REVIEW ARTICLE

Minimally invasive surgery for pancreatic cancer

Yoshihiro Miyasaka^{1,2} · Takao Ohtsuka^{1,3} · Masafumi Nakamura¹

Received: 22 June 2020 / Accepted: 29 June 2020 / Published online: 28 August 2020 © Springer Nature Singapore Pte Ltd. 2020

Abstract

Pancreatic cancer is the most lethal malignancy of the digestive organs. Although pancreatic resection is essential to radically cure this refractory disease, the multi-organ resection involved, as well as sequelae such as glucose tolerance insufficiency and severe complications impose a heavy burden on these patients. Since the late twentieth century, minimally invasive surgery has become more popular for the surgical management of digestive disease and pancreatic cancer. Minimally invasive pancreatic resection (MIPR), including pancreaticoduodenectomy and distal pancreatectomy, is now a treatment option for pancreatic cancer. Some evidence suggests that MIPR for pancreatic cancer provides comparable oncological outcomes to open surgery, with some advantages in perioperative outcomes. However, as this evidence is retrospective, prospective investigations, including randomized controlled trials, are necessary. Because neoadjuvant therapy for resectable or borderline-resectable pancreatic cancer and conversion surgery for initially unresectable pancreatic cancer has become more common, the feasibility of MIPR after neoadjuvant therapy or as conversion surgery requires further assessment. It is expected that progress in surgical techniques and devices, as well as the standardization of surgical procedures and widespread educational programs will improve the outcomes of MIPR.

Keywords Pancreatic cancer · Pancreatic resection · Minimally invasive · Laparoscopic · Robotic

Introduction

Pancreatic cancer is associated with a dismal prognosis and a 5-year survival rate of only 9% [1]. At the rate its incidence is increasing, it is anticipated that by 2030, it will be the second leading cause of cancer-related death [2]. Despite advances in chemotherapy and chemoradiotherapy, pancreatic resection is essential to cure pancreatic cancer. However, the multi-organ resection that pancreatic resection requires, together with glucose tolerance insufficiency and severe complications such as postoperative pancreatic fistula, impose a heavy burden on patients. In the 1970s,

- ² Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Japan
- ³ Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan

the mortality rate after pancreaticoduodenectomy (PD) was approximately 20%, but progress in surgical procedures and devices, combined with better postoperative management, have decreased the rate to around 3% [3–5].

During the late twentieth century, minimally invasive surgery (MIS); namely, laparoscopic and robotic surgery, encompassed digestive surgery, with laparoscopic surgery in the 1980s and robotic surgery in the 1990s [6]. Although the initial indication for MIS was benign conditions such as appendicitis or cholelithiasis, it expanded gradually to include gastrointestinal cancers [7, 8]. The several advantages of MIS, such as reduced postoperative pain, fewer wound complications, and early postoperative recovery, made MIS an attractive treatment option for cancer. According to a recent national survey by the Japan Society for Endoscopic Surgery, more than 60% of colorectal cancers are now treated by MIS [9]. Even open pancreatic surgery is a challenging procedure for surgeons because of the retroperitoneal location, anatomical complexity, and proximity to major vessels, but now minimally invasive pancreatic resection (MIPR) is being performed in clinical practice. MIPR for benign or low-grade malignant tumors has several advantages over open pancreatic resection in perioperative

Masafumi Nakamura mnaka@surg1.med.kyushu-u.ac.jp

¹ Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan

outcomes [10]. According to a worldwide survey on MIPR, 90% of participating surgeons thought that MIPR had overall advantages for patients [11]. Thus, the application of MIPR to pancreatic cancer treatment may benefit patients with this refractory disease. To promote a better understanding of MIPR for pancreatic cancer, we review its history and current status, and discuss its future perspectives.

History of minimally invasive pancreatic resection for pancreatic cancer

Following the successful application of laparoscopy to several hepato-pancreato-biliary procedures such as cholecystectomy, choledochotomy, and liver resection, laparoscopic pancreatic resection was introduced [6]. In 1994, Gagner et al. reported their first laparoscopic PD (LPD) for chronic pancreatitis, performed in 1992 [12]. Then, in 1996, Cuschieri et al. described the first laparoscopic distal pancreatectomy (LDP), also performed for chronic pancreatitis [13]. The first description of MIPR for pancreatic cancer was in a case series of laparoscopic pancreatic resections (LPRs) reported by Gagner et al. in 1997 [14]. They reported 23 cases of LPR, four of which were LPD for pancreatic adenocarcinoma and one of which was LDP for pancreatic cystadenocarcinoma. The first description of robotic pancreatic resection for pancreatic cancer was in a case series reported by Giulianotti et al., who described three cases of robotic PD and three cases of robotic DP for pancreatic cancer [15]. The first case series of minimally invasive PD (MIPD) for pancreatic cancer, including oncological outcomes such as prognosis, was reported by Palanivelu et al. [16] in 2007, with 40 cases of LPD for periampullary malignancy, including nine for pancreatic adenocarcinoma and four for pancreatic cystadenocarcinoma. In the same year, Fernández-Cruz et al. [17] reported the first case series of minimally invasive DP (MIDP) for pancreatic cancer with oncological outcomes, including 13 cases of LDP performed for pancreatic cancer. They described the application of radical antegrade modular pancreatosplenectomy (RAMPS), which was proposed by Strasberg et al., to laparoscopic procedures for en bloc resection of left-sided pancreatic cancer in open surgery [18].

Current status of minimally invasive pancreatic resection for pancreatic cancer

The favorable perioperative outcomes of MIPR such as less blood loss and shorter hospital stay have resulted in MIPR becoming an accepted treatment option for pancreatic cancer in clinical practice. According to studies in the National Cancer Database (NCDB) of the United States, 27.9% (506/1807) of patients who underwent DP and 14.9% (1191/7967) of those who underwent PD for pancreatic cancer, were treated by minimally invasive approaches between 2010 and 2012 [19, 20]. In the National Comprehensive Cancer Network (NCCN) guidelines for pancreatic adenocarcinoma, MIS is described as equal to open surgery as a treatment option for resectable disease [21]. The Japanese Clinical Practice Guidelines for Pancreatic Cancer recommend LDP for pancreatic cancer except if there is multiple organ invasion or if combined vascular resection is required [22]. However, the Japanese guidelines state that LPD for pancreatic cancer is not recommended in clinical practice and should be performed in clinical studies. This is because LPD for cancer was not permitted by Japanese health insurance at the time of publication of the guidelines.

