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Introduction

According to Ministry of Health, Labor, and Welfare in 
Japan, biliary–pancreatic cancer caused approximately 
45,000 deaths in 2010 [1]. The only means of curing these 
cancers is complete surgical resection. However, diagnos-
ing these cancers in the early stage is difficult, and most 
patients fail to fulfill the criteria for surgical indications. 
Furthermore, even after curative surgery, the recurrence rate 
is very high [2, 3]. Nevertheless, chemotherapy is indis-
pensable for treating biliary–pancreatic cancer. Although 
there are many different types of chemotherapeutic agents, 
including molecular target drugs, agents effective for bil-
iary–pancreatic cancer are limited. In general, antimeta-
bolic agents, such as fluoropyrimidine or gemcitabine, and 
platinum-containing agents, such as cisplatin or oxaliplatin, 
are selected as chemotherapeutic agents [4]. Resistance to 
chemotherapy is an obstacle to treatment, and the mecha-
nism underlying the onset of chemoresistance has been 
documented in many reports within the past three decades, 
with NF-κB having been shown to be a key regulator. The 
first report of NF-κB goes back to 1986 [5], and, since then, 
this protein has been found to play pivotal roles in various 
regulatory mechanisms, including inflammation, immunity, 
and cell death, in many studies using dominant-negative or 
knockout models [6–9]. In particular, NF-κB plays a prom-
inent role in both cell survival and cell death [10] and is 
oncologically involved in the proliferation and differentia-
tion of cancer cells [11, 12] as well as chemoresistance [13, 
14]. Moreover, a correlation between the NF-κB activity 
and the progression and prognosis of pancreatic cancer in 
vivo has been reported [15]. In this report, we document 
the potential role of NF-κB as a chemotherapeutic target 
for biliary–pancreatic cancer.

Abstract  Biliary cancer and pancreatic cancer are con-
sidered to be difficult diseases to cure. Although com-
plete resection provides the only means of curing these 
cancers, the rate of resectability is not high. Therefore, 
chemotherapy is often selected in patients with advanced 
unresectable biliary–pancreatic cancer. Many combina-
tion chemotherapy regimens have been applied in clini-
cal trials. However, the survival time is not satisfactory. 
On the other hand, most chemotherapeutic agents induce 
anti-apoptotic transcriptional factor nuclear factor kappa b 
(NF-κB) activation, and agent-induced NF-κB activation is 
deeply involved in the onset of chemoresistance. Recently, 
novel approaches to potentiating chemosensitivity in cases 
of biliary–pancreatic cancer using NF-κB inhibitors with 
cytotoxic agents have been reported, most of which com-
prise translational research, although some clinical trials 
have also been conducted. Nevertheless, to date, there is 
no breakthrough chemotherapy regimen for these diseases. 
As some reports show promising data, combination chemo-
therapy consisting of a NF-κB inhibitor with chemothera-
peutic agents seems to improve chemosensitivity and pro-
long the survival time of biliary–pancreatic cancer patients.

Keywords  Pancreatic cancer · Biliary tract cancer · 
Chemosensitivity · Chemoresistance · NF-κB

T. Uwagawa (*) · K. Yanaga 
Department of Surgery, The Jikei University School of Medicine, 
Tokyo, Japan
e-mail: uwatadashi@msn.com

http://crossmark.crossref.org/dialog/?doi=10.1007/s00595-015-1129-z&domain=pdf


1482	 Surg Today (2015) 45:1481–1488

1 3

NF‑κB and tumorigenesis

NF-κB was originally identified as a protein that binds to 
a sequence in the immunoglobulin κ light chain enhancer 
and is restricted to B cells [5]. NF-κB consists of a het-
erodimer of various members of the Rel family, such as 
p50, p52, c-Rel, v-rel, p-65(RelA), and Rel B [16]. NF-κB 
is inactivated in the cytoplasm by binding to the inhibi-
tor of κB proteins, which subsequently blocks the nuclear 
localization sequences of NF-κB [17]. Therefore, NF-κB 
plays an important role in cell death [18, 19]. Further-
more, NF-κB, an anti-apoptotic transcriptional factor, is 
also believed to induce cell survival [20]. Once activated 
by various extracellular stimuli, the NF-κB present in nor-
mal cells is downregulated to maintain tissue homeostasis 

