 10, 11], and even an
NNNN interaction at the fourth order (N3LO) [12]. The details of QCD dynamics
are contained in parameters, low-energy constants (LECs), not fixed by the sym-
metry. These parameters can be constrained by experiment. At present, high-
quality NN potentials have been determined at order N3LO [13]. A crucial feature
of �EFT is the consistency between the NN, NNN and NNNN parts. As a con-
sequence, at N2LO and N3LO, except for two LECs, assigned to two NNN
diagrams, the potential is fully constrained by the parameters defining the NN
interaction.

It is of great interest and also a challenge to apply the chiral interactions in
nuclear structure and nuclear reaction calculations. In a recent work [14], the
presently available NN potential at N3LO [13] and the NNN interaction at N2LO
[10, 11] have been applied to the calculation of various properties of s- and p-shell
nuclei, using the ab initio no-core shell model (NCSM) [15, 16], up to now the only
approach able to handle the nonlocal �EFT NN potentials for systems beyond
A ¼ 4. In that study, a preferred choice of the two NNN LECs, cD and cE, was
found and the fundamental importance of the �EFT NNN interaction was demon-
strated for reproducing the structure of mid-p-shell nuclei. In a subsequent study,
the same Hamiltonian was used to calculate microscopically the photo-absorption
cross section of 4He [17].

The approach of [14] differs in two aspects from the first NCSM application of
the �EFT NN þ NNN interactions in [18], which presents a detailed investigation
of 7Li. First, a regulator depending on the momentum transfer in the NNN terms
was introduced which results in a local �EFT NNN interaction. Second, the
4He binding energy was not used exclusively as the second constraint on the cD
and cE LECs.

A local NNN interaction is advantageous for some few- and many-body ap-
proaches because it is simpler to use. At the same time, it is known that details of
the NNN interaction are important for nuclear structure applications. For example,
the Urbana IX [19] and the Tucson-Melbourne [20–22] NNN interactions perform
differently in mid-p-shell nuclei [23, 24, 16] although their differences appear to be
minor. In the Green’s function Monte Carlo (GFMC) calculations with the AV18
NN potential [25], the best results for p-shell nuclei up to A ¼ 10 are found using
the Illinois NNN interaction that augments the Urbana IX by a two-pion term from
the Tucson-Melbourne NNN interaction and by three-pion terms that in the �EFT
appear beyond the N3LO [26, 27]. Contrary to the Illinois NNN interaction, the
�EFT NNN interaction features the above-mentioned consistency with the accom-
panying NN interaction. Still, interestingly, we found that the nonlocal �EFT NNN
interaction used in [18] and the local �EFT NNN interaction employed in [14]
differ to some extent in their description of mid-p-shell nuclei with the latter giving
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results in a better agreement with experiment. Therefore, it is important to pay
attention to the details of the NNN interaction and test different possibilities.

It is the purpose of this paper to elaborate on the details of the local �EFT NNN
interaction used in [14, 17] and present its matrix elements in the three-nucleon
basis. Technical details of dealing with NNN interactions were investigated in
many papers [28–34]. A new feature in the present work is the use of �EFT contact
interactions and a focus on the application within the ab initio NCSM. In particu-
lar, we demonstrate the binding-energy convergence of the three-nucleon and four-
nucleon systems with the �EFT NN þ NNN interactions using the ab initio NCSM.
In Sect. 2, the local �EFT NNN interaction is discussed and compared to the
nonlocal version of [11]. Its three-nucleon matrix elements are given term by term.
In Sect. 3, the 3H and 4He binding energy and radius calculation results using the
N3LO �EFT NN interaction of [13] and the local �EFT NNN interaction are given.
Conclusions are drawn in Sect. 4.

2 Local vEFT NNN interaction at N2LO

The NNN interaction appearing at the third order (N2LO) of the �EFT comprises of
three parts: (i) The two-pion exchange, (ii) the one-pion exchange plus contact, and
(iii) the three-nucleon contact. In this section, we discuss all the parts in detail and
present the three-nucleon matrix elements of all the terms. For the two parts that
contain the contact interactions, we also discuss in detail the impact of different
regularization schemes.

2.1 Three-nucleon coordinates

We use the following definitions of the Jacobi coordinates

j1 ¼ 1ffiffiffi
2

p ðr1 � r2Þ; ð1Þ

j2 ¼
ffiffiffi
2

3

r �
1

2
ðr1 þ r2Þ � r3

�
; ð2Þ

and associated momenta

p1 ¼
1ffiffiffi
2

p ðp1 � p2Þ; ð3Þ

p2 ¼
ffiffiffi
2

3

r �
1

2
ðp1 þ p2Þ � p3

�
: ð4Þ

We also define the momenta transferred by nucleon 2 and nucleon 3,

Q ¼ p02 � p2 ¼ � 1ffiffiffi
2

p ðp0
1 � p1Þ þ

1ffiffiffi
6

p ðp0
2 � p2Þ; ð5Þ

Q0 ¼ p03 � p3 ¼ �
ffiffiffi
2

3

r
ðp0

2 � p2Þ; ð6Þ

where the primed coordinates refer to the initial momentum and the unprimed to
the final momentum of the nucleon.
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2.2 General structure of three-nucleon interaction and its matrix element