Several studies comparing MIPR and open pancreatic resection (OPR) for pancreatic cancer have been published. Tables 1, 2, 3 and 4 summarize these comparative studies between MIPR and OPR for pancreatic cancer (adenocarcinoma) [19, 20, 23–45]. All the studies were retrospective and ten of them collected data from nationwide databases including the NCDB [19, 20, 24, 28, 29, 34, 35, 37, 38, 42].

Table 1 compares the perioperative outcomes between MIDP and open distal pancreatectomy (ODP) [19, 23, 27, 28, 30, 32-36, 38-40, 42-44]. In most of these studies, operation time, postoperative complications, and mortality were comparable between MIDP and ODP, but MIDP was associated with less blood loss and a shorter hospital stay. Meta-analyses of comparative studies comparing MIDP and ODP for benign and malignant conditions also revealed less blood loss and a shorter hospital stay [10, 46, 47]. Although most studies showed comparable postoperative complication rates, two studies using nationwide databases revealed fewer postoperative complications after MIDP. Sulpice et al. [42] analyzed data from healthcare databases in France and found a significantly lower incidence of major abdominal complications after LDP. The study using data from the American College of Surgeons-National Surgical Quality Improvement Program identified a lower incidence of overall postoperative complications as well as pneumonia, surgical site infection, and sepsis [34]. The meta-analyses also showed reduced postoperative complications after MIDP [10, 46-48]. Thus, MIDP for pancreatic cancer may be associated with a lower incidence of postoperative complications. Table 2 compares the oncological outcomes of MIDP and ODP [19, 23, 27, 28, 30, 32, 33, 35, 36, 38–40, 42–44]. R0 resection rates, number of harvested lymph nodes, adjuvant chemotherapy, and overall survival were mostly comparable. Some large cohort studies revealed significantly higher R0 resection rates with MIDP [19, 28, 38, 43]. However, as bulky tumors or tumors close to major vessels tended to require open surgery rather than minimally invasive surgery in these studies, selection bias may have influenced the outcome. Metaanalyses of comparative studies between MIDP and ODP

Authors	Year	Procedure	Number of cases	Operation time (min)	<i>p</i> value	Blood loss (mL)	<i>p</i> value	Postoperative complication	<i>p</i> value	Mortality*	<i>p</i> value	Postoperative hospital stay	<i>p</i> value
Kooby et al. [30]	2010	Lap	23	238.4 ± 68.1	p = 0.65	422±473	p = 0.04	NA	I	(30 d) 0%	NS	7.4±3.4	p = 0.03
		Open	189	230.4 ± 80.4		790 ± 828		NA		(30 d) 1%		10.7 ± 6.3	
Magge et al. [33]	2013	MIS	28	317 ± 23	NS	290 ± 60	p = 0.006	39%	p = 0.45	0%	NS	6 (IQR: 3)	p = 0.03
		Open	34	294 ± 24		570 ± 80		50%		%0		8 (IQR: 2.75)	
Hu et al. [27]	2014	Lap	11	150.0 ± 54.0	p = 0.445	100 (50-400)	p = 0.678	NA	I	(30 d) 0%	NS	5.2 ± 2.5	p = 0.010
		Open	23	160 ± 48.0		150 (50-350)		NA		(30 d) 0%		8.6 ± 3.9	
Rehman et al.	2014	Lap	8	376 (300–534)	p = 0.009	306 (250–535)	p = 0.152	37%	p = 0.5	(30 d) 12.5%	NS	8 (5–14)	p = 0.05
[36]		Open	14	274 (180-420)		650 (145–1300)		42%		(30 d) 7.1%		12 (6–21)	
Lee et al. [32]	2014	MIS	10^{**}	330 ± 168.2	p = 0.112	440 ± 382.1	p = 0.366	20%	p = 0.441	(30 d) 0%	p = 0.448	12.7 ± 7.1	p = 0.05
		Open	40**	253.3 ± 124.7		625.4 ± 878.8		32.5%		(30 d) 2.5%		22.1 ± 27.1	
Shin et al. [39]	2015	Lap	70	239 (125–397)	p = 0.32	NA	I	20%	p = 0.31	20%	NA	9 (5–29)	p < 0.001
		Open	80	254 (115–573)		NA		25.7%		1.2%		12 (7–87)	
Sulpice et al. [42]	2015	Lap	347	NA	I	NA	I	6.6%***	p = 0.0284	(90 d) 2.6%	p = 0.0215	14.9 ± 8.9	p < 0.0001
		Open	2406	NA		NA		$10.4\%^{***}$		(90 d) 5.6%		19.6 ± 14.6	
Sharpe et al. [38]	2015	Lap	144	NA	I	NA	I	NA	I	(30 d) 0%	p = 0.222	6.8 ± 4.6	p < 0.001
		Open	625	NA		NA		NA		(30 d) 2%		8.9 ± 7.5	
Zhang et al. [44]	2015	Lap	17	190 (100–390)	p = 0.064	50 (30-500)	p = 0.000	35.2%	p = 0.754	0%	NA	13 (4–23)	p = 0.022
		Open	34	245 (155–420)		400 (100–3900)		41.2%		2.9%		15.5 (6-40)	
Stauffer et al.	2016	Lap	44	254 (99–521)	p = 0.5961	332 (10–2650)	p = 0.0012	$13.6\%^{****}$	p = 0.3460	(90 d) 2.3%	p = 1.000	5.1 (2–17)	p = 0.0001
[40]		Open	28	266 (131–543)		874 (150–3400)		25%****		%0 (p 06)		9.4 (4–36)	
Anderson Jr et al.	2017	MIS	505	NA	I	NA	I	NA	I	(90 d) 2.2%	p = 0.43	6 (5–8)	p < 0.0001
[19]		Open	1302	NA		NA		NA		(90 d) 3.3%		7 (6–10)	
Plotkin et al. [34]	2017	MIS	166	239 ± 9.0	p = 0.311	NA	NA	31%	p = 0.024	(30 d) 0%	p = 0.307	5 ± 0.31	p = 0.009
		Open	335	250 ± 6.2		NA		42%		(30 d) 1%		7 ± 0.51	
Kantor et al. [28]	2017	Lap	349	NA	I	NA	I	NA	I	(90 d) 3.7%	p = 0.26	7.1 ± 6.0	p < 0.01
		Open	1205	NA		NA		NA		(90 d) 5.6%		8.7±7.3	
Bauman et al.	2018	Lap	33	3.9 ± 0.2 (h)	p = 0.36	310 ± 68	p = 0.016	52%	p = 0.10	(90 d) 3%	p = 0.08	7.6 ± 1.4	p = 0.44
[23]		Open	46	4.2 ± 0.2 (h)		597 ± 95		70%		(90 d) 15%		9 ± 0.7	
Raoof et al. [35]	2018	Lap	563**	NA	I	NA	I	NA	I	(90 d) 2.8%	p = 0.403	6 (5–8)	p < 0.001
		Open	563**	NA		NA		NA		(90 d) 3.7%		7 (5–9)	
van Hilst et al.	2019	MIS	340**	240 (180–295)	p = 0.626	200 (60-400)	p < 0.001	$18\%^{****}$	p = 0.431	(90 d) 2%	<i>p</i> > 0.999	8 (6–12)	p < 0.001
[43]		Open	340^{**}	230 (178–286)		300 (150–500)		21%****		(90 d) 3%		9 (7–14)	

