REVIEW ARTICLE

Trials of vaccines for pancreatic ductal adenocarcinoma: Is there any hope of an improved prognosis?

Toru Mizuguchi · Toshihiko Torigoe · Fukino Satomi · Hiroaki Shima · Goro Kutomi · Shigenori Ota · Masayuki Ishii · Hiroshi Hayashi · Sumiyo Asakura · Yoshihiko Hirohashi · Makoto Meguro · Yasutoshi Kimura · Toshihiko Nishidate · Kenji Okita · Masaho Ishino · Atsushi Miyamoto · Masamitsu Hatakenaka · Noriyuki Sato · Koichi Hirata

Received: 5 September 2014 / Accepted: 6 January 2015 / Published online: 5 February 2015 © Springer Japan 2015

Abstract Pancreatic tumors are chemoresistant and malignant, and there are very few therapeutic options for pancreatic cancer, as the disease is normally diagnosed at an advanced stage. Although attempts have been made to develop vaccine therapies for pancreatic cancer for a couple of decades, none of the resultant protocols or regimens have succeeded in improving the clinical outcomes of patients. We herein review vaccines tested within the past few years, including peptide, biological and multiple vaccines, and describe the three sets of criteria used to evaluate the therapeutic activity of vaccines in solid tumors.

Keywords Pancreatic cancer · Vaccine · Immunomodulation

Introduction

Pancreatic cancer is the fourth leading cause of cancerrelated death in the United States [1-3] and the fifth most common cause of such deaths in Japan [4]. Although surgical resection is considered to be the only curative therapy for pancreatic cancer, only 20 % of patients have resectable disease at the time of diagnosis [5, 6]. In addition, advanced pancreatic cancer patients exhibit a median survival time (MST) of approximately six months and a 5-year overall survival rate of less than 5 %, despite efforts to manage the tumors with chemotherapy, radiotherapy and other treatments [3, 5–8].

In 1997, Burris et al. reported that gemcitabine monotherapy is superior to fluorouracil (5-FU) monotherapy for

T. Mizuguchi · F. Satomi · H. Shima · G. Kutomi · S. Ota · M. Ishii · M. Meguro · Y. Kimura · T. Nishidate · K. Okita · K. Hirata

Department of Surgery, Surgical Oncology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan

T. Mizuguchi (🖂)

Department of Surgery, Surgical Oncology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-Ku, Sapporo, Hokkaido 060-8543, Japan e-mail: tmizu@sapmed.ac.jp

T. Torigoe · Y. Hirohashi · N. Sato Department of Pathology I, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan

H. Hayashi

Department of TR Management, Hokkaido Organization for Translational Research, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan S. Asakura

Department of Public Health, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan

M. Ishino

Department of Intellectual Property Management Office, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan

A. Miyamoto

Department of Hospital Pharmacy, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan

M. Hatakenaka Department of Diagnostic Radiology, Sapporo Medical University, Sapporo, Hokkaido 060-8543, Japan

 Table 1
 Chemotherapy for advanced pancreatic cancer

Tuble I Chemoulerupy for uuvu	need panereatie cancer			
	Median survival time (months)	Overall response rate (%)	Trial name	References
Gemcitabine	5.65	5.4		J Clin Oncol 1997;15: 2403–13.
Gemcitabine + erlotinib	6.24	8.6	NCIC CTG PA.3	J Clin Oncol 2007;25: 1960-6.
FOLFIRINOX	11.1	31.6	ACCORD 11	N Engl J Med 2011;364: 1817–25.
Nab-paclitaxel + gemcitabine	8.7	29.2	MPACT trial NCT00844649	N Engl J Med 2013;369: 1691–703.
Gemcitabine +TS-1	10.1	29.3	GEST trial	J Clin Oncol 2013; 31:640-8.

treating pancreatic ductal adenocarcinoma (PDAC) [9]. Gemcitabine monotherapy has subsequently become the standard chemotherapy for PDAC, resulting in an MST of 5.65 months (Table 1). Currently, three protocols have proven to be superior to gemcitabine monotherapy. Combining gemcitabine with erlotinib improved the MST of PDAC to 6.24 months in the NCIC CTG PA3 trial [10], while combining gemcitabine with nab-paclitaxel improved the MST to 8.7 months in the MPACT trial [11]. FOLFIRINOX achieved the longest MST for PDAC (11.1 months) in the ACCORD11 trial [12], and the GEST study obtained similar clinical outcomes. S-1 is an oral fluoropyrimidine derivative that has been shown to be effective against various cancers, and a previous study found that it is at least as effective as gemcitabine against PDAC [13]. In addition, treatment with a combination of gemcitabine + S-1 has been demonstrated to result in an MST of 10.1 months [14]. Although these chemotherapies extend the survival period among PDAC patients, they also result in serious adverse events. Therefore, the optimal chemotherapy regimen for PDAC depends on the patient's performance status.