The NNN interaction is symmetric under permutation of the three nucleon indexes.
It can be written as a sum of three pieces related by particle permutations,

W ¼ W1 þW2 þW3: ð7Þ

To obtain its matrix element in an antisymmetrized three-nucleon basis we
need to consider just a single term, e.g., W1. In this paper, we use the basis of
harmonic oscillator (HO) wave functions. However, most of the expressions have
general validity. Following the notation of [35], a general matrix element can be
written as

hNiJT jW jN 0i0JTi ¼ 3hNiJT jW1jN 0i0JTi
¼ 3

X
hnlsjt;NLJ jjNiJTihn0l0s0j0t0;N 0L0J 0jjN 0i0JTi

� hðnlsjt;NLJ ÞJT jW1jðn0l0s0j0t0;N 0L0J 0ÞJTi; ð8Þ

where jNiJTi is an antisymmetrized three-nucleon state with N ¼ 2nþ lþ
2N þ L, i an additional quantum number, and J and T are the total angular mo-
mentum and total isospin, respectively. The parity of the state is ð�1ÞN . The state
jðnlsjt;NLJ ÞJTi is a product of the HO wave functions hj1jnli and hj2jNLi
associated with the coordinates (1) and (2), respectively. This state is antisymme-
trized only with respect to the exchange of nucleons 1 and 2, i.e., ð�1Þlþsþt ¼ �1.
The coefficient of fractional parentage hnlsjt;NLJ jjNiJTi is calculated according
to [35].

2.3 N2LO three-nucleon interaction contact term

We start our discussion with the most trivial part of the �EFT N2LO NNN interac-
tion, the three-nucleon contact term

Wcont
1 ¼ E t2 � t3 �ðr1 � r2Þ �ðr3 � r1Þ

¼ E t2 � t3

1

ð2�Þ6

1

ð
ffiffiffi
3

p
Þ3

ð
dp1 dp2 dp

0
1 dp

0
2 jp1p2ihp0

1p
0
2j; ð9Þ

with E ¼ cE=F
4
�L�, where L� is the chiral symmetry breaking scale of the order of

the � meson mass and F� ¼ 92:4 MeV is the weak pion decay constant. The cE is a

Fig. 1 Contact interaction NNN term of the N2LO �EFT
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low-energy constant (LEC) from the chiral Lagrangian of order one. The corre-
sponding diagram is shown in Fig. 1. This term was regulated in [11] by a regulator
dependent on the sum of Jacobi momenta squared,

W
cont;ENGKMW
1 ¼ E t2 � t3

1

ð2�Þ6

1

ð
ffiffiffi
3

p
Þ3

ð
dp1 dp2 dp

0
1 dp

0
2jp1p2i

�F

�
1

2
ð�2

1 þ �2
2Þ;L

�
F

�
1

2
ð�021 þ �02

2 Þ;L
�
hp0

1p
0
2j; ð10Þ

with the regulator function

Fðq2;LÞ ¼ exp½�q4=L4� ð11Þ
with the limit Fðq2;L ! 1Þ ¼ 1. This was in particular convenient as the cal-
culations were performed in momentum space. In Eq. (10), the abbreviation
ENGKMW stands for the initial letters of the names of authors of [11]. We note
that an identical regulator function (11) was chosen in [13]. We use this form
in our numerical calculations presented in Sect. 3. However, until then we keep
our discussion general and do not restrict ourselves to a particular choice of
the regulator function. It should be noted that a smoother regulator of the form
Fðq2;LÞ ¼ exp½�q2=L2� would have lead to a simplified algebra. The fourth
power of the momentum in Eq. (11) was chosen in [11] so that the regulator
generates powers which are beyond the third order at which the calculations
are conducted.

Alternatively to Eq. (10), let us consider a regulator dependent on momentum
transfer,

W
cont;Q
1 ¼ E t2 � t3

1

ð2�Þ6

1

ð
ffiffiffi
3

p
Þ3

ð
dp1 dp2 dp

0
1 dp

0
2 jp1p2i

�FðQ2;LÞFðQ02;LÞhp0
1p

0
2j

¼ E t2 � t3

ð
dj1 dj2jj1j2iZ0ð

ffiffiffi
2

p
�1;LÞ

� Z0

����� 1ffiffiffi
2

p j1 þ
ffiffiffi
3

2

r
j2

����;L�hj1j2j; ð12Þ

where we introduced the function

Z0ðr;LÞ ¼
1

2�2

ð
dq q2j0ðqrÞFðq2;LÞ: ð13Þ

This results in an interaction local in coordinate space because of the dependence
of the regulator function on differences of initial and final Jacobi momenta. An
interaction local in coordinate space may be more convenient for some methods. In
fact, most of the NNN interactions used in few-body calculations, such as the
Tucson-Melbourne (TM0) [21, 22], Urbana IX (UIX) [19] or Illinois 2 (IL2)
[26], are local in coordinate space. Similarly, a local NN interaction can be derived
from a momentum-space NN potential as was done, e.g., in the case of the Bonn
potential, see [36].
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The two alternatively regulated contact interactions lead to different three-nu-
cleon matrix elements. The interaction (10) gives

hðnlsjt;NLJ ÞJT jWcont;ENGKMW
1 jðn0l0s0j0t0;N 0L0J 0ÞJTi

¼ E
1

2
ffiffiffi
3

p
�4

�l0�L0�l00�L00�ss0�sj�s0j0�J 1
2
�J 01

2

� t̂t̂tt
0ð�1Þtþt0þTþ1

2

t t0 1

1
2

1
2

1
2

( )
t t0 1

1
2

1
2

T

( )