*(30 d): 30-day mortality rate, (90 d): 90-day mortality

*** After propensity score matching **** Abdominal major complication ***** ≥ Clavien Dindo grade III

Authors	Year	Procedure	Number of cases	R0 resection rate	<i>p</i> value	Harvested LN	<i>p</i> value	Adjuvant chemother- apy(%)	<i>p</i> value	Overall survival	<i>p</i> value
Kooby et al. [30]	2010	Lap	23 180	74 72	p = 0.98	13.8±8.4	p = 0.47	57 70	p = 0.23	MST 11 months	p = 0.71
Marrie et al [33]	2013	MIS	107	c) 98	00 0 < "	12.3±0.3	n — 0 75	0/		SIDIOIII 11 1CM	n-0 80*
Magge of al.	CT07	Open	34	88	ccord	11 (IQR: 6–19) 12 (IQR: 6–19)	cd	NA		AN	p = 0.00 - d
Hu et al. [27]	2014	Lap	11	100	NS	14.8 ± 4.5	p = 0.875	NA	I	42.0 ± 8.6 months	<i>p</i> >0.05
		Open	23	100		16.1 ± 5.7		NA		54.0 ± 5.8 months	
Rehman et al. [36]	2014	Lap	8	88	p = 0.794	16 (1–27)	p = 0.53	NA	I	MST 33 months	p = 0.91
		Open	14	86		14 (0-26)		NA		MST 52 months	
Lee et al. [32]	2014	MIS	10^{**}	100	p = 0.426	11.7 ± 7.2	p = 0.887	70	p = 0.765	NA	p = 0.053*
		Open	40**	87.5		12.1 ± 8.1		65		NA	
Shin et al. [39]	2015	Lap	70	75.7	p = 0.22	12 (1–34)	p = 0.13	78.6	p = 0.18	MST 33.4 months	p = 0.25
		Open	80	83.8		10 (1-64)		68.8		MST 29.1 months	
Sulpice et al. [42]	2015	Lap	347	NA	I	NA	I	NA	I	MST 62.5 months	p < 0.0001
		Open	2406	NA		NA		NA		MST 36.7 months	
Sharpe et al. [38]	2015	Lap	144	87	p = 0.042	14.9 ± 10.0	p = 0.085	NA	I	NA	I
		Open	625	78		13.3 ± 9.9		NA		NA	
Zhang et al. [44]	2015	Lap	17	94.1	p = 0.650	9 (5–15)	p = 0.534	76.5	p = 1.000	MST 14.0 months	p = 0.802
		Open	34	85.3		8 (2–22)		76.5		MST 14.0 months	
Stauffer et al. [40]	2016	Lap	44	95.5	p = 0.1012	25.9 (5-48)	p = 0.0001	75.6	p = 1.000	MST 26.6 months	p = 0.851
		Open	28	82.1		12.7 (1–45)		75		MST 26.4 months	
Anderson Jr et al. [19]	2017	MIS	505	85.9	p < 0.001	12 (7–19)	p = 0.35	57.8	p = 0.11	3 yr survival 55%	p = 0.42
		Open	1302	79.0		12 (7–19)		53.8		3 yr survival 52%	
Kantor et al. [28]	2017	Lap	349	82.2	p < 0.001	14.0 ± 11.7	p = 0.31	67.9	p = 0.05	MST 29.9 months	p = 0.09
		Open	1205	75.1		14.8 ± 12.0		61.8		MST 24.0 months	
Bauman et al. [23]	2018	Lap	33	LL	p = 0.53	14.5 ± 1.1	p = 0.07	61	p = 0.83	MST 17.9 months	
		Open	46	87		17.5 ± 1.2		63		MST 15.1 months	
Raoof et al. [35]	2018	Lap	563**	85.1	p = 0.110	12 (7–18)	p = 0.759	NA	I	3 yr OS 41.6%	p = 0.457
		Open	563**	81.5		1 (6–18.5)		NA		3 yr OS 36.0%	
van Hilst et al. [43]	2019	MIS	340**	67	p = 0.019	14 (8–22)	p < 0.001	76%	p = 0.561	MST 28 months	p = 0.774
		Open	340**	58		22 (14–31)		73		MST 31 months	