[21]. On the other hand, NF-κB is constitutively activated 
in many types of cancers [22, 23]. Because NF-κB regu-
lates the expression of many genes implicated in cellular 
transformation, survival, proliferation, angiogenesis, inva-
sion, metastasis, angiogenesis, and inflammation, constitu-
tive NF-κB activation in cancer cells plays a pivotal role 
in many aspects of tumor progression [24]. In fact, many 
genes essential for tumor growth have binding sites for 
NF-κB and are targeted by NF-κB. As NF-κB activation 
is involved in the tumorigenesis and metastasis of pancre-
atic and biliary tract cancers, controlling NF-κB activa-
tion is a potential target for novel therapeutic strategies for 
these cancers [25, 26]. A schematic drawing of the NF-κB 
signaling pathway and therapeutic targets is described in 
Fig. 1.
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Fig. 1   NF-κB signaling pathway. NIK NF-κB inducing kinase, MEKK1 MAP ERK Kinase Kinase 1, IKK IκB Kinase
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Mechanism of chemotherapy resistance

In order to enhance the effectiveness of cytotoxicity of 
chemotherapeutic agents for cancer cells, reducing the 
onset of chemoresistance acquired via diverse anti-apop-
totic activities is indispensable. Chemoresistance is classi-
fied into two types, natural resistance and acquired resist-
ance. Although normalizing both the types of resistance is 
important, controlling acquired chemoresistance directly 
contributes to a prolonged survival. Various studies of the 
mechanisms of chemoresistance have been conducted. In 
particular, mitochondria have been found to play critical 
roles in apoptotic processes, and mitochondrial permeabil-
ity transition pore complex (PTPC) regulates mitochondrial 
membrane permeabilization, which is important for chem-
otherapy-induced apoptosis [27]. Hence, disorders of these 
systems cause chemoresistance. Chemotherapy induces 
somatic mutations, deletions, and the hypermethylation of 
genes that play pivotal roles in cell survival/death and DNA 
repair. These genes mutations are also crucially involved in 
chemosensitivity [28]. Chemotherapeutic agents primar-
ily induce cancer cell death. Concomitantly, many chem-
otherapeutic agents induce NF-kκB activation in cancer 
cells. As a result, their cytotoxic potential is suppressed and 

chemoresistance develops [29]. Key drugs for biliary–pan-
creatic cancer, such as fluoropyrimidine, gemcitabine, and 
oxaliplatin, stimulate NF-κB activation. Camp et  al. [30] 
demonstrated that the inhibition of 5-fluorouracil-induced 
NF-κB activation via the adenoviral delivery of an IkBα 
suppressor enhances the growth inhibition promoted by 
5-fluorouracil alone in gastric cancer cells. Furthermore, 
gemcitabine and oxaliplatin induce NF-κB activation in 
pancreatic cancer cells [31, 32].

Translational research targeting NF‑κB activation 
for biliary–pancreatic cancer

Many types of agents targeting NF-κB activation in vari-
ous cancers have been reported. As it is difficult to classify 
NF-κB inhibitors precisely, any agent that inhibits NF-κB 
signal transduction is defined as a NF-κB inhibitor. Treat-
ments involving NF-κB inhibitors for biliary–pancreatic 
cancer are listed in Table  1. Previous reports have docu-
mented that the inhibition of activated NF-κB is effective in 
suppressing tumor growth. The mechanism of NF-κB inhi-
bition induced by each agent is different. As to monother-
apy for pancreatic cancer, the availability of PS-341 (bort-
ezomib) was first reported [33]. PS-341 is a potent inhibitor 

Table 1   Pre-clinical research 
targeting NF-kB for biliary–
pancreatic cancer

Cancer type Agents References

Pancreatic

 Monotherapy Fisetin Murtaza et al. [34]

DCB-3503 Shiah et al. [33]

PS-341 Nawrocki et al. [32]

Quinoxaline urea analog Radhakrishnan et al. [35]