There have been numerous attempts to develop vaccine therapies for cancer over the past century [2, 3]. Although clinical trials of such vaccines have obtained promising results in specific patients, none of the tested vaccines has exhibited significant improvements in efficacy compared with established therapies. In addition, several issues must be resolved before vaccine therapies can be used in the clinical setting. Tumor-associated antigens (TAA) have been demonstrated to recognize specific human leukocyte antigens (HLA) [15]. Theoretically, the tumor lysate contains all of the antigens expressed by the tumor, and cytotoxic T lymphocytes (CTL) are capable of recognizing some of these antigens [16]. All vaccines for pancreatic cancer are based on the fact that CTL recognize TAA expressed on tumor cells and subsequently attack these cells. The question is how strongly and specifically each TAA stimulates CTL in vivo in the clinical setting. Immune tolerance can develop via various mechanisms, including the downregulation of the major histocompatibility complex (MHC) molecule expression, induction of T cell anergy, reductions in the number of immune effectors and increases in the number of regulatory T cells [17, 18], which may explain why no cancer vaccine therapy has been established as a standard treatment for advanced PDAC. Therefore, in this study, we comprehensively reviewed the clinical outcomes of vaccine therapy against advanced PDAC.

Peptide-based vaccines developed within the past few years

MUC1

Mucin 1, cell surface associated, (MUC1) is a type I transmembrane protein containing multiple tandem repeats of a 20-amino acid sequence. Several MUC1 peptides have been tested as vaccines in the clinical setting; however, most of them have failed to activate CTL [19-21]. Ramanathan et al. [22]; Yamamoto et al. [23] injected pancreatic patients with a vaccine containing a 100-mer extracellular tandem repeat domain of MUC1 and Montanide ISA-51, and both studies obtained similar clinical responses; i.e., the authors detected cytokines (interferon (IFN)-y or interleukin (IL)-4) and anti-MUC1 antibodies in the patients' sera but did not observe any significant clinical effects. Another recent study involving a vaccine based on a different MUC1 epitope showed similar clinical outcomes, i.e., all seven patients had progressive disease (PD), although some of the patients exhibited immunological responses, such as IFN- γ and granzyme B secretion [24].

K-RAS mutants

K-RAS mutations are frequently found in patients with PDAC. Vaccines targeting mutations in codon 12 of the K-RAS gene have been tested as treatments for advanced [25] or postoperative [26] PDAC in the clinical setting. Gjertsen et al. [[21]] investigated the utility of a K-RAS peptide vaccine containing granulocyte-macrophage colony-stimulating factor (GM-CSF) in 10 patients who had undergone potentially curative resection (CTN RAS 95002) and 38 patients with advanced disease (CTN RAS 97004). In that study, one patient achieved a partial response (PR), which lasted for 28 months, and the MST of the immunological responders was 4.9 months, compared to 2.0 months for the non-responders.

Human telomerase reverse transcriptase (hTERT)

Human telomerase reverse transcriptase (hTERT) is frequently expressed in cancer cells [27]. hTERT maintains functional telomeres at the end of chromosomes, which protect against cell senescence [28]. A vaccine against pancreatic cancer containing the telomerase peptide GV1001: hTERT (611-626) and GM-CSF was examined by Bernhardt et al. [29], who found the MST of the immunological responders and non-responders to be 7.2 and 2.9 months, respectively.

Vascular endothelial growth factor receptor 2 (VEGFR2)

Vascular endothelial growth factor (VEGF) plays an important role in the progression of PDAC. The type 2 VEGF receptor (VEGFR2) is expressed in PDAC and associated with tumor neovascularization. Miyazawa et al. [[30]] investigated the efficacy of combined treatment consisting of PDAC with a VEGFR2-169 peptide-based vaccine and gemcitabine chemotherapy and reported that one patient achieved a PR, while the disease control rate was 67 %. In addition, the MST was 7.7 months, although 15/18 patients were chemotherapy naive.

G17DT (gastrimmune)

Gastrin is expressed in PDAC and plays a role in regulating the autocrine, paracrine and endocrine systems [31]. The administration of the anti-gastrin immunogen G17DT results in increased serum antibody levels and reduced tumor growth in patients with gastrointestinal malignancies [32]. A randomized, double-blind, placebo-controlled multicenter trial of G17DT was also recently performed [33]. Although, among the intention to treat (ITT) population, no significant differences in MST were detected between the PDAC patients treated with G17DT and those given the placebo, the MST of the two groups differed significantly after excluding major protocol violators and censoring for chemotherapy.