�
ð
d�1 d�2�

2
1�

2
2ð�1ÞðnþNÞ

Rn0ð�1;1=bÞRN 0ð�2;1=bÞF
�

1

2
ð�2

1 þ�2
2Þ;L

�
�

ð
d�0

1 d�
0
2�

02
1 �

02
2 ð�1Þðn

0þN 0Þ
Rn00ð�0

1;1=bÞRN 0
0ð�02;1=bÞF

�
1

2
ð�02

1 þ �02
2 Þ;L

�
;

ð14Þ

while the interaction (12) results in the following matrix element,

hðnlsjt;NLJ ÞJT jWcont;Q
1 jðn0l0s0j0t0;N 0L0J 0ÞJTi

¼ E6�ss0 t̂t̂tt
0ð�1Þtþt0þTþ1

2
t t0 1
1
2

1
2

1
2

� �
t t0 1
1
2

1
2

T

� �
� ĵĵjj

0 bJJ bJJ 0̂ll
0 bLL0ð�1ÞJ�

1
2
þJ 0�JþlþLþs

�
X
X

ð�1ÞXbXX2
l0 l X

j j0 s

� �
j j0 X

J 0 J J

� � J 0 J X

L L0 1
2

( )
� ðl00X0jl0ÞðL00X0jL0Þ

�
ð
d�1 d�2 �

2
1�

2
2Rnlð�1; bÞRNLð�2; bÞRn0l0 ð�1; bÞRN 0L0ð�2; bÞ

� Z0ð
ffiffiffi
2

p
�1;LÞZ0;X

� ffiffiffi
1

2

r
�1;

ffiffiffi
3

2

r
�2;L

�
: ð15Þ

In the above expressions, we have introduced the radial HO wave functions Rnl

with the oscillator parameter b and, further, a new function

Z0;Xðr1; r2;LÞ ¼
1

2�2

ð
dq q2jXðqr1ÞjXðqr2ÞFðq2;LÞ: ð16Þ

We also introduced the customary abbreviation l̂l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
. It should be not-

ed that the two differently regulated contact interactions have different ten-
sorial structure. One would perhaps expect that matrix elements of a local
interaction will be easier to calculate. This is not the case for the discussed
contact interaction. From Eq. (14) we can see that the term (10) acts only in
S-waves. On the other hand, the local interaction (12) acts in higher partial
waves as well as seen from Eq. (15). We display this schematically in Fig. 2
by breaking the symmetry of the pure contact interaction diagram (Fig. 1)
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and showing the finite range of the momentum transfer regulated interaction.
Using

Fðq2;L ! 1Þ ¼ 1;

Z0ðr;� ! 1Þ ¼ 1

4�r2
�ðrÞ

and

Z0;Xðr1; r2;L ! 1Þ ¼ 1

4�r2
1

�ðr1 � r2Þ;

it is straightforward to verify that in the limit L ! 1 both expressions (14) and
(15) lead to the same result. For completeness, let us note that in [11] a matrix
element of t1 � t2 was calculated, i.e.,

ht1 � t2i ¼ 6�tt0 ð�1Þt�1
1
2

1
2

t
1
2

1
2

1

( )
;

instead of t2 � t3 as we do in Eq. (14). Either choice leads to an identical matrix
element in the three-nucleon antisymmetrized basis (8). This is not the case once
we regulate with the momentum transfer. Our choice in (12) results in the same
isospin-coordinate structure as that obtained in [10].

2.4 Transformation of the momentum part of the NNN interaction

A general NNN interaction term is a product of isospin, spin and momentum parts.
In this subsection, we manipulate the momentum part. We only consider the case of
the regulator function Fðq2;LÞ depending on the transferred momentum. The mo-
mentum part of a general term W1 can be schematically written as

gK1
ðjQj;LÞgK2

ðjQ0j;LÞðYK1
ðbQQÞYK2

ðbQQ0ÞÞðKÞ; ð17Þ
with K1 þ K2 even and with Q and Q0 defined by Eqs. (3) and (4), respectively.
For coordinates and momenta, bQQ denotes the angular part of the vector Q. A
transformation of (17) to coordinate space leads to a local interaction

1

ð2�Þ6

1

ð
ffiffiffi
3

p
Þ3

ð
dp1 dp2 dp

0
1 dp

0
2 jp1p2igK1

ðjQj;LÞgK2
ðjQ0j;LÞ

� ðYK1
ðbQQÞYK2

ðbQQ0ÞÞðKÞhp0
1p

0
2j

Fig. 2 Contact interaction NNN term of the N2LO �EFT regulated by a function

depending on momentum transfer
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¼ iK1þK2