 Combination Bortezomib/Gemcitabine Bold et al. [37]

Bortezomib/Irinotecan Shah et al. [38]

Bortezomib/Paclitaxel Dong et al. [39]

Nafamostat Mesilate/Gemcitabine Uwagawa et al. [30]

Nafamostat Mesilate/Oxaliplatin Gocho et al. [31]

MG132 or Sulfasalazine/Gemcitabine Arlt A et al. [40]

Gliotoxin or MG132 or Sulfasalazine/VP16 or Doxorubicin Arlt A et al. [41]

Curcumin/Gemcitabine Kunnumakkara AB [42]

Tocotrienol/Gemcitabine Husain et al. [43]

Honokiol/Gemcitabine Arora et al. [44]

Pristimerin/Gemcitabine Wang et al. [45]

Isoflavone/docetaxel or CDDP Li et al. [49]

Biliary

 Monotherapy Diethyldithiocarbamate Srikoon et al.[36]

Curcumin Prakobwong et al.[46]

Cepharanthine Seubwai et al. [47]

MG132 Ustundag et al. [48]

 Combination Nafamostat mesilate/Gemcitabine Iwase et al. [49]

Guggulsterone/Gemcitabine Yang et al. [50]

Icariin/Gemcitabine Zhang et al. [51]
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of proteasomes and inhibits NF-κB activation by blocking 
the degradation of ubiquitinated phospho-IκBα. The inhi-
bition of NF-κB by DBC-3503, a tylophorine analog, is 
dependent on the downregulation of nuclear phosphoryl-
ated p65, a component of the active form of the NF-κB 
complex [34]. Fisetin (3,7,3′,4′-tetrahydroxyflavone), a 
natural flavonoid, inhibits NF-κB activation via the upregu-
lation of IκBα and downregulation of pIkBα [35]. In addi-
tion, quinoxaline urea analog, an IKK2 inhibitor, inhibits 
NF-κB activation by suppressing IκBα phosphorylation 
[36], and diethyldithiocarbamate inhibits NF-κB transloca-
tion by blocking the cellular proteasome activity in biliary 
tract cancer cells [37].

Combination treatments with NF-κB inhibitors for bil-
iary–pancreatic cancer are also listed in Table 1. The pur-
pose of these combination therapies is to improve chemo-
sensitivity by inhibiting chemotherapeutic agent-induced 
NF-κB activation. Chemosensitization to gemcitabine, 
irinotecan, and paclitaxel among pancreatic cancer cells 
by PS-341, a 26S proteasome inhibitor, was first reported 
in the same period [38–40]. In pancreatic cancer cells, the 
inhibition of gemcitabine-induced NF-κB activation by 
nafamostat mesilate has been approved as an effective ther-
apeutic agent for pancreatitis, disseminated intravascular 
coagulation, and/or systemic response syndrome in Japan 
for more than two decades and potentiates chemosensitiv-
ity to gemcitabine by suppressing IκBα phosphorylation 
[31]. Moreover, nafamostat mesilate induces synergistic 
cytotoxicity with oxaliplatin in pancreatic cancer cells via 
the inhibition of oxaliplatin-induced NF-κB activation [32]. 
The proteasome inhibitor MG132 and IκB kinase inhibi-
tor sulfasalazine, which block the phosphorylation of IκB, 
improve chemosensitivity to gemcitabine [41]. Further-
more, MG132 and sulfasalazine result in chemosensitiza-
tion to VP-16 and doxorubicin by blocking agent-induced 
NF-κB activation [42]. Curcumin (diferuloylmethane), a 
derivative of the spice turmeric, potentiates the chemosen-
sitivity of gemcitabine by inhibiting IκBα phosphorylation 
[43]. Meanwhile, tocotrienols, naturally occurring unsatu-
rated vitamin E compounds, augment the antitumor activ-
ity of gemcitabine by suppressing the phosphorylation of 
IκBα [44]. Honokiol, a biologically active biphenolic com-
pound isolated from Magnolia officinalis/grandiflora, also 
potentiates the cytotoxicity of gemcitabine by inducing 
G1-phase cell cycle arrest and suppressing IκBα phospho-
rylation [45]. Pristimerin, a quinone methide triterpenoid 
compound isolated from Celastraceae and Hippocratea, 
enhances chemosensitivity to gemcitabine by inducing 
G1-phase arrest and downregulating IκBα phosphorylation 
[46].

