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Introduction

Ischemia–reperfusion injury (IRI) is a leading cause of 
morbidity and mortality in the early phase of lung trans-
plantation and has been identified as an important risk fac-
tor in the development of bronchiolitis obliterans syndrome 
[1, 2]. Following ischemic and reoxygenation damage, lung 
grafts are exposed to inflammatory insults and innate and 
adaptive immunity, triggering the expression of inflam-
matory cytokines and the infiltration of leukocytes, all of 
which lead to structural damage of the graft with the devel-
opment of interstitial and alveolar edema [3–6].

Mesenchymal stem cells (MSCs) are fibroblast-like 
cells, isolated from the bone marrow and connective tissue 
of almost all organs [7]. MSCs are characterized by their 
ability to propagate in  vitro and differentiate into several 
cellular phenotypes, including bone, cartilage, and adipose 
tissue. MSCs have also been found to suppress the inflam-
mation and immune responses that are mediated by parac-
rine secretions of anti-inflammatory and immunoregulatory 
factors [8–10]. Recent studies suggest that MSCs amelio-
rate various forms of experimental acute lung injury [11, 
12].

MSCs are known to ameliorate acute graft failure 
induced by IRI in various organs, including the kidney, 
heart, and liver [13–15]. MSCs have also been applied ther-
apeutically to treat many diseases of the lung, cardiovas-
cular system, bone and cartilage, and the nervous system 
[16]. Despite their promising results, the effect of MSCs 
in reducing IRI after lung transplantation has been poorly 
investigated. Therefore, we conducted an experimental 
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study to investigate if pre-transplant MSC administration 
can prevent IRI in a mouse model of lung transplantation.

Materials and methods

Animals

Pathogen-free 9–13-week-old male C57BL/6J mice were 
obtained commercially from Charles River Laboratories 
Japan, Inc. (Yokohama, Japan) and used in compliance 
with the rules of the Institutional Animal Care and Use 
Committee [17]. The mice served as donors and recipients 
of left syngeneic single lung transplantation.

Mesenchymal stem cells

Human MSCs (hMSCs) isolated from healthy men were 
kindly provided by Professor Darwin Prockop of Texas 
A&M Health Science Center. Frozen hMSCs were thawed 
and expanded according to a previous report [18]. Briefly, 
cells were cultured at 37 °C for 24 h with 5 % CO2 using a 
complete culture medium consisting of minimum essential 
medium alpha (Invitrogen, Carlsbad, CA) supplemented 
with 17 % of fetal bovine serum (Nichirei, Tokyo, Japan). 
Viable cells were recovered with trypsin/EDTA, replated 
at a density of 60 cells/cm2, and cultured again with media 
that was replaced every 3 days. After 9 days of culture, cells 
were harvested as passage 2 and frozen. We used hMSCs at 
passage 3 in the present experiment.

Left lung transplantation

Orthotopic mouse left lung transplantation was performed 
as described previously [19]. Briefly, donor mice were 
anesthetized with an intraperitoneal injection of ketamine 
(0.1 mg/g) and xylazine (0.01 mg/g) and intubated through 
tracheostomy and mechanically ventilated. A median lapa-
rosternotomy was performed after the administration of 
100 U heparin via the penile vein of the donor. The lungs 
were flushed through the pulmonary trunk with 2  mL of 
cold (4 °C), low-potassium dextran glucose solution. Sub-
sequently, the heart–lung block was harvested and stored 
in a petri dish and immersed in low-potassium dextran 
glucose solution at 4 °C for 18 h. The recipient mice were 
anesthetized with an intraperitoneal injection of ketamine 
(0.1  mg/g) and xylazine (0.01  mg/g) and were intubated 
orally and mechanically ventilated. Orthotopic and synge-
neic left lung transplantation was performed using a cuffed 
technique. The animals were woken after the thoracotomy 
had been closed. Animals were killed for analyses 6 h after 
reperfusion.

MSC administration

Before left lung transplantation, hMSCs (5 × 105 cells in 
100 μL of PBS) or PBS alone (n = 7 in each group) were 
infused slowly into the left pulmonary artery through the 
cuff. Immediately after infusion, left lung transplantation 
was performed.