ð
dj1 dj2 jj1j2ifK1

ð
ffiffiffi
2

p
�1;LÞfK2

����� 1ffiffiffi
2

p j1 þ
ffiffiffi
3

2

r
j2

����;L�

�
�
YK1

ð�̂�1ÞYK2

� [1ffiffiffi
2

p j1 þ
ffiffiffi
3

2

r
j2

��ðKÞ
hj1j2j: ð18Þ

Using (1) and (2), we note thatffiffiffi
2

p
j1 ¼ r1 � r2 and

1ffiffiffi
2

p j1 þ
ffiffiffi
3

2

r
j2 ¼ r1 � r3:

In the above equation, we have introduced a new function using the relation

iKfKðr;LÞYKkðr̂rÞ ¼
1

ð2�Þ3

ð
dq exp½iq � r� gKðq;LÞYKkðq̂qÞ; ð19Þ

which implies

fKðr;LÞ ¼
1

2�2

ð
dq q2jKðqrÞgKðq;LÞ: ð20Þ

We manipulate Eq. (18) first by utilizing the spherical harmonics relation

YK2k2
ð [r1 þ r2Þ ¼

XK2

K3¼0

ffiffiffiffiffiffi
4�

p

bKK3

��
2K2 þ 1

2K3

��1=2

rK3

1 rK2�K3

2 jr1 þ r2j�K2

� ðYK3
ðr̂r1ÞYK2�K3

ðr̂r2ÞÞðK2Þ
k2

; ð21Þ

and, second, by the following expansion involving the functions depending on��ð1= ffiffiffi
2

p
Þj1 þ

ffiffi
3
2

q
j2

��,
fK2

ðjr1 þ r2j;LÞjr1 þ r2j�K2 ¼ 4�
X
XMX

fK2;Xðr1; r2;LÞ

� ð�1ÞXY�XMX
ðr̂r1ÞYXMX

ðr̂r2Þ; ð22Þ
with the function fK2;Xðr1; r2;LÞ given by

fK2;Xðr1; r2;LÞ ¼
2

�

ð
dq q2jXðqr1ÞjXðqr2Þ

ð
dr r2j0ðqrÞ

fK2
ðr;LÞ
rK2

; ð23Þ

or, equivalently, by

fK2;Xðr1; r2;LÞ ¼
1

2

ð1

�1

du PXðuÞ
fK2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2 � 2r1r2u

p
;LÞ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

1 þ r2
2 � 2r1r2u

p
ÞK2

: ð24Þ

Using (21) and (22), the term (18) is re-written in the form

¼ iK1þK2

ð
dj1 dj2 jj1j2ifK1

ð
ffiffiffi
2

p
�1;LÞ

XK2

K3¼0

X
XYZV

��
2K2 þ 1

2K3

��1=2

�
�

1ffiffiffi
2

p �1

�K3
� ffiffiffi

3

2

r
�2

�K2�K3

fK2;X

�
1ffiffiffi
2

p �1;

ffiffiffi
3

2

r
�2;L

�
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� bXX2 [K2 � K3
bKK1

bKK2
bYYð�1ÞK1þYþZþK

�
K1 Y V

Z K K2

�
�
�

Y X K3

K2 � K3 K2 Z

�
ðX0K30jY0Þ

� ðX0K2 � K30jZ0ÞðY0K10jV0ÞðYVð�̂�1ÞYZð�̂�2ÞÞðKÞk hj1j2j; ð25Þ
which is convenient for matrix-element calculations.

2.5 One-pion exchange plus contact N2LO NNN term

We are now in a position to discuss the one-pion exchange plus contact term that
appears at the N2LO. Following [11], we can write the W1 term contribution as

W1� cont
1 ¼ �D

1

ð2�Þ6

gA

8F2
�

t2 � t3

�
1

Q02 þM2
�

s2 � Q0s3 � Q0

þ 1

Q2 þM2
�

s2 � Qs3 � Q
�
; ð26Þ

with D ¼ cD=F
2
�L�, where cD is an LEC from the chiral Lagrangian of order one.

A diagrammatic depiction of the second term in the parenthesis is presented in
Fig. 3. The first term corresponds to the exchange of 2 $ 3.

Using the regulator dependent on the sum of Jacobi momenta squared of [11],
this term can be cast in the form

W
1� cont;ENGKMW
1 ¼ �D

1

ð2�Þ6

gA

8F2
�

1

ð
ffiffiffi
3

p
Þ3

ð
dp1 dp2 dp

0
1 dp

0
2jp1p2i

�F

�
1

2
ð�2

1 þ �2
2Þ;L

�
� t2 � t3

�
1

Q02 þM2
�

s2 � Q0s3 � Q0

þ 1

Q2 þM2
�

s2 � Qs3 � Q
�

�F

�
1

2
ð�02

1 þ �02
2 Þ;L

�
hp0

1p
0
2j: ð27Þ

Fig. 3 One-pion exchange plus contact NNN interaction term of the N2LO

�EFT
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On the other hand, with a regulator dependent on momentum transfer, we get