In biliary tract cancer cells, curcumin, cepharan-
thine, and MG132 have been investigated to determine 
whether monotherapy with these agents induces apoptosis. 

Curcumin, which potentiates the cytotoxicity of gemcit-
abine to pancreatic cancer cells [43], stimulates apoptosis 
via multiple signaling pathways, including inhibition of the 
NF-κB pathway [47]. Cepharanthine, a biscoclaurine alka-
loid extracted from Stephania cepharantha, induces the 
apoptosis of cholangiocarcinoma cells by inhibiting NF-κB 
activation via an IKK-independent mechanism [48]. A pro-
teasome inhibitor MG132, used in combination treatment 
with gemcitabine for pancreatic cancer, also induces apop-
tosis [49]. As for combination therapies with gemcitabine, 
several studies have investigated whether the addition of 
a NF-κB inhibitor to gemcitabine shows a synergic apop-
totic effect. Nafamostat mesilate enhances chemosensitiza-
tion to gemcitabine in biliary tract cancer cells via the same 
mechanism as in pancreatic cancer cells [50]. Guggulster-
one, a plant polyphenol obtained from the gum resin of 
the Indian Ayurvedic medicinal plant, Commiphora mukul, 
augments the antitumor efficacy to gemcitabine in biliary 
tract cancer cells by inhibiting gemcitabine-induced NF-κB 
activation [51]. Icariin, a flavonoid isolated from Epimedii 
herba, potentiates the antitumor activity of gemcitabine by 
enhancing gemcitabine-induced G0/G1 arrest and inhibit-
ing NF-κB activation [52]. Isoflavones, which are isolated 
from soybeans, sensitize cells to apoptosis induced by doc-
etaxel or CDDP by suppressing chemotherapeutic agent-
induced NF-κB activation [53].

Clinical trials targeting NF‑κB activation  
for biliary–pancreatic cancer

To date, various clinical trials of treatments with chemo-
therapeutic agents and NF-κB inhibitors have been con-
ducted. Clinical trials for biliary–pancreatic cancer are 
listed in Table  2. Most of these clinical trials were con-
ducted to assess pancreatic cancer. Curcumin has been 
used in clinical trials for locally advanced or metastatic 
pancreatic cancer in both monotherapy and combination 
chemotherapy. The efficacy of monotherapy with cur-
cumin was investigated in a phase II study (n = 21) [54]; 
no toxicities were observed. As the purpose of this phase 
II study was to evaluate the clinical biological effects of 
curcumin, the response to treatment was not assessed. The 
efficacy of combination chemotherapy was evaluated in a 
phase I/II study for gemcitabine-resistant locally advanced 
or metastatic pancreatic cancer (n = 21) [55]. In that study, 
the median survival time achieved with the combination 
chemotherapy in the patients with gemcitabine-resistant 
pancreatic cancer was 161  days (95  % confidence inter-
val 109–223 days), and the 1-year survival rate was 19 % 
[55]. Chemotherapy with nafamostat mesilate and gemcit-
abine was administered for locally advanced or metastatic 
pancreatic cancer in a phase I (n = 12) and phase II study 
(n = 35) [56, 57]. The median survival time was 10 months 
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(95 % confidence interval 9.3–13.5 months), with a 1-year 
survival rate of 40 % [57], while the response and disease 
control rates were 17.1 and 88.6  %, respectively. With 
regard to toxicities, five patients developed grade 3 leuko-
penia (14 %) or neutropenia (14 %) and one patient devel-
oped grade 4 neutropenia (3 %). The efficacy of chemother-
apy consisting of isoflavones in combination with erlotinib 
and gemcitabine was assessed for locally advanced or 
metastatic pancreatic cancer in a phase II study (n =  20) 
[58]. In that trial, the median survival time was 5.2 months 
(95  % confidence interval: 4.6-N/A months), with a 
6-month survival rate of 50 % [58]; the response was not 
evaluated. Three patients developed grade 3 adverse events, 
including three episodes of neutropenia (16 %), seven epi-
sodes of nausea (37  %), five episodes of fatigue (26  %), 
one episode of dehydration (5 %), one episodes of diarrhea 
(5 %), and one episode of infection (5 %), as well as grade 
4 adverse events, such as one case of neutropenia (5  %) 
and one case of thrombocytopenia (5 %). Various trials of 
the use of bortezomib, a proteasome inhibitor, as a NF-κB 
inhibitor have also been reported. The efficacy of combina-
tion therapy with bortezomib and paclitaxel (n = 45) or iri-
notecan (n = 41) for advanced solid tumors, including pan-
creatic cancer, was investigated in a phase I study [59, 60], 
and combination therapy with gemcitabine for metastatic 
pancreatic cancer was assessed in a randomized phase II 
study (n = 81) [61]. This phase II study of bortezomib and 
gemcitabine yielded a median survival time of 4.8 months 
(95 % confidence interval: 2.4–7.4 months) and a 6-month 
survival rate of 41  % [61]. The response rate was 10  %, 
and the evaluable patients (26 %) experienced at least one 
grade 4  +  AE, while one patient had grade 5 hypoten-
sion. Furthermore, clinical studies of immunomodulatory 