Heat shock protein (HSP)

Heat shock protein (HSP) itself is not an immunogen; however, it acts as a chaperone or carrier of antigenic peptides and possesses a repertoire of cellular peptides for pancreatic cancer [34]. Furthermore, HSPPC-96 (Oncophage) has been tested as a vaccine in the adjuvant setting after complete resection of PDAC [35]. In the latter study, the MST of PDAC was reported to be 2.9 months after surgery; however, this did not result in further clinical studies because only two of 10 patients exhibited increased enzyme-linked immunospot (ELISPOT) reactivity.

Biological vaccines

Fowlpox viral vaccine

Carcinoembryonic antigen (CEA) and MUC1 are highly expressed in PDAC [36]. Viral vectors carrying CEA, MUC1 and TRICOM [a triad of costimulatory molecules: B7.1, intercellular adhesion molecule 1 (ICAM-1) and lymphocyte function-associated antigen 3 (LFA-3)] have been investigated as vaccines against advanced PDAC [37]. In one study, a vaccinia viral vector was used for the initial T cell priming, and a fowlpox viral vector was used for immune boosting. Although this treatment resulted in an MST of 6.3 months (1.5–21.1 months), the five patients who showed T cell responses achieved a longer survival period than the five patients who did not (15.1 and 3.9 months, respectively; P = 0.002) [38]. It should be noted that GM-CSF was used as a vaccine adjuvant in the latter trial (Table 2).

Live-attenuated, double-deleted (LADD) Listeria monocytogene vaccine

ANZ-100 is a live-attenuated double-deleted Listeria monocytogene strain (LADD; Lm Δ actA/ Δ inlB) found to induce a local proinflammatory response, resulting in the activation of innate and adaptive effector cells [39]. Mesothelin is expressed in PDAC and plays an important role in tumor progression [40]. CRS-207 is a LADD Lm strain that delivers mesothelin antigens into class I and II antigen-processing pathways [41]. In a study examining the utility of CRS-207 as a treatment for advanced cancer, three of the seven subjects with PDAC were long-term survivors, although the detection of a mesothelin-specific T cell response was not correlated with survival [41].

Recent vaccine therapies

WT1

Kobayashi et al. reported a retrospective analysis of 255 advanced PDAC patients who were treated with dendritic

Table 2 Pe _j	ptide-based vaccines and	biological vaccines for ad	vanced pancreatic cancer			
Author	Journal	Antigen peptide	Sequences	Combination	Patients	Outcome/MST
Yamamoto	Anticancer Res. 2005;25:3575–9	MUC1	10-mer extracellular tandem repeat domain: (GVTSAPDTRPAPGSTAPPAH) ₅	Montanide ISA-51	6	1/6 SD
Rong	Clin Exp Med. 2012;12:173–80	MUC1	PDTRPAPGSTAPPAHGVTSA	DC cells	Ζ	All PD
Gjertsen	Int J Cancer. 2001;92:441–50	K-ras	KLVVVGA <u>G</u> GVGKSALTI Asp: D Arg: R Val: V Cyc: C	GM-CSF	38	1 PR 10 SD (10.2 M; 3-23 M) 27 PD 4.9 M responders 2.0 M non-responders
Abou-Alfa	Am J Clin Oncol. 2011;34:321–5	ras12R ras12 V ras12D Wild-type ras	TEYKLVWGARGVGKSALTIQ TEYKLVWGAVGVGKSALTIQ TEYKLVWGADGVGKSALTIQ TEYKLVWGAGGVGKSALTIQ	hGM-CSF	24	Postoperative adjuvant treatment
Bernhardt	Br J Cancer. 2006;95:1474–82	Telomerase hTERT (611–626)	GV1001; EARPALLTSRLRFIPK	GM-CSF	38	7.2 M (24 responders) 2.9 M (14 non-responders)
Miyazawa	Cancer Sci. 2010;101:433–9	VEGFR2-169	RFVPDGNRI	Gemcitabine	18	7.7 M
Gilliam	Pancreas. 2012;41:374–9	Anti-gastrin G17DT Gastrimmune	EGPWLEEEEAYGWMDF-DT (diphtheria toxoid)	G17DT vs. placebo	152	5.0 M vs 2.8 M
Maki	Dig Dis Sci. 2007;52:1964–72	HSP HSPPC-96 (gp96, Oncophage)			10	Postoperative adjuvant treatment 2.7 Y
Kaufman	J Transl Med. 2007;5:60	MUC1 and CEA	CEA agonist peptide CAP1-6D (YLSGADLNL) MUC-1 agonist peptide P-93L (ALWGQDVTSV)	B7.1, ICAM-1, LFA-3 (TRICOM) Vaccinia virus: PANVAC-V Fowlpox virus: PANVAC-F GM- CSF	10	6.3 M
Le	Clin Cancer Res. 2012;18:858–68	Listeria vaccine ANZ- 100, CRS-207			9 vs. 17	NA

÷ 1 12 Å Tahla 2 Pentide.