W
1� cont;Q
1 ¼ �D

1

ð2�Þ6

gA

8F2
�

1

ð
ffiffiffi
3

p
Þ3

ð
dp1 dp2 dp

0
1 dp

0
2 jp1p2iFðQ2;LÞ

� t2 � t3

�
1

Q02 þM2
�

s2 � Q0s3 � Q0

þ 1

Q2 þM2
�

s2 � Qs3 � Q
�
FðQ02;LÞhp0

1p
0
2j; ð28Þ

which leads to a term local in coordinate space. We depict the second term in the
parenthesis of (28) schematically in Fig. 4. The first term corresponds to the ex-
change of 2 $ 3. This choice of regulation results in spin-isospin-coordinate struc-
ture that also appears in NNN terms obtained in [10]. We note that a somewhat
different spin-isospin structure was used for one-pion exchange plus contact NNN
terms in [32] and [34]. In [32] in particular, the s and t operators were associated
with the active nucleon 1, i.e.,

W
1� cont;Q�1

1 ¼ �D
1

ð2�Þ6

gA

8F2
�

1

ð
ffiffiffi
3

p
Þ3

ð
dp1 dp2 dp

0
1 dp

0
2 jp1p2iFðQ2;LÞ

�
�
t1 � t3

1

Q02 þM2
�

s1 � Q0s3 � Q0

þ t1 � t2

1

Q2 þM2
�

s1 � Qs2 � Q
�
FðQ02;LÞhp0

1p
0
2j: ð29Þ

This change does not alter the matrix element of (27) in the antisymmetrized three-
nucleon basis. It will lead to a difference in the matrix element of (28). However,
the dependence on the regulator is a higher-order effect than the �EFT expansion
order used to derive the NNN interaction. Therefore, these differences should have
only a minor overall effect. In fact, we confirmed in nuclear structure calculations
such as those described in [14] that the impact of the choice (27) or (28) is small in
particular when the natural LECs values are used (jcDj � 1). However, a more
significant impact of the choice of the regulator in particular on spin-orbit force
sensitive observables is observed in the case of the two-pion-exchange terms as
discussed in the Introduction.

Fig. 4 One-pion exchange plus contact NNN interaction term of the N2LO

�EFT regulated by a function depending on momentum transfer
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Due to the antisymmetry of the three-nucleon wave functions in (8), it is
sufficient to consider just one term of the two in parenthesis in (27) and (28)
and multiply the result by 2. Using the first term, the matrix element of (27) with
the regulator dependent on the sum of Jacobi momenta squared is obtained in
the form
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� ĵĵjj
0 bJJ bJJ 0ð�1ÞJ�JþTþ1

2
j j0 1

1
2

1
2

1
2

( )�
j j0 1

J 0 J J

�

�
X
K¼0;2

bKKð1010jK0Þ
J L 1

2

J 0 L0 1
2

1 K 1

8><>:
9>=>;

�
XK
K1¼0

[K � K1

��
2K þ 1

2K1

��1=2

ð�1ÞLþK1
X
X

bXX bLL0ðK10X0jL0Þ

� ðL00K � K10jX0Þ
� L0 K � K1 X

K1 L K

�
�

ð
d�1 d�2 d�

0
1 d�

0
2�

2
1�

2
2�

02
1 �

02
2 Rn0ð�1; 1=bÞRNLð�2; 1=bÞF

�
1

2
ð�2

1 þ �2
2Þ;L

�
�Rn00ð�0

1; 1=bÞRN 0L0ð�0
2; 1=bÞF

�
1

2
ð�02

1 þ �02
2 Þ;L

�
�K1

2 �0K�K1

2 gK;Xð�2; �
0
2Þ;

ð30Þ

where we introduced the function

gK;Xðp; p0Þ ¼
2

�

ð
dq q2 dr r2 q2�K

2
3
q2 þM2
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which can be alternatively evaluated through

gK;Xðp; p0Þ ¼
1

2

ð1
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The matrix element (30) was first derived in [11].
For the one-pion exchange plus contact term (28) with the regulator dependent

on momentum transfer, we present the matrix element obtained using both terms in
the parenthesis of (28). Due to the three-nucleon wave-function antisymmetry, both
contributions lead to the same result for (8). One can take the advantage of this
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feature and use the alternative calculations to check the correctness of the numeri-
cal code. First, we take the first part of (28) and get
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with the functions

f0;Xðr1; r2;LÞ ¼
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2�2

ð
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and
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which are special cases of (23). An alternative way of evaluating (35) is

f2;Xðr1; r2;LÞ ¼
1
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We note that (36) is numerically more efficient than (35).
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Next, we take the second part of (28), which results in a simpler expression for
one-pion exchange plus contact N2LO three-nucleon matrix element in non-anti-
symmetrized basis,
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with

fKðr;LÞ ¼
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which is a special case of (20) and Z0;Xðr1; r2;LÞ given by Eq. (16). Both (33) and
(38) are already multiplied by 2 in anticipation of the three-nucleon antisymmetry
in the final matrix element (8).