 $\underline{\textcircled{O}}$ Springer

*Although survival time was not provided, the results of comparative analysis of survival were shown **After propensity score matching

MST, median survival time; 3 yr OS, 3-year overall survival rate

197

-			•			-	,						
Authors	Year Proce	dure Nur	mber of cases	Year Procedure Number of cases Operation time	<i>p</i> value	Blood loss	<i>p</i> value	Postoperative <i>p</i> value complication		Mortality*	<i>p</i> value	Postoperative <i>p</i> value hospital stay	<i>p</i> value
Croome et al.	2014 Lap			379.4 ± 93.5	p = 0.45	492.4 ± 519.3	p < 0.001	5.6%**	p = 0.17	(In Hp) 1%	p = 0.50	6 (4–118)	p < 0.001
	Open			38/.0±91.8		800.1 ± 133.1		13.0%**		%7 (dH uI)		(5/-C) A	
Sharpe et al.	2015 Lap	384		NA	I	NA	I	NA	I	(30 d) 5.2%	$p = 0.163 10 \pm 8.0$	10 ± 8.0	<i>p</i> < 0.0001
[37]	Open	4037		NA		NA		NA		(30 d) 3.7%		12 ± 9.7	
Nussbaum et al.	2016 MIS	1191		NA	I	NA	I	NA	I	(90 d) 5.12%	p = 0.22	11.4 ± 10.3	p < 0.01
[20]	Open	6776		NA		NA		NA		(90 d) 4.68%		12.3 ± 9.5	
Stauffer et al.	2017 Lap	58		518 (313–761)	p < 0.001	p < 0.001 250 (50–8500)	p < 0.001	53.4%	NS	(90 d) 5.2%	p = 0.737	6 (4–68)	p < 0.001
[41]	Open	193		375 (159–681)		600 (50–7800)		66.8%		(90 d) 3.4%		9 (4–71)	
Kantor et al.	2017 Lap	828		NA	I	NA	I	NA	I	(30 d) 4.1%	p = 0.71	10.2 ± 8.5	p < 0.01
[29]	Open	7385		NA		NA		NA		(30 d) 3.8%		11.8 ± 9.3	
Chapman et al.	2018 Lap	248		NA	I	NA	I	NA	I	(90 d) 7.2%	p = 0.049	10 (7–15)	p = 0.06
[24]	Open	1520		NA		NA		NA		(90 d) 12.2%		10 (7–15.5)	
Kuesters et al.	2018 Lap	62		477 (295–686)	p < 0.001	NA	I	53%	p = 0.75	(30 d) 4.8%	p = 0.23	14 (7–39)	p = 0.03
[31]	Open	278		428 (245–714)		NA		55%		(30 d) 2.2%		16 (5–379)	
Zhou et al. [45]	2019 Lap	55***		330 (260–360)	p < 0.001	150 (100–200)	p = 0.001	49.1%	p = 0.008	(In Hp) 0%	p = 0.530	$p = 0.530 13 \ (11 - 20)$	p = 0.986
	Open	93***		260 (207.5– 325.5)		200 (150–350)		71.0%		(In Hp) 2.2%		14 (10–20)	
Choi et al. [25]	2020 Lap	27		477.7 ± 60.75	p = 0.725	$p = 0.725$ 232.59 ± 178.68 $p = 0.003$		NA	I	NA	I	21.19 ± 11.13 $p = 0.928$	p = 0.928
	Open	34	·	471.21 ± 78.62		448.82 ± 343.83		NA		NA		19.94 ± 9.79	
Lap laparoscopic only; MIS laparoscopic and robotic *(30 d): 30-day mortality rate, (90 d): 90-day mortali *** ^ Clavien Dindo grade IIIb	only; <i>MIS</i> lap: ortality rate, (o grade IIIb ly score match	aroscopic (90 d): 90- uing	and robotic day mortality,	<i>ap</i> laparoscopic only; <i>MIS</i> laparoscopic and robotic (30 d): 30-day mortality rate, (90 d): 90-day mortality, (In Hp): in-hospital mortality [*] ≥ Clavien Dindo grade IIIb ^{**} After propensity score matching	al mortality								

na	
JOI	
cinc	
car	
ğ	
der	
(a	
er	
cancer	
3	
ti.	l
rea	
nci	
pa	
Or	۱
y fe	۱
Ĕ.	۱
ctc	۱
dene	۱
de	
onp	
р	
it:	
rea	
nci	
pa	
n l	
ğ	
s.	
>	İ
asive	
ш.	
V	
ıal	۱
minimall	۱
nir	۱
of r	۱
Ś	۱
ome	۱
	۱
outc	Í
'e o	۱
erative	I
era	۱
þ	۱
erio	۱
Pe	۱
m	۱
Table 3	۱
Tak	۱
-	'