D Springer

		•	•				
Author	Journal	Antigen peptide	Sequences	Restricted HLA	Combination	Patients	Outcome/MST
Kobayashi	Cancer Immunol Immunother. 2014;63:797–806	WTI MUCI	CYTWNQMNL RMFPNAPYL TRPAPGSTAPPAHG- VTSAP DTRPAPGSTAP	A24:02 A02:01/02:06 Any A	DC cells OK432	255	9.9 M 10.4 M (erythema)
Nishida	J Immunother. 2014;37:105–14	WT1	CYTWNQMNL	A24:02	Weekly 1000 mg/m ² GEM	31	8.1 M 10.9 M (DTH)
Asahara	J Translation Res. 2013;11:291	KIF20A-66	KVYLRVRPLL	A2402	Montanide ISA51VG	31	4.7 M 6.1 M (reaction)
Suzuki	J Immunother. 2014;37:36–42	KIF20A-10-66	KVYLRVRPLL	A2402	Montanide ISA51VG	6	5.8 M
Geynisman	J ImmunoThera Cancer. 2013;1:8	CEA CAP1-6D	YLSGADLNL	A2	Montanide/GM-CSF	19	M 1.11
Kameshima	Cancer Sci. 2013;104:124–9	SVN2B	AYACNTSTL	A2402	Montanide/IFN-oc	9	(M 9.6 M)
Yutani	Oncology Reports. 2013;30:1094–100	31 vaccine peptides		A2, A24, A3, A26	Mono: 8 Chemo: 33	41	7.9 M 9.6 M (chemo)
Kimura	Pancreas. 2012;41:195–205	WT1, Her2, CEA, MUC1, CA125, autologous tumor lysate			DC cells plus LAK plus GEM and S1 OK432	49	S: 8.0 M G: 12.0 M GS + LAK: 16.9 M
Le	J Clin Oncol. 2014;32(suppl 3):Abstract 177	GVAX pancreas and CRS-207 vs. GVAX pancreas alone	Irradiated GM-CSF- secreting allogeneic pancreatic tumor vaccine (GVAX pancreas)		Cyclophosphamide	90	6.1 M vs. 3.9 M 9.7 M (3 or more rounds of vaccine therapy)

Table 3 Recently developed peptide-based vaccines and multiple vaccines for advanced pancreatic cancer

🖄 Springer

cell (DC) vaccines containing Wilms tumor 1 (WT1) and MUC1 after being recruited from seven institutions that followed a unified standard operating procedure. The MST of these patients was 9.9 months [42]. Nishida et al. also examined the utility of chemo-vaccine therapy in which a WT1-based vaccine was used in combination with the administration of 1,000 mg/m² of gemcitabine weekly. The latter regimen resulted in an MST of 8.1 months among 31 advanced PDAC patients [43]. In addition, the MST of the immunological responders in these two studies was very similar (10.4 and 10.9 months, respectively) (Table 3).

KIF20A

Kinesin family member 20A (KIF20A) plays an important role in the trafficking of molecules and organelles [44] and is one of the molecules targeted by vaccines against PDAC. A KIF20A vaccine was recently tested using different regimens, including vaccine monotherapy [45] and chemo-vaccine therapy involving gemcitabine [46], and similar MST values were reported in both studies (4.7 and 5.8 months, respectively).

Carcinoembryonic antigen (CEA)

CEA is a 180-kDa immunoglobulin-like molecule expressed on the surface of 90 % of PDAC tumor cells [47]. CAP1-6D, a modified CEA peptide, was combined with Montanide/GM-CSF to produce a vaccine against pancreatic cancer that was subsequently tested in advanced PDAC patients [48]. The MST of the 19 patients was 11.1 months, and one patient, randomized into the 0.01 mg arm, achieved a complete response (CR).

Survivin2B

Survivin is a member of the inhibitors of apoptosis (IAP) family of proteins that protect apoptotic signals by inhibiting the caspase activity [49, 50]. Hence, survivinexpressing cancer cells escape from apoptosis and do not die. Using a peptide-binding assay, we found that the survivin2B 80-88 peptide induces a strong CTL response [51]. We also examined the effects of a survivin2B 80-88 peptide-based vaccine on various cancers in the clinical setting and obtained promising outcomes. In particular, the anti-tumor effect of the survivin2B 80-88 peptide was enhanced by combining it with incomplete Freud's adjuvant and IFN- α injection. Our preliminary clinical study demonstrated a 66.6 % disease control rate in advanced PDAC patients (four of six patients) [52]. Moreover, the PDAC patients in our recent clinical phase I study exhibited an MST of 9.6 months.