compounds, such as thalidomide, lenalidomide, and poma-
lidomide, in combination with chemotherapeutic agents for 
advanced pancreatic cancer have been reported [62–64]. 
In particular, treatment consisting of pomalidomide and 
gemcitabine was applied in a phase I study for metastatic 
pancreatic cancer (n =  72) [64]. A phase II study of the 
combination of thalidomide and gemcitabine for metastatic 
and locally advanced pancreatic cancer yielded a median 
survival of 183 days (n = 27) [62], with response and dis-
ease control rates of 14.3 and 76.2 %, respectively. Grade 
3 or higher adverse events were as follows: sepsis (8.7 %), 
pneumonia (4.3 %), syncope (8.7 %), GI bleeding (4.3 %), 
DVT (8.7  %), neutropenia (47.8  %), thrombocytopenia 
(4.3  %), peripheral neuropathy (4.3  %), stroke (4.3  %), 
and a depressed level of consciousness (17.4 %). A phase 
II study of lenalidomide and gemcitabine for metastatic 
pancreatic cancer reported a median survival of 4.7 months 
(95 % confidence interval: 3.4–5.7 months) and a 6-month 
survival rate of 37 % (n = 72) [63], with response and dis-
ease control rates of 11 and 47.2 %, respectively. Adverse 
events were as follows: grade 3: thrombocytopenia (18 %), 
anemia (6  %), neutropenia (17  %), leukopenia (11  %), 
fatigue (7 %), DVT (18 %), rash (4 %), diarrhea (3 %), and 
dehydration (11 %); grade 4: thrombocytopenia (3 %), ane-
mia (1 %), neutropenia (3 %), leukopenia (1 %), and DVT 
(3 %). The median survival in a phase II study with thalido-
mide and capecitabine for locally advanced or metastatic 
pancreatic cancer was 6.1 months (95 % confidence inter-
val: 5.3–6.9 months) (n = 31) [65]. The response and dis-
ease control rates were 6 and 41.9 %, respectively, and the 
only grade 3 or higher adverse event was diarrhea (9.7 %).

For biliary tract cancer, we found only one phase I 
study. The safety of repeated-dose administration of 

Table 2   Clinical trials targeting 
NF-kB for biliary–pancreatic 
cancer

Cancer type Agents Category References

Pancreatic

 Monotherapy Curcumin Phase II Dhillon et al. [53]

 Combination Nafamostat mesilate/Gemcitabine Phase I Uwagawa et al. [55]

Nafamostat mesilate/Gemcitabine Phase II Uwagawa et al. [56]

Isoflavones/Erlotinib/Gemcitabine Phase II El-Rayes et al. [57]

Curcumin/Gemcitabine Phase I/II Kanai et al. [54]