 $\underline{\textcircled{O}}$ Springer

198

Table 4 Oncological outcomes of minimally invasive vs. open pancreaticoduodenectomy for pancreatic cancer (adenocarcinoma)	itcomes (of minimally in	nvasive vs. open panc	reaticoduodene	ctomy for pa	ncreatic cancer (ac	lenocarcinom	a)			
Authors	Year	Procedure	Number of cases	R0 resection p value rate (%)	<i>p</i> value	Harvested LN	<i>p</i> value	Adjuvant chemotherapy (%)	p value	Overall survival	<i>p</i> value
Croome et al. [26]	2014	Lap	108	77.8	p = 0.81	21.4 ± 8.1	p = 0.15	76	p = 0.70	MST 25.3 months	p = 0.12
Sharpe et al. [37]	2015	Open Lap	214 384	/0.0 80	p = 0.026	20.1 ± 7.02 18 ± 9.7	p = 0.008	/6 NA	I	MST 21.8 months NA	I
		Open	4037	74		16 ± 9.6		NA		NA	
Nussbaum et al. [20]	2016	MIS	1191	79.8	p = 0.15	17.4 ± 10.0	p < 0.01	55.3	p = 0.08	2 yr OS 43%	p = 0.36
		Open	6776	9.77		16.5 ± 9.6		52.7		2 yr OS 47%	
Stauffer et al. [41]	2017	Lap	58	84.5	p = 0.426	27 (9–70)	p < 0.001	75.9	p = 0.858	MST 18.5 months	p = 0.25
		Open	193	79.8		17 (1–63)		73.5		MST 20.3 months	
Kantor et al. [29]	2017	Lap	828	79.1	p = 0.13	18.1 ± 9.5	p = 0.01	61.4	p = 0.87	MST 20.7 months	p = 0.68
		Open	7385	76.8		17.1 ± 9.6		60.4		MST 20.9 months	
Chapman et al. [24]	2018	Lap	248	77.4	p = 0.12	NA	I	35.9	p = 0.98	MST 19.8 months	p = 0.022
		Open	1520	73.0		NA		36.0		MST 15.6 months	
Kuesters et al. [31]	2018	Lap	62	87	p = 0.01	17 (7–28)	p = 0.69	NA	I	5 yr OS 20%	p = 0.51
		Open	278	71		16 (2-47)		NA		5 yr OS 14%	
Zhou et al. [45]	2019	Lap	55*	100	p = 0.201	18 (13–25)	p < 0.001	47.3	p = 0.701	MST 20.0 months	p = 0.293
		Open	93*	94.6		11 (7–14.5)		50.5		MST 18.7 months	
Choi et al. [25]	2020	Lap	27	92.59	p = 0.092	13.33 ± 9.21	NS	77.78	p = 1.000	MST 44.62 months	p = 0.223
		Open	34	70.59		20.65 ± 9.47		79.41		MST 45.29 months	
I an lanarosconic only: MIS lanarosconic and ro	MLS lana	rosconic and r									

Lap laparoscopic only; *MIS* laparoscopic and ro *MST*, median survival time; 2 *yr OS*, 2-year overall survival rate; 5 *yr OS*, 5-year overall survival rate

* After propensity score matching

for pancreatic cancer also revealed comparable R0 resection rates, numbers of harvested lymph nodes, adjuvant chemotherapy, and overall survival except for one meta-analysis that showed a smaller number of harvested lymph nodes with MIDP [49–51].

Table 3 compares the perioperative outcomes of MIPD and open PD (OPD) [20, 24–26, 29, 31, 37, 41, 45]. Most studies showed similar postoperative complications and mortality after MIPD and OPD, but MIPD was associated with longer operation time, less blood loss, and a shorter hospital stay. MIPD was also associated with a longer operation time, less blood loss, and a shorter hospital stay in metaanalyses of studies comparing MIPD and OPD for benign and malignant periampullary disease [52, 53]. Although mortality was comparable for MIPD and OPD, a low hospital volume was associated with increased mortality in MIPD [37]. International Evidence-based Guidelines on MIPR recommend that MIPD should be performed at high-volume centers [54].

Table 4 compares the oncological outcomes of MIPD and OPD [20, 24–26, 29, 31, 37, 41, 45]. In most studies, MIPD and OPD showed comparable R0 resection rates, adjuvant chemotherapy, and overall survival, but MIPD achieved larger numbers of harvested lymph nodes. A meta-analysis of randomized controlled trials and high-quality nonrandomized studies comparing MIPD and OPD also showed a higher number of harvested lymph nodes in MIPD [53]. Magnified high-resolution images and meticulous manipulation of minimally invasive surgery may facilitate lymph node dissection.

RAMPS is often used in MIDP for pancreatic cancer [17, 32, 55, 56]. Medial-to-lateral dissection of the retroperitoneum in RAMPS may allow for a better laparoscopic view than the lateral-to-medial approach of conventional pancreatosplenectomy. Some surgeons use the ligament of Treitz approach to expose a dissection plane anterior to the left renal vein [57, 58]. Pancreatic cancer often requires combined vascular resection. Although some investigators have described MIPR with major vessel resection (portal vein resection or celiac axis resection) [59, 60], evidence of its safety and efficacy is limited. Therefore, it should be performed in high volume centers by experienced surgeons for the purpose of prospective investigations.

Future perspectives

Although MIPR for pancreatic cancer appears to be oncologically comparable to OPR and may have some better perioperative outcomes, the current evidence is based on retrospective studies. Further analyses according to prospective investigations including randomized controlled trials are necessary. Evidence of the usefulness of neoadjuvant therapy for resectable or borderline resectable pancreatic cancer is accumulating and the number of cases of conversion surgery for primary unresectable pancreatic cancer are increasing. However, the feasibility of MIPR after neoadjuvant therapy or as conversion surgery has not been established and requires further investigation.

MIPR for pancreatic cancer is still in development. Standardization of surgical procedures and widespread educational programs for MIPR may improve outcomes, as demonstrated by a nationwide training program in MIDP in the Netherlands, which reduced blood loss, conversion, margin-positive resection, and the length of hospital stay [61]. Further advances in imaging technology and surgical devices will also improve the precision of surgical procedures. For example, the application of augmented reality during MIPR may allow surgeons to locate tumors or vessels accurately despite the lack of tactile sensation [62]. Postoperative pancreatic fistula (POPF) is the most concerning complication of pancreatic surgery. A randomized controlled study suggested that stapler reinforcement may inhibit the development of POPF in distal pancreatectomy [63]. Thus, we await the development of methods or devices to overcome POPF.

The improvements in prognosis after pancreatic resection for pancreatic cancer resulting from better multidisciplinary treatments are unfortunately accompanied by an increasing number of cases of metachronous cancer in the remnant pancreas [64]. Several authors suggest that resection may improve the prognosis of patients with remnant pancreatic cancer [65–67]. If the initial pancreatic resection is performed by MIS, less adhesion is expected. One of the predictors of difficulty in laparoscopic repeat liver resection for recurrent hepatocellular carcinoma is the history of an open approach for the initial liver resection [68]. Hence, initial pancreatic resection according to MIS may facilitate secondary surgery for remnant pancreatic cancer.