 Table 4 Evaluation of therapeutic activity in solid tumors

Method	OHM	RECIST	IrRC
	Sum of the products of the two longest perpendicular dimensions (bidimensional)	Sum of the longest dimensions (unidimensional)	Sum of the products of the two longest perpendicular dimensions (SPD) of all index lesions. (bidimensional)
No. of measured lesions	All lesions	Five per organ, 10 in total	Five per organ, 10 in total, and five cutaneous index lesions
CR	Disappearance of all known disease, confirmed at 4 weeks	Disappearance of all known disease, confirmed at 4 weeks	Disappearance of all known disease, confirmed at 4 weeks apart
PR	>50 % decrease in total tumor size, confirmed at 4 weeks	>30 % decrease in total tumor size, confirmed at 4 weeks	>50 % decrease in tumor burden compared with baseline in two observations at least 4 weeks apart
SD	CR, PR, and PD criteria not met	CR, PR, and PD criteria not met	CR, PR, and PD criteria not met
D	>25 % increase in total tumor size; no CR, PR, or SD documented before increase in tumor size; new lesion (s); >25 % increase in size of one lesion	>20 % increase in total tumor size; no CR, PR, or SD documented before increase in tumor burden; new lesion (s)	>25 % increase in tumor burden compared with nadir (at any single time point) in two consecutive observa- tions at least 4 weeks apart
Tumor burden = SPD _{inde}	x lesions +SPD new, measurable lesions		

Multiple vaccines

Personalized peptides

In a previous study, a set of 31 peptides was used to create personalized vaccines for advanced PDAC [53]. A maximum of four peptides were selected from among the 31-peptide set based on the results of HLA typing and the patients' peptide-specific IgG titers. Eight patients received vaccine monotherapy, and 31 patients received chemovaccine therapy. In the chemo-vaccine therapy group, gemcitabine was administered in eight patients, S-1 was administered in six patients and gemcitabine + S-1 was given in eight patients. The overall MST was 9.6 months, although that of the patients who underwent monotherapy was 7.9 months. Yanagimoto et al. reported similar clinical outcomes for chemo-vaccine therapy involving personalized vaccines and gemcitabine based on the same regimen [54]. The MST of the patients in the latter study was 9.0 months, although that of the immunological responders was 15.5 months. None of the patients in either study achieved CR (Table 3).

Autologous tumor lysate combined with lymphokine-activated killer cell therapy

Kimura et al. treated 49 PDAC patients with vaccines based on five different peptides and autologous tumor lysate, although the vaccine preparation regimens and anti-tumor therapies varied in each case [16]. Two patients achieved CR after treatment with a combination of DC cell and lymphokine-activated killer cell (LAK) therapy. The MST of the patients treated with LAK + gemcitabine and S-1 was 16.9 months, whereas that of all patients was 12.0 months. It should be noted that the survival time was calculated from the day after the first vaccination, which may have resulted in a shorter survival time (by a couple of months) than would have been obtained using the methods employed in other studies. It is very difficult to evaluate the clinical results of this study due to the effects of the different therapeutic strategies used in each case. However, the fact that multiple patients achieved CR will encourage researchers to pursue this approach further.

GVAX pancreas with CRS-207

GVAX is a series of irradiated GM-CSF-secreting allogeneic pancreatic cell lines that elicit broad antigenic responses. CRS-207 is a LADD Lm strain (Lm Δ actA/ Δ inlB) that expresses mesothelin and stimulates the innate and adaptive immune systems. A phase II randomized control trial of GVAX pancreas combined with CRS-207 versus GVAX pancreas alone was presented at the 2014 American Society of Clinical Oncology (ASCO) Gastrointestinal Cancers Symposium [55]. Interestingly, the clinical results demonstrated that both treatments had dose-dependent survival benefits. The MST of the patients who received three or more rounds of vaccine therapy was 9.7 months, and the MST of the GVAX with CRS-207 arm was longer than that of the GVAX-alone arm (6.1 vs. 3.9 months; P = 0.01) [56].

Evaluation of therapeutic activity in solid tumors

The response of solid tumors is evaluated using either the WHO [57] or RECIST criteria [58]. The RECIST criteria were developed because the WHO criteria are quite complex and measuring all visible lesions in two dimensions is both time consuming and subject to measuring bias [59]. However, the use of immunotherapeutic agents in cancer patients is associated with the following problems: (a) The measurable anti-tumor activity can take longer to appear during immunotherapy than during cytotoxic therapy; (b) Responses to immunotherapy can occur after the standard criteria for progressive disease (PD) have been met; (c) Discontinuing immunotherapy may not be appropriate in some cases, unless PD is confirmed; (d) Allowing for "clinically insignificant" PD (e.g., small new lesions developing in the presence of other responsive lesions) is recommended; and (e) Durable stable disease (SD) may represent the anti-tumor activity [60]. Therefore, the immune-related response criteria (irRC) were developed to evaluate the immunotherapeutic activity in solid tumors [61]. The most important aspects of the irRC criteria are that (a) new lesions are not classified as PD and (b) two consecutive observations obtained at least four weeks apart are required to diagnose PD. However, the clinical utility of the irRC remains unclear and these criteria may require further optimization [61] (Table 4).

