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Abstract. We have studied the stability of mixed 3He/4He clusters in L ¼ 0
and L ¼ 1 states by the diffusion Monte Carlo method, employing the Tang-
Toennies-Yiu (TTY) He-He potential. The clusters 3He4HeM (L ¼ 0, S ¼ 1

2
) and

3He2
4HeM (L ¼ 0, S ¼ 0) are stable for M> 1, while to bind two 3He in a triplet

state the minimum number of 4He is four. Considering clusters with three 3He,
3He3

4He4 is the smallest stable system in the L ¼ 1 state, while 3He3
4He8 is the

smallest stable system in the L ¼ 0 state.

1 Introduction

In recent years a growing number of experimentalists and theoreticians have stud-
ied helium clusters and droplets, both pure and doped with an impurity. The com-
bination of the extremely weak interaction between helium atoms and the small
atomic masses makes helium clusters very weakly bound and by far the most
intriguing van der Waals clusters with high quantum features. Initial investigations
were devoted to pure 4He clusters and droplets [1, 2]. More recently, however, a
growing number of studies have focused on pure 3He clusters and droplets [3, 4]
and also on mixed clusters [5, 6]. The helium-helium interaction potential does not
distinguish between the two isotopic species, the fermion 3He and the boson 4He,
and this allows one to study effects entirely due to the zero-point motion of the
species and to the different obeying statistics. The most interesting feature of these
clusters is with no doubt the possibility to attain a superfluid state with a relatively
small number of 4He atoms [7]. The superfluidity and the low temperature of
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helium clusters can be fruitfully exploited to perform high-resolution spectroscopy
on impurities and to study molecular reaction dynamics of chemical reactions.

2 Stability of Pure and Mixed Clusters

In the past decade, quantum Monte Carlo (QMC) methods have been invaluable in
providing a clear picture of helium clusters, both pure and doped with an impurity.
Here we use QMC methods to investigate the stability of 3HeN

4HeM clusters. For
the technical details, we refer to the literature [8].

It is known that all 4He clusters, starting from the dimer, are bound. On the
other hand the minimum number of 4He atoms necessary to form a stable cluster is
not yet known. In an early investigation, Pandharipande et al. [9] found that eight
3He atoms would form a bound state if they were bosons, despite the lighter mass,
and eight 4He atoms would be bound even if they were fermions, but eight 3He
fermions do not form a bound state. Their variational Monte Carlo (VMC) calcula-
tions indicated that systems with more than N ¼ 40 3He are bound, while N ¼ 20
atoms are unable to ensure the binding. Recently this bound has been greatly
improved by Guardiola and Navarro [3] who established at N ¼ 35 a stricter upper
bound to the minimum number of 3He atoms needed to form a stable cluster. This
cluster might be seen as the largest Borromean system [10] since all 2-, 3-, and
(N� 1)-body subsystems are unbound.

On the experimental side, Sch€oollkopf and Toennies [11] introduced the diffrac-
tion techniques from a transmission grating to study small clusters, that allowed the
detection of the helium dimer [11, 12] and trimer [13, 14]. However, the current
experiments are not yet able to investigate the problem of the critical size of 3He
clusters as they cannot be built adding 3He atoms one by one starting from the
dimer.

Much less is known on the mixed 3HeN
4HeM clusters. The stability of the

clusters 3He4HeM for M> 1 was predicted by Bressanini et al. [15] by diffusion
Monte Carlo (DMC) simulations and later shown experimentally [16]. As to the
stability of a cluster containing two 3He in a singlet state, the system 3He2

4He is
unstable, while the trimer 3He4He2 is very weakly bound with a total energy an
order of magnitude smaller than the pure trimer 4He3. Nevertheless it is possible to
add a second 3He atom and form the stable species 3He2

4He2 with the odd feature
of having five out of six unbound pairs. That prediction has been recently verified
experimentally [16]. Adding more 4He atoms to this cluster further increases its
stability [17]. A first attempt to study mixed clusters with three or more 3He has
been recently published by Guardiola and Navarro [18, 19]. They computed, using
VMC, the minimum number of 3He atoms that can bind to a given number of 4He
atoms. Bressanini and Morosi [17], studying the 3He3

4HeM cluster with the con-
straint L ¼ 0, found that M ¼ 9 was the minimum number of bosons able to bind
the cluster. Guardiola and Navarro [20] have recently reinvestigated at DMC level
the minimum number of 3He atoms that can form stable mixed clusters with up to
eight 4He.