Conclusion

MIPR for pancreatic cancer is being adopted in clinical practice more slowly than MIS for other abdominal malignancies. Current evidence suggests that it has some perioperative outcome advantages, with further advantages evolving through progress in techniques and devices. Whether MIPR benefits patient survival needs to be verified prospectively. Centralization, standardization, and education are future issues of MIPR for pancreatic cancer.

Compliance with ethical standards

Conflict of interest We have no conflict of interest to declare in association with this manuscript.

References

- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.
- Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.
- Peters JH, Carey LC. Historical review of pancreaticoduodenectomy. Am J Surg. 1991;161:219–25.
- 4. Kimura W, Miyata H, Gotoh M, Hirai I, Kenjo A, Kitagawa Y, et al. A pancreaticoduodenectomy risk model derived from 8575 cases from a national single-race population (Japanese) using a web-based data entry system: the 30-day and in-hospital mortality rates for pancreaticoduodenectomy. Ann Surg. 2014;259:773–80.
- Peluso H, Jones WB, Parikh AA, Abougergi MS. Treatment outcomes, 30-day readmission and healthcare resource utilization after pancreatoduodenectomy for pancreatic malignancies. J Hepatobiliary Pancreat Sci. 2019;26:187–94.
- Miyasaka Y, Nakamura M, Wakabayashi G. Pioneers in laparoscopic hepato-biliary-pancreatic surgery. J Hepatobiliary Pancreat Sci. 2018;25:109–11.
- Jacobs M, Verdeja JC, Goldstein HS. Minimally invasive colon resection (laparoscopic colectomy). Surg Laparosc Endosc. 1991;1:144–50.
- Kitano S, Iso Y, Moriyama M, Sugimachi K. Laparoscopy-assisted Billroth I gastrectomy. Surg Laparosc Endosc. 1994;4:146–8.
- Shiroshita H, Inomata M, Bandoh T, Uchida H, Akira S, Hashizume M, et al. Endoscopic surgery in Japan: the 13th national survey (2014–2015) by the Japan Society for Endoscopic Surgery. Asian J Endosc Surg. 2019;12:7–18.
- Nakamura M, Nakashima H. Laparoscopic distal pancreatectomy and pancreatoduodenectomy: is it worthwhile? A meta-analysis of laparoscopic pancreatectomy. J Hepatobiliary Pancreat Sci. 2013;20:421–8.
- van Hilst J, de Rooij T, Abu Hilal M, Asbun HJ, Barkun J, Boggi U, et al. Worldwide survey on opinions and use of minimally invasive pancreatic resection. HPB (Oxford). 2017;19:190–204.
- 12. Gagner M, Pomp A. Laparoscopic pylorus-preserving pancreatoduodenectomy. Surg Endosc. 1994;8:408–10.
- Cuschieri A, Jakimowicz JJ, van Spreeuwel J. Laparoscopic distal 70% pancreatectomy and splenectomy for chronic pancreatitis. Ann Surg. 1996;223:280–5.
- Gagner M, Pomp A. Laparoscopic pancreatic resection: Is it worthwhile? J Gastrointest Surg. 1997;1:20–5 (discussion 25–6).
- Giulianotti PC, Coratti A, Angelini M, Sbrana F, Cecconi S, Balestracci T, et al. Robotics in general surgery: personal experience in a large community hospital. Arch Surg. 2003;138:777–84.
- Palanivelu C, Jani K, Senthilnathan P, Parthasarathi R, Rajapandian S, Madhankumar MV. Laparoscopic pancreaticoduodenectomy: technique and outcomes. J Am Coll Surg. 2007;205:222–30.
- Fernández-Cruz L, Cosa R, Blanco L, Levi S, López-Boado MA, Navarro S. Curative laparoscopic resection for pancreatic neoplasms: a critical analysis from a single institution. J Gastrointest Surg. 2007;11:1607–21.
- Strasberg SM, Drebin JA, Linehan D. Radical antegrade modular pancreatosplenectomy. Surgery. 2003;133:521–7.