Future research topics

Initial time point for survival assessments

The initial time point for survival assessments should be unified to allow clinical outcomes to be compared between studies. Most PDAC patients already have advanced disease at the time of diagnosis [6]. In addition, the adverse effects of chemotherapies differ markedly among the various regimens [8]. Therefore, the status of PDAC patients at the time point at which they are registered can differ both within and between clinical studies. Kobayashi et al. reported that the MST from the date of diagnosis and the MST from the first vaccination are very different (16.5 vs. 9.9 months) [42]. Therefore, MST data must be interpreted carefully.

Vaccine therapy and chemotherapy

The goal of vaccine therapy for cancer is to increase the native immunity of cancer patients. However, chemotherapy causes irreversible damage to proliferating cancer cells as well as immune cells, including T and B cells. Therefore, there is a conflict between the fundamental principles of these two treatments. Chemotherapy is currently the gold standard treatment for advanced PDAC. Although the biological mechanisms of vaccine therapy and chemotherapy conflict with each other, the anti-cancer activity of vaccine monotherapy or chemo-vaccine combination therapy should be greater than that of chemotherapy alone.

Slow clinical response to vaccine therapy

It is very hard to achieve a complete response (CR) with vaccine therapy alone. We reviewed 19 studies involving a total of 860 patients and found that CR responses were obtained in only three cases. Although none of these studies involved a large number of patients, the poor reported response rates are a concern. One of the patients who achieved a CR was administered CEA CAP1-6D + Montanide/GM-CSF therapy, while the other two were treated with WT1, Her2, CEA, MUC1, cancer antigen 125 and autologous tumor lysate vaccines combined with DC cellbased LAK therapy and chemotherapy. Immunological responses require a long time to control tumor growth and achieve remission. The primary goal of vaccine therapy is to achieve long-term SD [62]. Most previous clinical studies of PDAC involved patients with advanced disease for whom no other therapies were available. Therefore, vaccine therapy may be suitable for patients in other clinical stages or possibly a useful postoperative adjuvant therapy. The main advantage of vaccine therapy is that it has few adverse effects, although it has also demonstrated minimal clinical effects in previous trials. We are currently conducting a phase II study of the survivin2B 80-88 peptide + Montanide + IFN- β as a treatment for PDAC (SUCCESS, Study of Unresectable CanCEr with Survivin-2B peptide vaccine in Sapporo: UMIN000012146), in which half of the required patients have been recruited. The clinical results of the SUCCESS phase II study will be reported by the end of next year.

Acknowledgments This study was supported in part by a Grantin-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (No.24659592) to T. Mizuguchi, T. Torigoe, N. Sato and K. Hirata and a Health Labour Sciences Research Grant from the Ministry of Health, Labour and Welfare (No. 2601023) to T. Mizuguchi, T. Torigoe, K. Hirata and N. Sato.