Measurement of protein concentration and cell count in the 
bronchoalveolar lavage fluid (BALF)

Following 6  h of reperfusion, recipient mice were killed. 
A median laparosternotomy was performed, the right hilum 
was clamped, and BALF was collected via an intratra-
cheal injection of 400 μL of PBS into the left lung graft. 
This procedure was repeated once. The collected BALF 
was centrifuged at 400g for 5  min at 4  °C. Furthermore, 
the Cell-free BAL supernatant was processed to measure 
the protein concentration using a BCA Protein Assay Kit 
(Thermo Scientific Japan, Yokohama, Japan). The pelleted 
cells were suspended again in 100 μL of PBS. Cells were 
counted using Countess (Invitrogen, Carlsbad, CA). The 
Cell-free BAL supernatant and lung graft were stored at 
−80 °C until further analysis.

Measurement of murine cytokines

The proinflammatory cytokines, IL-1β, TNF-α, IL-17A, 
IL-6, and IFN-γ, in Cell-free BAL supernatant were quanti-
fied with a multiplex cytokine panel assay using the Bio-
plex Bead Array technique (Bio-Rad Laboratories, Her-
cules, CA). The samples were analyzed as instructed by 
the Bioplex array reader, a fluorescent-based flow cytom-
eter employing a bead-based multiplex technology, each of 
which was conjugated with a reactant specific for a differ-
ent target molecule. The lower limits for the quantitation of 
the cytokines were 10.36 pg/mL for IL-1β, 5.8 pg/mL for 
TNF-α, 2.65 pg/mL for IL-17A, 0.74 pg/mL for IL-6, and 
1.84 pg/mL for IFN-γ.

Histology and immunohistochemistry

For histological and immunohistochemical analyses, exper-
iments other than the BALF study were performed for 
each group (n =  3 in the PBS group, n =  3 in the MSC 
group). The lung grafts harvested 6 h after reperfusion were 
immediately fixed in 4  % paraformaldehyde. After 24  h, 
they were embedded in paraffin, and then sectioned and 
stained with hematoxylin and eosin. To evaluate the extent 
of lung injury, several pathological categories (perivascular 
edema, intra-alveolar hemorrhage, capillary congestion, 
and neutrophil in small vessels) were scored on a scale 
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of 0–4, with 0 = 0 % involvement, 1 = 1–25 % involve-
ment, 2 =  26–50  % involvement, 3 =  51–75  % involve-
ment, and 4 =  76–100  % involvement [20]. To examine 
the localization of hMSCs, immunohistochemical staining 
for the human MHC class I antigen that is expressed on 
hMSCs was performed [21]. Sections were deparaffinized 
and incubated for 5 min at 120 °C. Primary antibody reac-
tions were performed using an anti-human MHC class I 
antibody (ab52922; Abcam, Santa Cruz, CA) overnight in 
dilution of 1:600 at 4 °C. Antibody depositions were visu-
alized using diaminobenzidine. Nuclei were counterstained 
with hematoxylin.

Reverse transcriptase polymerase chain reaction 
(RT‑PCR) analysis for the detection of human tumor 
necrosis factor‑inducible gene 6 protein (TSG‑6)

Total RNA was purified individually from lung grafts 
(n = 3 in each group) using Isogen (Nippon Gene, Tokyo, 
Japan). RT-PCR was performed using ReverTra Ace (Toy-
obo, Tokyo, Japan) and GoTaq (Promega, Madison, WI), 
according to the manufacturers’ instructions. The RT reac-
tion was conducted in one cycle at 42 °C for 20 min and at 
99 °C for 5 min. The PCR reaction was conducted in three 
steps as follows: at 96 °C for 2 min (one cycle); at 96 °C 
for 15 s, 56 °C for 15 s, and 72 °C for 15 s (30 cycles for 
GAPDH, 36 cycles for TSG-6); and at 72 °C for 5 min and 
4  °C for 5 min (one cycle). The primer pairs used in this 
study were as follows: GAPDH, forward: 5′-GTC TTC 
ACC ACC ATG GAG A-3′ and reverse: 5′-AAG CAG TTG 
GTG GTG CAG-3′, size of products: 170 base pairs; TSG-
6, forward: 5′-CCA GGC TTC CCA AAT GAG TA-3′ and 

reverse: 5′-TTG ATT TGG AAA CCT CCA GC-3′, size of 
products: 284 base pairs.

Statistical analyses

Data were expressed as mean ± SE. Comparisons between 
groups were performed using the t test. All statistical analy-
ses were performed using GraphPad PRISM (GraphPad 
Software Inc., San Diego, CA). Values of P  <  0.05 were 
considered significant.