The stability of pure 3HeN and mixed 3HeN
4HeM clusters is a delicate balance

between the fermionic nature of the 3He, requiring an antisymmetric wave func-
tion, the weakly attractive He-He potential, and the kinetic energy effects due to the
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lighter mass of the fermionic isotope. The simulation of the ground state of
3He4HeM and 3He2

4HeM poses no particular problems to DMC [7]: The wave
function is positive everywhere, even when there are two fermionic atoms forming
a singlet state. This is sufficient to ensure that the DMC method is able to compute
the exact energy, within the statistical error. However, the addition of further 3He
atoms introduces a node in the ground-state wave function. The same happens to
excited states of systems with less than three 3He. In these cases, the DMC energy
is exact only if the nodal surface is exact, otherwise DMC simulations give an
upper bound to the exact energy. Past experience with electronic systems never-
theless suggests that using approximate nodes from approximate trial wave func-
tions can lead to very good energies.

In this paper we continue our exploration of the stability diagram of mixed
clusters, studying states with different total angular momentum and spin symmetry.
We approximate the wave function of the cluster 3HeN

4HeM with the product form

CTðRÞ ¼ LðRÞ�BBðRÞ�BFðRÞ�FFðRÞ; ð1Þ
where the subscripts B and F indicate Boson and Fermion, respectively. When
there is only a single fermionic atom, �FF is missing. Each many-body wave
function � is written as product of the two-body functions [21]

f ðrÞ ¼ exp

�
� p5

r5
� p2

r2
� p0 ln r � p1r

�
: ð2Þ

This two-body function has been widely used in helium clusters simulations by
QMC methods [2, 21, 22] and has proved to give accurate results. The parameters
of the pair functions for 4He-4He are all the same, implying that the corresponding
�BB is symmetric, and the same is true for �BF and �FF. The function LðRÞ, usually
a polynomial of the coordinates of the atoms, is used to impose the desired total
angular momentum and spin symmetry, that is it has the task to introduce a nodal
surface into the trial wave function. Such a trial function, when used in a DMC
simulation within the fixed-node approximation, gives an upper bound to the exact
energy. The accuracy of the results depends on the quality of the nodes of the trial
wave function. For few-electron atomic and molecular systems the computed ener-
gies are very accurate and we expect this to be true also for small clusters.

The simulations have been performed using the DMC method [8], with 5000
walkers and a time step of 50 hartree�1. The trial wave functions have been opti-
mized minimizing the absolute deviation of the local energy [23], a procedure that
we found numerically more robust than the usually adopted variance minimization
[24]. The energies for the systems 3HeN

4HeM are reported in Table 1. For N ¼ 0, 1,
and 2, the only error present is the time-step bias, which we checked to be of the
same order of magnitude of the statistical uncertainty, and so the extrapolation to
zero time step should not modify the conclusions of this work. For N ¼ 3 an
additional error, due to the approximate nodal surface of the trial wave function,
is present, so our results are an upper bound of the exact energies. However, as
discussed above, we expect these energies to be very close to the exact values.

As mentioned previously, the ground state of 3He2
4HeM has L ¼ 0 and S ¼ 0.