Bortezomib/Paclitaxel Phase I Ramaswamy et al. [58]

Bortezomib/Irinotecan Phase I Ryan et al. [59]

Bortezomib/Gemcitabine Phase II Alberts et al. [60]

Thalidomide/Gemcitabine Phase II Maples et al. [61]

Lenalidomide/Gemcitabine Phase II Infante et al. [62]

Pomalidomide/Gemcitabine Phase I Infante et al. [63]

Thalidomide/Capecitabine Phase II Shi et al. [64]

Biliary

 Monotherapy Curcumin Phase I Kanai et al. [65]
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Theracurmin® containing 200 mg of curcumin under com-
bination treatment with gemcitabine-based chemotherapy 
was assessed for standard chemotherapy-resistant pancre-
atic or biliary tract cancer (n = 16) [66].

Discussion

Gemcitabine remains the standard chemotherapy agent for 
advanced pancreatic cancer due to its prolonged survival 
time [67]. Many trials have been conducted using gemcit-
abine alone as the standard arm in randomized controlled 
studies. However, no new regimens may improve the 
survival time achieved with gemcitabine for up to a dec-
ade. Although combination therapy with gemcitabine and 
erlotinib has been shown to prolong the survival of gem-
citabine, the difference was only 0.33 months [68]. There-
after, two regimens achieved a longer survival time than 
treatment with gemcitabine. The median overall survival 
of 5-fluorouracil/leucovorin combined with irinotecan and 
oxaliplatin (FOLFIRINOX) and that of nab-paclitaxel in 
combination with gemcitabine for metastatic pancreatic 
cancer is 11.1 and 8.5  months, respectively [69, 70]. To 
date, there are no regimens that achieve a survival time of 
more than 12 months. Although locoregional chemotherapy 
with gemcitabine has been applied, the survival remains 
unknown [71]. As for advanced unresectable biliary tract 
cancer, there are currently no established standard chemo-
therapy regimens. However, gemcitabine is generally used 
for this disease. As therapy with gemcitabine plus cisplatin 
may have a significant survival advantage, without addi-
tional toxicity, compared with gemcitabine alone, this com-
bination is currently the standard regimen [72]. However, 
the survival time of advanced biliary–pancreatic cancer is 
not satisfactory, and it is not easy to rapidly develop novel 
effective agents. On the other hand, most agents used in the 
standard chemotherapy regimen for biliary–pancreatic can-
cer induce NF-κB activation. Therefore, the combination 
of a NF-κB inhibitor with these agents has the potential 
to improve the survival time. Simultaneously, it is impor-
tant to assess whether individual NF-κB inhibitors can be 
used at adequate concentrations to inhibit NF-κB activation 
in cancer cells in vivo. Kanai et al. [66] assessed whether 
NF-κB activation is inhibited with a clinical dose of Ther-
acurmin® in peripheral blood mononuclear cells using 
immunocytochemistry in a phase I study. However, the 
clinical dose of Theracurmin® did not inhibit NF-κB activa-
tion in these cells. We applied nafamostat mesilate a NF-κB 
inhibitor in our phase I and phase II studies. As the concen-
tration of nafamostat mesilate under conditions of continu-
ous intravenous infusion was insufficient to inhibit NF-κB 
activation, regional arterial infusion using a port-catheter 
system was selected [56]. Although the development of 

novel drugs for biliary–pancreatic cancer is needed, physi-
cians currently have no choice but to use existing agents. 
Almost all existing cytotoxic agents induce NF-κB activa-
tion, which causes chemoresistance. Hence, the application 
of combination chemotherapy with existing agents and a 
NF-κB inhibitor that works under the clinical dose in vivo 
is reasonable and may be a potential treatment strategy for 
biliary–pancreatic cancer.

Conclusion

We herein described a novel potential approach target-
ing chemotherapeutic agent-induced NF-κB activation 
for advanced biliary–pancreatic cancer. The addition of a 
NF-κB inhibitor to chemotherapeutic agents used in stand-
ard chemotherapy regimens for biliary–pancreatic cancer 
appears to potentiate chemosensitivity.
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