- Anderson KL Jr, Adam MA, Thomas S, Roman SA, Sosa JA. Impact of minimally invasive vs. open distal pancreatectomy on use of adjuvant chemoradiation for pancreatic adenocarcinoma. Am J Surg. 2017;213:601–5.
- Nussbaum DP, Adam MA, Youngwirth LM, Ganapathi AM, Roman SA, Tyler DS, et al. Minimally invasive pancreaticoduodenectomy does not improve use or time to initiation of adjuvant chemotherapy for patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2016;23:1026–33.
- National Comprehensive Cancer Network (NCCN) clinical practice guidelines in oncology: pancreatic adenocarcinoma. Version 1. 2020. https://www.nccn.org/ Accessed 10 Jun 2020.
- Okusaka T, Nakamura M, Yoshida M, Kitano M, Uesaka K, Ito Y, et al. Clinical practice guidelines for pancreatic cancer 2019 from the Japan pancreas society: a synopsis. Pancreas. 2020;49:326–35.
- Bauman MD, Becerra DG, Kilbane EM, Zyromski NJ, Schmidt CM, Pitt HA, et al. Laparoscopic distal pancreatectomy for pancreatic cancer is safe and effective. Surg Endosc. 2018;32:53–61.
- Chapman BC, Gajdos C, Hosokawa P, Henderson W, Paniccia A, Overbey DM, et al. Comparison of laparoscopic to open pancreaticoduodenectomy in elderly patients with pancreatic adenocarcinoma. Surg Endosc. 2018;32:2239–48.
- Choi M, Hwang HK, Rho SY, Lee WJ, Kang CM. Comparing laparoscopic and open pancreaticoduodenectomy in patients with pancreatic head cancer: oncologic outcomes and inflammatory scores. J Hepatobiliary Pancreat Sci. 2020;27:124–31.
- Croome KP, Farnell MB, Que FG, Reid-Lombardo KM, Truty MJ, Nagorney DM, et al. Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? Ann Surg. 2014;260:633–8.
- Hu M, Zhao G, Wang F, Zhao Z, Li C, Liu R. Laparoscopic versus open distal splenopancreatectomy for the treatment of pancreatic body and tail cancer: a retrospective, mid-term follow-up study at a single academic tertiary care institution. Surg Endosc. 2014;28:2584–91.
- Kantor O, Bryan DS, Talamonti MS, Lutfi W, Sharpe S, Winchester DJ, et al. Laparoscopic distal pancreatectomy for cancer provides oncologic outcomes and overall survival identical to open distal pancreatectomy. J Gastrointest Surg. 2017;21:1620–5.
- Kantor O, Talamonti MS, Sharpe S, Lutfi W, Winchester DJ, Roggin KK, et al. Laparoscopic pancreaticoduodenectomy for adenocarcinoma provides short-term oncologic outcomes and long-term overall survival rates similar to those for open pancreaticoduodenectomy. Am J Surg. 2017;213:512–5.
- Kooby DA, Hawkins WG, Schmidt CM, Weber SM, Bentrem DJ, Gillespie TW, et al. A multicenter analysis of distal pancreatectomy for adenocarcinoma: is laparoscopic resection appropriate? J Am Coll Surg. 2010;210:779–85.
- Kuesters S, Chikhladze S, Makowiec F, Sick O, Fichtner-Feigl S, Hopt UT, et al. Oncological outcome of laparoscopically assisted pancreatoduodenectomy for ductal adenocarcinoma in a retrospective cohort study. Int J Surg. 2018;55:162–6.
- Lee SH, Kang CM, Hwang HK, Choi SH, Lee WJ, Chi HS. Minimally invasive RAMPS in well-selected left-sided pancreatic cancer within Yonsei criteria: long-term (>median 3 years) oncologic outcomes. Surg Endosc. 2014;28:2848–55.
- Magge D, Gooding W, Choudry H, Steve J, Steel J, Zureikat A, et al. Comparative effectiveness of minimally invasive and open distal pancreatectomy for ductal adenocarcinoma. JAMA Surg. 2013;148:525–31.
- Plotkin A, Ceppa EP, Zarzaur BL, Kilbane EM, Riall TS, Pitt HA. Reduced morbidity with minimally invasive distal pancreatectomy for pancreatic adenocarcinoma. HPB (Oxford). 2017;19:279–85.
- 35. Raoof M, Ituarte PHG, Woo Y, Warner SG, Singh G, Fong Y, et al. Propensity score-matched comparison of oncological

outcomes between laparoscopic and open distal pancreatic resection. Br J Surg. 2018;105:578-86.

- Rehman S, John SK, Lochan R, Jaques BC, Manas DM, Charnley RM, et al. Oncological feasibility of laparoscopic distal pancreatectomy for adenocarcinoma: a single-institution comparative study. World J Surg. 2014;38:476–83.
- 37. Sharpe SM, Talamonti MS, Wang CE, Prinz RA, Roggin KK, Bentrem DJ, et al. Early national experience with laparoscopic pancreaticoduodenectomy for ductal adenocarcinoma: a comparison of laparoscopic pancreaticoduodenectomy and open pancreaticoduodenectomy from the National Cancer Data Base. J Am Coll Surg. 2015;221:175–84.
- Sharpe SM, Talamonti MS, Wang E, Bentrem DJ, Roggin KK, Prinz RA, et al. The laparoscopic approach to distal pancreatectomy for ductal adenocarcinoma results in shorter lengths of stay without compromising oncologic outcomes. Am J Surg. 2015;209:557–63.
- 39. Shin SH, Kim SC, Song KB, Hwang DW, Lee JH, Lee D, et al. A comparative study of laparoscopic vs. open distal pancreatectomy for left-sided ductal adenocarcinoma: a propensity scorematched analysis. J Am Coll Surg. 2015;220:177–85.
- Stauffer JA, Coppola A, Mody K, Asbun HJ. Laparoscopic versus open distal pancreatectomy for pancreatic adenocarcinoma. World J Surg. 2016;40:1477–84.
- 41. Stauffer JA, Coppola A, Villacreses D, Mody K, Johnson E, Li Z, et al. Laparoscopic versus open pancreaticoduodenectomy for pancreatic adenocarcinoma: long-term results at a single institution. Surg Endosc. 2017;31:2233–41.
- 42. Sulpice L, Farges O, Goutte N, Bendersky N, Dokmak S, Sauvanet A, et al. Laparoscopic distal pancreatectomy for pancreatic ductal adenocarcinoma: time for a randomized controlled trial? Results of an all-inclusive national observational study. Ann Surg. 2015;262:868–73.
- 43. van Hilst J, de Rooij T, Klompmaker S, Rawashdeh M, Aleotti F, Al-Sarireh B, et al. Minimally invasive versus open distal pancreatectomy for ductal adenocarcinoma (DIPLOMA): a pan-European propensity score matched study. Ann Surg. 2019;269:10–7.
- 44. Zhang M, Fang R, Mou Y, Chen R, Xu X, Zhang R, et al. LDP vs ODP for pancreatic adenocarcinoma: a case matched study from a single-institution. BMC Gastroenterol. 2015;15:182.
- 45. Zhou W, Jin W, Wang D, Lu C, Xu X, Zhang R, et al. Laparoscopic versus open pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: a propensity score matching analysis. Cancer Commun (Lond). 2019;39:66.
- 46. Venkat R, Edil BH, Schulick RD, Lidor AO, Makary MA, Wolfgang CL. Laparoscopic distal pancreatectomy is associated with significantly less overall morbidity compared to the open technique: a systematic review and meta-analysis. Ann Surg. 2012;255:1048–59.
- 47. Zhao W, Liu C, Li S, Geng D, Feng Y, Sun M. Safety and efficacy for robot-assisted versus open pancreaticoduodenectomy and distal pancreatectomy: a systematic review and meta-analysis. Surg Oncol. 2018;27:468–78.
- 48. Niu X, Yu B, Yao L, Tian J, Guo T, Ma S, et al. Comparison of surgical outcomes of robot-assisted laparoscopic distal pancreatectomy versus laparoscopic and open resections: a systematic review and meta-analysis. Asian J Surg. 2019;42:32–45.
- 49. Ricci C, Casadei R, Taffurelli G, Toscano F, Pacilio CA, Bogoni S, et al. Laparoscopic versus open distal pancreatectomy for ductal adenocarcinoma: a systematic review and meta-analysis. J Gastrointest Surg. 2015;19:770–81.
- Riviere D, Gurusamy KS, Kooby DA, Vollmer CM, Besselink MG, Davidson BR, et al. Laparoscopic versus open distal pancreatectomy for pancreatic cancer. Cochrane Database Syst Rev. 2016;4:cd011391.