In superfluid liquid 3He, helium atoms form Cooper pairs exhibiting spin-triplet
p-wave pairing. So it is interesting to investigate this kind of pairing in mixed
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helium clusters. If we consider the simple qualitative model where fermionic
atoms move in an effective potential generated by the 4He cluster, and make the
further assumption that the energy levels follow approximately those of a three-
dimensional harmonic oscillator, then it is easy to see that the first excited state
of 3He2

4HeM, if it exists, will have L ¼ 1 and S ¼ 1. In order to check this pre-
diction, we fixed the spin-state symmetry of our trial wave function by using
LðRÞ ¼ x2 � x1, where 1 and 2 refer to the 3He atoms. Results for increasing M
are shown in Table 1. From our calculations, a cluster of four 4He is sufficient
to support an excited state of the two 3He in an L ¼ 1 and S ¼ 1 state. Note that
3He2

4He4 ðL ¼ 1; S ¼ 1Þ obviously has higher energy than the ground state
3He2

4He4 ðL ¼ 0; S ¼ 0Þ, but it has a slightly lower energy than the 3He4He4

ground state, so it is stable against the loss of a helium atom.
Guardiola and Navarro [18] found, using VMC, that four 4He are sufficient to

bind three 3He in an L ¼ 1 state. This result is not surprising in the light of our
findings about the stability of the 3He2

4He4 ðL ¼ 1; S ¼ 1Þ, which in the three-
dimensional harmonic oscillator model corresponds to the configuration 1s 1p. In
fact the addition of a third 3He of opposite spin would simply doubly occupy the 1s
level, with a further increase of the binding energy. However, the VMC results
were not fully converged, and the possibility that a lower number of 4He atoms
would be sufficient to bind three 3He was left open. Here we study the 3He3

4HeM�
L ¼ 1; S ¼ 1

2

�
at the DMC level, in order to definitively resolve the matter. As

shown in Table 1, indeed, the smallest stable cluster is 3He3
4He4, a result that might

be inferred from recent experimental data [16]. For 3He3
4HeM clusters we recom-

puted the L ¼ 0 states with a smaller time step than in our previous work [17], in
order to reduce the time step bias. This time we were able to form a stable cluster
with L ¼ 0 with eight 4He atoms, a result that we attribute to the reduced time step
bias and to a better optimized trial wave function. The differences of the energies
of the states of the clusters including two fermions are fairly constant, and the same
is true for clusters including three fermions, even if the variations are slightly
larger. These results suggest that the simple 3D harmonic oscillator model gives

Table 1. Energies, in cm�1, of 3HeN
4HeM clusters in various ðL; SÞ states with angular momentum

L ¼ 0; 1 and spin S

M N ¼ 0 N ¼ 1 N ¼ 2 N ¼ 3

ð0; 0Þ ð1; 1Þ
�
0; 1

2

� �
1; 1

2

�
2 �0.00089(1) �0.00984(5) �0.0693(6) – – –

3 �0.08784(7) �0.2062(2) �0.3986(5) – – –

4 �0.3881(3) �0.6332(5) �0.9473(4) �0.6472(3) – �1.0173(7)

5 �0.9031(6) �1.2638(7) �1.687(1) �1.3680(8) – �1.849(1)

6 �1.6078(4) �2.0709(4) �2.597(1) �2.269(1) – �2.844(1)

7 �2.4799(8) �3.034(1) �3.640(1) �3.324(1) – �3.981(2)

8 �3.499(1) �4.138(2) �4.819(1) �4.511(1) �4.828(3) �5.242(1)

9 �4.641(1) �5.361(2) �6.112(2) �5.812(1) �6.176(2) �6.607(1)

10 �5.915(2) �6.690(3) �7.511(2) �7.216(1) �7.653(3) �8.076(1)

17 �17.234(2) �18.347(2) �19.47(2) �19.253(5) �20.045(4) �20.389(7)
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the correct description, at least for the lowest states. The L ¼ 0 states, correspond-
ing to a 1s2 2s configuration, are higher in energy than L ¼ 1 states with 1s2 1p
configuration, as expected from the model.
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