For completeness, we also present the matrix element of the second part of (29),
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�2;L

�
; ð40Þ

which is still simpler than (38). Again, this matrix element is already multiplied by
2 in anticipation of the three-nucleon antisymmetry in the final matrix element (8).
The matrix element of (two-times the) first part of (29) is given by (33) multiplied
by ð�1Þtþt0þsþs0

. Due to the three-nucleon wave-function antisymmetry, this con-
tribution leads to the same result for (8) as does (38), which can be taken advantage
of in testing the correctness of numerical calculations.

By comparing (27) with (33) (or equivalently with (38) and also with (40)) we
note the different tensorial structure of the matrix elements. When the regulator de-
pendent on the sum of Jacobi momenta squared is used, only the l ¼ 0, l0 ¼ 0 partial
waves contribute. This is not the case, when the regulator depending on momentum
transfer is utilized. At the same time, however, we note that in the limit L ! 1 both
expressions (27) and (33) as well as (38) and (40) lead to the same result.

2.6 Two-pion exchange N2LO NNN terms

In this subsection, we present matrix elements of two-pion exchange N2LO NNN
terms. Their schematic depiction is shown in Fig. 5. There are three distinct terms
associated with three LECs, c1, c3 and c4, from the chiral Lagrangian, which also
appear in the sub-leading two-pion exchange in the NN potential. Consequently,
values of these LECs expected to be of order one are typically fixed at the NN level
unlike the case of the previously introduced cD (26) and cE (9) LECs whose values
need to be fixed in systems of more than two nucleons. In the present paper, we
derive only the matrix elements of the two-pion exchange NNN interaction terms
regulated by a function depending on momentum transfer, i.e., terms that are local
in coordinate space.

Following [11], the W1 part of the c1 term with the momentum transfer reg-
ulators can be written as
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Fig. 5 Two-pion exchange NNN interaction term of the N2LO �EFT
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Using results of Subsect. 2.4, we find for the c1-term matrix element
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Here we introduced the functions
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which are the explicit versions of functions given in Eqs. (20) and (23), respective-
ly. The function (44) can be alternatively evaluated with the help of the Legendre
polynomial,
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The W1 part of the two-pion exchange c3 term is given by [11]

W2� c3
1 ¼ c3

1

ð2�Þ6

2

F2
�

g2
A

4F2
�

t2 � t3 FðQ2;LÞ 1

Q2 þM2
�

s2 � Qs3 � Q0

�Q � Q0 1

Q02 þM2
�

FðQ02;LÞ: ð46Þ

Local three-nucleon interaction from chiral effective field theory 131



For its matrix element we find
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with the function fK1
ðr;LÞ given by (39), the function f0;Xðr1; r2;LÞ given by (34)

and the function f2;Xðr1; r2;LÞ given by (35).
Finally, the W1 part of the two-pion exchange c4 term is given by [11]
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and for its matrix element we find
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The same functions (34), (35) and (39) that were introduced in the c3 term enter the
c4 term as well.

We note that the local two-pion-exchange terms appear also in the Tucson-
Melbourne NNN interaction [20]. The analogous terms to c1, c3 and c4 are present
in particular in the TM0 interaction [21, 22]. The TM0 parameters are denoted by a0,
b and d with the relation to the above c1, c3 and c4 given by

a0 ¼ 4M2
�

F2
�

c1; ð50Þ

b ¼ 2

F2
�

c3; ð51Þ

d ¼ �1

F2
�
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Further, the regulator function Fðq2;LÞ is chosen in the form

FTMðq2;LÞ ¼ L2 �M2
�

L2 þ q2
: ð53Þ
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This choice allows to evaluate integrals that define the functions fK analytically.
The analytic expressions can be found, e.g., in [29]. In that paper, the following
function is introduced,
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�

: ð54Þ

Using the properties of spherical Bessel functions, we can easily find relations
between derivatives of Z1 and our fK functions,
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For completeness, we note that a still different notation was used in [10], where
functions Ik;lðr;LÞ were introduced. They are related to the Z0ðr;LÞ that we intro-
duced in Eq. (13) and to the above Z1 function (54) it is as follows,

Z0ðr;LÞ ¼ I0;0ðr;LÞ; ð58Þ
Z1ðr;LÞ ¼ I2;0ðr;LÞ: ð59Þ

In [37], the Tucson-Melbourne NNN interaction matrix elements in the HO
basis were calculated using a different algorithm than the one used in this paper.
That algorithm relied on a completeness relation and on transformations of HO
states with the help of HO brackets. Even though the algorithm of [37] required a
calculation of one-dimensional radial integrals, while the present algorithm
requires evaluation of two-dimensional radial integrals, the present algorithm is
substantially more efficient.