- van Hilst J, Korrel M, de Rooij T, Lof S, Busch OR, Groot Koerkamp B, et al. Oncologic outcomes of minimally invasive versus open distal pancreatectomy for pancreatic ductal adenocarcinoma: a systematic review and meta-analysis. Eur J Surg Oncol. 2019;45:719–27.
- 52. de Rooij T, Lu MZ, Steen MW, Gerhards MF, Dijkgraaf MG, Busch OR, et al. Minimally invasive versus open pancreatoduodenectomy: systematic review and meta-analysis of comparative cohort and registry studies. Ann Surg. 2016;264:257–67.
- 53. Yan JF, Pan Y, Chen K, Zhu HP, Chen QL. Minimally invasive pancreatoduodenectomy is associated with lower morbidity compared to open pancreatoduodenectomy: an updated meta-analysis of randomized controlled trials and high-quality nonrandomized studies. Medicine (Baltimore). 2019;98:e16730.
- 54. Asbun HJ, Moekotte AL, Vissers FL, Kunzler F, Cipriani F, Alseidi A, et al. The Miami International Evidence-based Guidelines on minimally invasive pancreas resection. Ann Surg. 2020;271:1–14.
- 55. Kim EY, Hong TH. Initial experience with laparoscopic radical antegrade modular pancreatosplenectomy for left-sided pancreatic cancer in a single institution: technical aspects and oncological outcomes. BMC Surg. 2017;17:2.
- 56. Yamamoto M, Zaima M, Yamamoto H, Harada H, Kawamura J, Yamada M, et al. New laparoscopic procedure for left-sided pancreatic cancer-artery-first approach laparoscopic RAMPS using 3D technique. World J Surg Oncol. 2017;15:213.
- Ome Y, Hashida K, Yokota M, Nagahisa Y, Michio O, Kawamoto K. Laparoscopic radical antegrade modular pancreatosplenectomy for left-sided pancreatic cancer using the ligament of Treitz approach. Surg Endosc. 2017;31:4836–7.
- Sunagawa H, Harumatsu T, Kinjo S, Oshiro N. Ligament of Treitz approach in laparoscopic modified radical antegrade modular pancreatosplenectomy: report of three cases. Asian J Endosc Surg. 2014;7:172–4.
- Giulianotti PC, Addeo P, Buchs NC, Ayloo SM, Bianco FM. Robotic extended pancreatectomy with vascular resection for locally advanced pancreatic tumors. Pancreas. 2011;40:1264–70.
- 60. Wang X, Cai Y, Zhao W, Gao P, Li Y, Liu X, et al. Laparoscopic pancreatoduodenectomy combined with portal-superior mesenteric vein resection and reconstruction with interposition graft: case series. Medicine (Baltimore). 2019;98:e14204.
- de Rooij T, van Hilst J, Boerma D, Bonsing BA, Daams F, van Dam RM, et al. Impact of a nationwide training program in minimally invasive distal pancreatectomy (LAELAPS). Ann Surg. 2016;264:754–62.
- Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Robotic duodenopancreatectomy assisted with augmented reality and real-time fluorescence guidance. Surg Endosc. 2014;28:2493–8.
- 63. Hamilton NA, Porembka MR, Johnston FM, Gao F, Strasberg SM, Linehan DC, et al. Mesh reinforcement of pancreatic transection decreases incidence of pancreatic occlusion failure for left pancreatectomy: a single-blinded, randomized controlled trial. Ann Surg. 2012;255:1037–42.
- 64. Miyasaka Y, Ohtsuka T, Matsuda R, Mori Y, Nakata K, Ohuchida K, et al. High-risk lesions in the remnant pancreas: fate of the remnant pancreas after pancreatic resection for pancreatic cancer and intraductal papillary mucinous neoplasms. Surg Today. 2019. https://doi.org/10.1007/s00595-019-01852-3.
- 65. Matsuda R, Miyasaka Y, Ohishi Y, Yamamoto T, Saeki K, Mochidome N, et al. Concomitant intraductal papillary mucinous neoplasm in pancreatic ductal adenocarcinoma is an independent predictive factor for the occurrence of new cancer in the remnant pancreas. Ann Surg. 2020;271:941–8.
- Miyazaki M, Yoshitomi H, Shimizu H, Ohtsuka M, Yoshidome H, Furukawa K, et al. Repeat pancreatectomy for pancreatic ductal

cancer recurrence in the remnant pancreas after initial pancreatectomy: is it worthwhile? Surgery. 2014;155:58–66.

- Suzuki S, Furukawa T, Oshima N, Izumo W, Shimizu K, Yamamoto M. Original scientific reports: clinicopathological findings of remnant pancreatic cancers in survivors following curative resections of pancreatic cancers. World J Surg. 2016;40:974–81.
- 68. Kinoshita M, Kanazawa A, Kodai S, Shimizu S, Murata A, Nishio K, et al. Difficulty classifications of laparoscopic repeated liver

resection in patients with recurrent hepatocellular carcinoma. Asian J Endosc Surg. 2019. https://doi.org/10.1111/ases.12746.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.