References

- Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.
- Salman B, Zhou D, Jaffee EM, Edil BH, Zheng L. Vaccine therapy for pancreatic cancer. Oncoimmunology. 2013;2:e26662.
- Soares KC, Zheng L, Edil B, Jaffee EM. Vaccines for pancreatic cancer. Cancer J. 2012;18:642–52.
- Hamada T, Nakai Y, Yasunaga H, Isayama H, Matsui H, Takahara N, et al. Prognostic nomogram for nonresectable pancreatic cancer treated with gemcitabine-based chemotherapy. Br J Cancer. 2014;110:1943–9.
- 5. Saif MW. Controversies in the adjuvant treatment of pancreatic adenocarcinoma. JOP. 2007;8:545–52.
- Kanda M, Fujii T, Takami H, Suenaga M, Inokawa Y, Yamada S, et al. The combination of the serum carbohydrate antigen 19-9 and carcinoembryonic antigen is a simple and accurate predictor of mortality in pancreatic cancer patients. Surg Today. 2014;44:1692–701.
- Niccolai E, Prisco D, D'Elios MM, Amedei A. What is recent in pancreatic cancer immunotherapy? Biomed Res Int. 2013;2013:492372.
- Kitami CE, Kurosaki I, Kawachi Y, Nihei K, Tsuchiya Y, Nomura T, et al. Portal vein infusion chemotherapy with gemcitabine after surgery for pancreatic cancer. Surg Today. 2013;43:33–9.
- Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.
- Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–6.
- Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.
- 12. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.
- Shirasaka T. Development history and concept of an oral anticancer agent S-1 (TS-1): its clinical usefulness and future vistas. Jpn J Clin Oncol. 2009;39:2–15.
- 14. Ueno H, Ioka T, Ikeda M, Ohkawa S, Yanagimoto H, Boku N, et al. Randomized phase III study of gemcitabine plus S-1, S-1 alone, or gemcitabine alone in patients with locally advanced and metastatic pancreatic cancer in Japan and Taiwan: gEST study. J Clin Oncol. 2013;31:1640–8.
- Moss DJ, Misko IS, Burrows SR, Burran K, McCarthy R, Sculley TB. Cytotoxic T-cell clones discriminate between A- and B-type Epstein-Barr virus transformants. Nature. 1988;331: 719–21.
- 16. Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, et al. Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/ or S-1 in patients with advanced pancreatic carcinoma. Pancreas. 2012;41:195–205.
- Seliger B. Novel insights into the molecular mechanisms of HLA class I abnormalities. Cancer Immunol Immunother. 2012;61: 249–54.
- Plate JM, Harris JE. Immunobiotherapy directed against mutated and aberrantly expressed gene products in pancreas cancer. J Cell Biochem. 2005;94:1069–77.
- 19. Goydos JS, Elder E, Whiteside TL, Finn OJ, Lotze MT. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific

immune reactivity in patients with adenocarcinoma. J Surg Res. 1996;63:298-304.

- Karanikas V, Hwang LA, Pearson J, Ong CS, Apostolopoulos V, Vaughan H, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest. 1997;100:2783–92.
- Gilewski T, Adluri S, Ragupathi G, Zhang S, Yao TJ, Panageas K, et al. Vaccination of high-risk breast cancer patients with mucin-1 (MUC1) keyhole limpet hemocyanin conjugate plus QS-21. Clin Cancer Res. 2000;6:1693–701.
- 22. Ramanathan RK, Lee KM, McKolanis J, Hitbold E, Schraut W, Moser AJ, et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother. 2005;54:254–64.
- Yamamoto K, Ueno T, Kawaoka T, Hazama S, Fukui M, Suehiro Y, et al. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res. 2005;25:3575–9.
- Rong Y, Qin X, Jin D, Lou W, Wu L, Wang D, et al. A phase I pilot trial of MUC1-peptide-pulsed dendritic cells in the treatment of advanced pancreatic cancer. Clin Exp Med. 2012;12:173–80.
- 25. Gjertsen MK, Buanes T, Rosseland AR, Bakka A, Gladhaug I, Soreide O, et al. Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer. 2001;92:441–50.
- Abou-Alfa GK, Chapman PB, Feilchenfeldt J, Brennan MF, Capanu M, Gansukh B, et al. Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant vaccine. Am J Clin Oncol. 2011;34:321–5.
- Vasef MA, Ross JS, Cohen MB. Telomerase activity in human solid tumors. Diagnostic utility and clinical applications. Am J Clin Pathol. 1999;112:S68–75.
- Schnabl B, Choi YH, Olsen JC, Hagedorn CH, Brenner DA. Immortal activated human hepatic stellate cells generated by ectopic telomerase expression. Lab Invest. 2002;82:323–33.
- Bernhardt SL, Gjertsen MK, Trachsel S, Moller M, Eriksen JA, Meo M, et al. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer. 2006;95:1474–82.
- 30. Miyazawa M, Ohsawa R, Tsunoda T, Hirono S, Kawai M, Tani M, et al. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci. 2010;101:433–9.
- Smith JP, Fantaskey AP, Liu G, Zagon IS. Identification of gastrin as a growth peptide in human pancreatic cancer. Am J Physiol. 1995;268:R135–41.
- Gilliam AD, Watson SA. G17DT: an antigastrin immunogen for the treatment of gastrointestinal malignancy. Expert Opin Biol Ther. 2007;7:397–404.
- Gilliam AD, Broome P, Topuzov EG, Garin AM, Pulay I, Humphreys J, et al. An international multicenter randomized controlled trial of G17DT in patients with pancreatic cancer. Pancreas. 2012;41:374–9.
- Srivastava PK. Immunotherapy of human cancer: lessons from mice. Nat Immunol. 2000;1:363–6.
- 35. Maki RG, Livingston PO, Lewis JJ, Janetzki S, Klimstra D, Desantis D, et al. A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci. 2007;52:1964–72.
- Laheru D, Jaffee EM. Immunotherapy for pancreatic cancer science driving clinical progress. Nat Rev Cancer. 2005;5:459–67.
- Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res. 1999;59:5800–7.