Results

Total protein concentration and cell count in BALF

Figure  1 shows the total protein concentration and cell 
counts in the BALF of normal lungs and lung grafts admin-
istered hMSC or PBS via the pulmonary artery, then trans-
planted, and reperfused for 6  h. The BALF total protein 
concentration and cell count of the lung grafts were sig-
nificantly higher than those of the normal lungs. The total 
protein concentration and cell counts in the BALF of the 
hMSC-administered grafts were significantly lower than 
those of PBS-administered controls (total protein: 1.095 vs. 
1.965 mg/ml; cell count: 0.61 × 105 vs. 1.09 × 105 cells).

Concentrations of murine cytokines in BALF

Figure  2 shows the BALF concentrations of murine 
cytokines measured by BioPlex. The concentrations of 
IL-1β, TNFα, IL-6, and IFN-γ in the normal left lungs were 

Fig. 1   The total protein concentration (a) and total cell count (b) 
in bronchoalveolar lavage fluid (BALF) were measured to evalu-
ate pulmonary vascular permeability. The total protein concentration 
and cell count in the BALF were higher in left lung grafts preserved 
for 18 h and reperfused for 6 h than in normal left lungs. The total 
protein concentration and cell count in the BALF were lower in the 

human mesenchymal stem cell-administered lung grafts via the pul-
monary artery before transplantation than in the PBS-administered 
controls. ***P < 0.005, *P < 0.05. Normal normal left lung (n = 6), 
PBS lung grafts administered with PBS before transplantation 
(n = 7), MSC lung grafts administered with 5 × 105 hMSCs before 
transplantation (n = 7)
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under detectable limits (data not shown), whereas the con-
centration of IL-17A was 3.4  pg/ml. The concentrations 
of proinflammatory cytokines in the BALF of the hMSC-
administered grafts showed a decreasing trend compared 
with those of PBS-administered controls; however, the dif-
ference was not significant.

Histology and immunohistochemistry

PBS-administered grafts that were harvested 6 h after rep-
erfusion showed severe perivascular edema with capil-
lary congestion and moderate intra-alveolar hemorrhage 
(Fig. 3a; Table 1). In contrast, these findings were minimal 

in the hMSC-administered lung grafts. Neutrophils in small 
vessels were also seen less frequently in the hMSC-admin-
istered lung grafts than in the PBS-administered grafts.

Immunohistochemically, cells positive for human MHC 
class I were found in the pulmonary arterioles and alveolar sep-
tae of the hMSC-administered lung grafts harvested 6 h after 
reperfusion but not of the PBS-administered controls (Fig. 3b).

Human TSG‑6 gene expression in the lung grafts

Human TSG-6 gene expression was readily detectable by 
RT-PCR in the hMSC-administered lung grafts, but was not 
seen in the PBS-administered controls (Fig. 4).

Fig. 2   Comparison of bron-
choalveolar lavage fluid proin-
flammatory cytokine concentra-
tions between the groups. The 
concentrations of proinflam-
matory cytokines in bronchoal-
veolar lavage fluid, as measured 
by multiplex immunoassay, 
tended to be lower in the human 
mesenchymal stem cell-admin-
istered lung grafts than in the 
PBS-administered controls; 
however, the difference in the 
concentrations of any cytokines 
did not reach significance. a 
IL-1β, b TNF-α, c IL-17A, d 
IL-6, e IFN-γ. PBS lung grafts 
administered with PBS before 
transplantation (n = 7), MSC 
lung grafts administered with 
5 × 105 hMSCs before trans-
plantation (n = 7)
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Discussion

The present study found that the pre-transplant adminis-
tration of MSCs via the pulmonary artery of a lung graft 
significantly attenuated IRI in a mouse model of lung 
transplantation after prolonged cold ischemia. This was 
demonstrated by significantly lower protein concentra-
tions and cell counts in BALF collected from hMSC-
administered grafts than from PBS-administered controls. 
BALF analysis has been used extensively to evaluate lung 
injury because plasma proteins and inflammatory cells are 

present in very low quantities in the alveolar spaces of 
normal lungs. Increased protein concentrations indicate a 
loss of endothelial and alveolar barrier function, whereas 

Fig. 3   Photomicrograph of the pathologic findings of the left lung 
grafts in both groups. Histology revealed significantly less intra-alve-
olar hemorrhage and capillary congestion in the human mesenchy-
mal stem cell-administered lung grafts than in the PBS-administered 
control lung graft (hematoxylin and eosin; ×40) (a). Immunohisto-
chemistry revealed cells positive for MHC class I in the pulmonary 

arterioles and alveolar septae of the hMSC-administered lung grafts 
(arrow) but not of the PBS-administered controls (b). Photomicro-
graphs were obtained with a BZ9000 microscope (Keyence, Tokyo) 
with a ×40 objective. PBS lung grafts administered with PBS before 
transplantation, MSC lung grafts administered with 5 × 105 hMSCs 
before transplantation