3 Convergence test for 3H and 4He

In this section, we apply the matrix elements of the N2LO �EFT NNN interaction
obtained in this paper to the NCSM calculation of 3H and 4He ground-state prop-
erties. As a test of correctness of the computer code, we verified that the new more
efficient algorithm reproduces the results obtained using the algorithm of [37] for
the two-pion-exchange term matrix elements. For the contact terms, we verified
that in the limit of L ! 1, the matrix elements (15) and (14) lead to the same
result and the same is true for matrix elements (38) and (30). In addition, we
benchmarked the computer code for evaluation of (14) and (30) with the computer
code written by A. Nogga [38]. Finally, we tested numerically that the use of (33)
results in the same matrix element as the use of (38) in the three-nucleon anti-
symmetrized basis jNiJTi introduced in Eq. (8). The same checks were also per-
formed for the alternative version of the one-pion-exchange plus contact term
(D-term) given in Eq. (29). That is, we verified numerically that the matrix element
(40) leads to the same result as (30) in the limit of L ! 1 and the use of (40)
results in the same matrix element in the three-nucleon antisymmetrized basis
jNiJTi as the use of (33) multiplied by ð�1Þtþt0þsþs0

.
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We use the N3LO NN interaction of [13]. We adopt the c1, c3 and c4 LEC
values as well as the value of L from the N3LO NN interaction of [13] for our local
chiral EFT N2LO NNN interaction. The regulator function was chosen in a form
consistent with that used in [11] and [13]: Fðq2;LÞ ¼ exp½�q4=L4� (11). We note
that the momentum-space N3LO NN interaction is regulated with the nucleon
momentum cutoff, while our local chiral EFT N2LO NNN interaction is regulated
with the momentum transfer cutoff. Due to the choice of the fourth power of the
momentum (11), this inconsistency is beyond the order at which our calculations
are performed. Values of the cD and cE LECs are constrained by a fit to the A ¼ 3
system binding energy [18, 14]. Obviously, additional constraints are needed to
uniquely determine values of cD and cE, see [11, 18, 14, 39] for discussions of
different possibilities. Here we are interested only in convergence properties of our

Table 1 NNN interaction parameters used in the present calculations. The regulator

function was chosen in the form Fðq2;LÞ ¼ exp½�q4=L4�

c1 [GeV�1] c3 [GeV�1] c4 [GeV�1] cD cE

�0.81 �3.2 5.4 1.0 �0.029

L [MeV] L� [MeV] M� [MeV] gA F� [MeV]

500 700 138 1.29 92.4

Fig. 6 3H ground-state energy dependence on the size of the basis. The HO frequency of

�hO ¼ 28 MeV was employed. Results with (thick lines) and without (thin lines) the NNN interaction

are shown. The full lines correspond to calculations with two-body effective interaction derived from

the chiral NN interaction, the dashed lines to calculations with the bare chiral NN interaction. For

further details see the text
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calculations. Therefore, we simply select a reasonable value, e.g., cD ¼ 1, and
follow [14] and adopt the cE value as an average of fits to 3H and 3He binding
energies. In Table 1, we summarize the NNN interaction parameters used in cal-
culations described in this section. We note that 4He results obtained with the
identical Hamiltonian but with cD ¼ �1 and cE ¼ �0:331 are presented in [17].

We use the Jacobi coordinate HO basis antisymmetrized according to the meth-
od described in [35]. In Figs. 6 and 7, we show the convergence of the 3H ground-
state energy and point-proton rms radius, respectively, with the size of the basis.
Thin lines correspond to results obtained with the NN interaction only. Thick lines
correspond to calculations that also include the NNN interaction. The full lines
correspond to calculations with two-body effective interaction derived from the
chiral EFT N3LO NN interaction. The procedure for the effective interaction deri-
vation is described, e.g., in [15, 35]. The dashed lines correspond to calculations
with the bare chiral EFT N3LO NN interaction. Here, the bare means the original
NN interaction not renormalized by the effective interaction procedure. The bare
NNN interaction is added to either the bare NN or to the effective NN interaction
in calculations depicted by thick lines. We observe that the convergence is
faster when the two-body effective interaction is used. However, starting at about
Nmax ¼ 24 the convergence is reached also in calculations with the bare NN inter-
action. The rate of convergence also depends on the choice of the HO frequency. In
general, it is always advantageous to use the effective interaction in order to
improve the convergence rate. The 3H ground-state energy and point-proton radius
results are summarized in Table 2. The contributions of different NNN terms to the
3H ground-state energy are presented in Table 3. In addition to results obtained using

Fig. 7 3H point-proton rms radius dependence on the size of the basis. The HO frequency of

�hO ¼ 28 MeV was employed. Results with (thick line) and without (thin line) the NNN interaction

are shown. The two-body effective interaction derived from the chiral NN interaction was used in the

calculation. For further details see the text
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the cD ¼ 1, we also show in Table 3 results obtained using cD ¼ �1 and a corre-
sponding cE constrained by the average of the 3H and 3He binding energy fit. For
completeness, we show results obtained by the two alternative one-pion-exchange
plus contact terms (28) and (29). In all cases, the contact E-term gives a positive
contribution. The contribution from the D-term changes sign depending on the choice
of cD. Still, the two-pion exchange c-terms dominate the NNN expectation value.