- Kaufman HL, Kim-Schulze S, Manson K, DeRaffele G, Mitcham J, Seo KS, et al. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J Transl Med. 2007;5:60.
- Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci. 2004;101:13832–7.
- Hassan R, Laszik ZG, Lerner M, Raffeld M, Postier R, Brackett D. Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis. Am J Clin Pathol. 2005;124:838–45.
- 41. Le DT, Brockstedt DG, Nir-Paz R, Hampl J, Mathur S, Nemunaitis J, et al. A live-attenuated Listeria vaccine (ANZ-100) and a live-attenuated Listeria vaccine expressing mesothelin (CRS-207) for advanced cancers: phase I studies of safety and immune induction. Clin Cancer Res. 2012;18:858–68.
- 42. Kobayashi M, Shimodaira S, Nagai K, Ogasawara M, Takahashi H, Abe H, et al. Prognostic factors related to add-on dendritic cell vaccines on patients with inoperable pancreatic cancer receiving chemotherapy: a multicenter analysis. Cancer Immunol Immunother. 2014;63:797–806.
- 43. Nishida S, Koido S, Takeda Y, Homma S, Komita H, Takahara A, et al. Wilms tumor gene (WT1) peptide-based vaccine combined with gemcitabine for patients with advanced pancreatic cancer. J Immunother. 2014;37:105–14.
- 44. Taniuchi K, Nakagawa H, Nakamura T, Eguchi H, Ohigashi H, Ishikawa O, et al. Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res. 2005;65:105–12.
- 45. Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H. Phase I/ II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med. 2013;11:291.
- 46. Suzuki N, Hazama S, Ueno T, Matsui H, Shindo Y, Iida M, et al. A phase I clinical trial of vaccination with KIF20A-derived peptide in combination with gemcitabine for patients with advanced pancreatic cancer. J Immunother. 2014;37:36–42.
- 47. Albers GH, Fleuren G, Escribano MJ, Nap M. Immunohistochemistry of CEA in the human pancreas during development, in the adult, chronic pancreatitis, and pancreatic adenocarcinoma. Am J Clin Pathol. 1988;90:17–22.
- 48. Geynisman DM, Zha Y, Kunnavakkam R, Aklilu M, Catenacci DV, Polite BN, et al. A randomized pilot phase I study of modified carcinoembryonic antigen (CEA) peptide (CAP1-6D)/montanide/GM-CSF-vaccine in patients with pancreatic adenocarcinoma. J Immunother Cancer. 2013;1:8.
- 49. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, et al. IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998;58:5315–20.
- Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3:917–21.
- Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, Sato T, et al. An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res. 2002;8:1731–9.
- 52. Kameshima H, Tsuruma T, Kutomi G, Shima H, Iwayama Y, Kimura Y, et al. Immunotherapeutic benefit of alpha-interferon (IFNalpha) in survivin2B-derived peptide vaccination for advanced pancreatic cancer patients. Cancer Sci. 2013;104:124–9.
- Yutani S, Komatsu N, Yoshitomi M, Matsueda S, Yonemoto K, Mine T, et al. A phase II study of a personalized peptide vaccination for chemotherapy-resistant advanced pancreatic cancer patients. Oncol Rep. 2013;30:1094–100.

- 54. Yanagimoto H, Shiomi H, Satoi S, Mine T, Toyokawa H, Yamamoto T, et al. A phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients. Oncol Rep. 2010;24:795–801.
- 55. Le TD, Wang-Gillam A, Picozzi JJV, Greten FT, Crocenzi ST, Springett MG, et al. A phase 2, randomized trial of GVAX pancreas and CRS-207 immunotherapy versus GVAX alone in patients with metastatic pancreatic adenocarcinoma: updated results. J Clin Oncol. 2014;32(suppl 3):177.
- 56. Brennan GT, Relias V, Saif MW. Novel agents for the treatment of pancreatic cancer. JOP. 2014;15:110–3.
- 57. Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.
- 58. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research

and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–16.

- Choi JH, Ahn MJ, Rhim HC, Kim JW, Lee GH, Lee YY, et al. Comparison of WHO and RECIST criteria for response in metastatic colorectal carcinoma. Cancer Res Treat. 2005;37:290–3.
- Hoos A, Parmiani G, Hege K, Sznol M, Loibner H, Eggermont A, et al. A clinical development paradigm for cancer vaccines and related biologics. J Immunother. 2007;30:1–15.
- Wolchok JD, Hoos A, O'Day S, Weber JS, Hamid O, Lebbe C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.
- Myc LA, Gamian A, Myc A. Cancer vaccines. Any future? Arch Immunol Ther Exp (Warsz). 2011;59:249–59.