Table 1   Histological lung injury scores

Numbers represent individual lung grafts

Group Perivascular 
edema

Intra-alveolar 
hemorrhage

Capillary 
congestion

Neutrophil in 
small vessels

PBS 3, 2, 3 2, 2, 2 3, 3, 3 4, 2, 2

MSC 2, 1, 1 1, 1, 1 1, 1, 2 1, 1, 1

Fig. 4   RT-PCR analysis of the lung grafts for TSG-6. The human 
TSG-6 gene is readily identified in the grafts administered with 
human mesenchymal stem cells before transplantation. PBS lung 
grafts administered with PBS before transplantation, MSC lung grafts 
administered with 5 × 105 hMSCs before transplantation
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increased cell counts indicate the activation of inflamma-
tory responses in the lungs [22, 23]. Pathologic examina-
tion in the present study also revealed that the administra-
tion of hMSCs ameliorated intra-alveolar hemorrhage and 
capillary congestion of the grafts, which were harvested 
6 h after reperfusion.

IRI is caused by an imbalance in metabolic supply and 
demand in ischemic organs. It can activate innate and adap-
tive immune responses and trigger cell death processes 
after reperfusion [24, 25]. Recent research showed that 
MSCs had anti-inflammatory and anti-apoptotic effects 
in experimental models of IRI [13–15, 26]. MSCs acti-
vated by inflammatory cytokines are known to introduce 
two negative feedback loops. One negative feedback loop 
is upregulation of cyclooxygenase, increasing the secre-
tion of prostaglandin E2 (PGE2), which drives resident 
macrophages to an anti-inflammatory phenotype [27]. 
The other negative feedback loop is secretion of TSG-6, 
which inhibits macrophage production of proinflamma-
tory cytokines. The activated MSCs secrete TSG-6, which 
interacts with CD44 on resident macrophages to decrease 
TLR2/NFκ-B signaling, and thereby decrease the secre-
tion of proinflammatory mediators [28]. In our model, the 
expression of human TSG-6 was readily detectable in the 
grafts treated with hMSCs that were harvested 6  h after 
reperfusion. Secretion of TSG-6 from MSCs might lead to 
attenuated lung injury in this model. Mitochondrial transfer 
from MSCs to the alveolar epithelium was reported to pro-
tect against lung injury [11]. Finally, microvesicles released 
by MSCs contain mRNA and mitochondria and can reduce 
inflammatory injury, including acute lung injury [29]. This 
mechanism may contribute to the ameliorative effects of 
MSCs seen in our model; however, this will require further 
investigation.

MSCs have been demonstrated to attenuate acute lung 
injury when delivered by intravenous or intratracheal routes 
[30]. In the present study, we infused the lung graft with 
MSCs through the pulmonary artery before transplanta-
tion, which may be another potential route when admin-
istrating MSCs in lung transplantation. In a rodent single 
left lung transplant model, the blood flow ratio to the left 
lung graft was significantly decreased in the early phase of 
transplantation, particularly when the grafts were preserved 
for a long time [20]. The direct infusion of MSCs into the 
pulmonary artery of the graft will encompass larger num-
bers of cells than the intravenous administration. For this 
reason, the pulmonary artery would be a practical delivery 
route in the clinical setting.

In this study, we used hMSCs; not mouse MSCs for the 
following reasons: first, although hMSCs express MHC 
class I, they are considered to possess low immunogenic-
ity [31]. Second, hMSCs would not trigger a strong host 
inflammatory response in a rat brain [32]. Third, hMSCs 

are known to ameliorate acute lung injury in immuno-
competent mice [33, 34]. In considering hMSCs for clini-
cal application, we investigated their potential in the acute 
phase of IRI after lung transplantation. The longer effect 
of MSCs in IRI after lung transplantation, as well as their 
immune response against MSCs in the lung milieu, should 
be investigated using both human and rodent MSCs in the 
future.

In summary, the findings of the present study demon-
strated the effect of the pre-transplant administration of 
MSCs via the pulmonary artery on ameliorating IRI of lung 
transplants exposed to prolonged cold ischemia. Before the 
clinical application of MSCs in lung transplantation, other 
potential routes, including intrabronchial injection and 
incorporation with ex vivo lung perfusion system [35]; the 
optimal timing of administration; and the appropriate num-
ber of cells to be administered should be investigated in 
large animal models so we can obtain more detailed physi-
ological parameters.
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