In Figs. 8 and 9, we show convergence of the 4He ground-state energy and
point-proton rms radius, respectively. The NCSM calculations are performed in
basis spaces up to Nmax ¼ 20. Thin lines correspond to results obtained with the NN
interaction only, while thick lines correspond to calculations that also include the
NNN interaction. The dashed lines correspond to results obtained with bare inter-
actions. The full lines correspond to results obtained using three-body effective
interaction (the NCSM three-body cluster approximation, see, e.g., [16, 35]). It is
apparent that the use of the three-body effective interaction improves the conver-
gence rate dramatically. We can see that at about Nmax ¼ 18 the bare interaction
calculation reaches convergence as well. It should be noted, however, that p-shell
calculations with the NNN interactions are presently feasible in model spaces up to
Nmax ¼ 6 or Nmax ¼ 8. The use of the three-body effective interaction is then
essential in the p-shell calculations.

Table 2 Ground-state energy and point-proton rms radius of 3H and 4He

calculated using the chiral N3LO NN potential [13] with and without the local

chiral N2LO NNN interaction. The LEC values and other parameters are given

in Table 1. The calculations were performed within the ab initio NCSM

3H

NN NNþNNN Expt.

Egs [MeV] �7.852(5) �8.473(5) �8.482

rp [fm] 1.650(5) 1.608(5)

4He

NN NNþNNN Expt.

Egs [MeV] �25.39(1) �28.34(2) �28.296

rp [fm] 1.515(2) 1.475(2) 1.455(7)

Table 3 Contributions of different NNN terms to the 3H ground-state energy. The cD and cE LECs are

explicitly shown. Other parameters are given in Table 1. All energies are given in MeV. The two

alternative one-pion-exchange plus contact terms (28) and (29) are considered

3H

cD cE Egs c terms D term E term

1.0 (Eq. (28)) �0.029 �8.473 �1.01 0.13 0.03

�1.0 (Eq. (28)) �0.331 �8.474 �1.07 �0.16 0.32

1.0 (Eq. (29)) �0.159 �8.471 �0.99 0.005 0.14

�1.0 (Eq. (29)) �0.213 �8.474 �1.10 �0.05 0.21
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Fig. 8 4He ground-state energy dependence on the size of the basis. The HO frequencies of �hO ¼ 28

and 36 MeV were employed. Results with (thick lines) and without (thin lines) the NNN interaction

are shown. The full lines correspond to calculations with three-body effective interaction, the dashed

lines to calculations with the bare interaction. For further details see the text

Fig. 9 4He point-proton rms radius dependence on the size of the basis. The HO frequencies of

�hO ¼ 28 and 36 MeV were employed. Results with (thick line) and without (thin line) the NNN

interaction are shown. The three-body effective interaction was used in the calculation. For further

details see the text
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We note that NCSM calculations in the three-body cluster approximation are
rather involved. The 4He NCSM calculation with the three-body effective interac-
tion proceeds in three steps. First, we diagonalize the Hamiltonian with and with-
out the NNN interaction in a three-nucleon basis for all relevant three-body
channels. In the second step, we use the three-body solutions from the first step
to derive three-body effective interactions with and without the NNN interaction.
By subtracting the two effective interactions we isolate the NN and NNN contribu-
tions. This is needed due to a different scaling with particle number of the two- and
the three-body interactions. The 4He effective interaction is then obtained by add-
ing the two contributions with the appropriate scaling factors [16]. In the third step,
we diagonalize the resulting Hamiltonian in the antisymmetrized four-nucleon
Jacobi-coordinate HO basis to obtain the 4He J�T ¼ 0þ0 ground state. Obviously,
in calculations without the NNN interaction, the above three steps are simplified as
no NNN contribution needs to be isolated. In addition, in the case of no NNN
interaction, we may use just the two-body effective interaction (two-body cluster
approximation), which is much simpler. The convergence is slower, however, see
discussion in [40]. We also note that 4He properties with the chiral N3LO NN
interaction that we employ here were calculated using the two-body cluster approxi-
mation in [41] and the present results are in agreement with results found there.

Our 4He results are summarized in Table 2. We note that the present NCSM 3H
and 4He results obtained with the chiral N3LO NN interaction are in a perfect agree-
ment with results obtained using the variational calculations in the hyperspherical
harmonics basis as well as with the Faddeev-Yakubovsky calculations published in
[42]. A satisfying feature of the present NCSM calculation is the fact that the rate of
convergence is not affected in any significant way by inclusion of theNNN interaction.

4 Conclusions

In this paper, we regulated the NNN interaction derived within the chiral effective
field theory at the N2LO with a function depending on the magnitude of the
momentum transfer. The regulated NNN interaction is local in coordinate space.
This is advantageous for some many-body techniques. In addition, it was found
that this interaction performs slightly better in mid-p-shell nuclei than its nonlocal
counterpart [14, 38]. We calculated matrix elements of the local chiral NNN inter-
action in the three-nucleon HO basis and performed calculations for 3H and 4He
within the ab initio NCSM. We demonstrated that a very good convergence of the
ground-state properties of these nuclei remains unchanged when the NNN interac-
tion is added to the Hamiltonian. Expressions for the local �EFT NNN interaction
matrix elements derived in this paper may by used after some modifications with
other bases, e.g., with the hyperspherical harmonics basis.
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