
REVIEW ARTICLE

Drug development for intraperitoneal chemotherapy against
peritoneal carcinomatosis from gastrointestinal cancer

Shigenobu Emoto • Eiji Sunami • Hironori Yamaguchi •

Soichiro Ishihara • Joji Kitayama • Toshiaki Watanabe

Received: 15 August 2013 / Accepted: 21 October 2013 / Published online: 1 February 2014

� Springer Japan 2014

Abstract Intraperitoneal (IP) chemotherapy for perito-

neal carcinomatosis (PC) from gastrointestinal cancer has

been investigated and applied clinically for several dec-

ades. Cytoreductive surgery plus hyperthermic intraperi-

toneal chemotherapy have been considered to be the

optimal treatment options for selected patients with colo-

rectal and gastric cancers with PC. Accumulating evidence

suggests that the administration of IP paclitaxel for patients

with PC from gastric cancer may improve the patient sur-

vival. The pharmacokinetics of such treatment should be

considered to optimize IP chemotherapy. In addition,

newly emerging molecular-targeted therapies and research

into new drug delivery systems, such as nanomedicine or

controlled absorption/release methods, are essential to

improve the effects of IP chemotherapy. This review

summarizes the current status and future prospects of IP

chemotherapy for the treatment of gastrointestinal cancer.

Keywords Colorectal cancer � Gastric cancer �
Intraperitoneal chemotherapy � Peritoneal carcinomatosis �
Pharmacokinetics

Introduction

Peritoneal carcinomatosis (PC) is the most serious meta-

static pattern in gastrointestinal cancer, and is associated

with an extremely poor prognosis [1, 2]. PC has long been

considered to be a consequence of the systemic spread of

cancer; therefore, systemic chemotherapy has usually been

given as standard therapy. In spite of the consistent

improvement in systemic chemotherapy regimens, the

effects on PC are still limited, possibly because of the

peritoneum-plasma barrier, which prevents effective drug

delivery from the systemic circulation into the peritoneal

cavity [3]. In contrast, intraperitoneal (IP) chemotherapy

combined with cytoreductive surgery (CRS) as regional

therapy for PC has demonstrated notable efficacy for the

treatment of PC in various malignancies [4–7].

In 1978, Dedrick et al. [8] published the theoretical

rationale that the IP administration of drugs would result in

a higher drug concentration and longer half-life in the

peritoneal cavity compared with intravenous (IV) admin-

istration. Since then, a number of basic studies on the

pharmacokinetic and antitumor effects of IP administration

and a number of clinical trials have proven the validity of

IP chemotherapy. Three multicenter, randomized, phase III

clinical trials have shown that IP chemotherapy is superior

to standard IV systemic chemotherapy as the first-line

chemotherapy against small volume, residual, advanced

epithelial ovarian cancer [9–11]. Based on these results, the

National Comprehensive Cancer Network guidelines now

recommend IP chemotherapy for patients with stage III

epithelial ovarian cancer after optimal debulking surgery

[12]. Although evidence of the efficacy of CRS plus

hyperthermic IP chemotherapy (HIPEC) has been estab-

lished for gastrointestinal cancer, there is still controversy

concerning whether IP chemotherapy, including HIPEC, is

a standard treatment option or an experimental approach

[13].

The peritoneum is not a simple membrane, but is a

complicated organ. The route of peritoneal absorption and

pharmacokinetics following IP administration vary a great

deal between drugs. In addition, the formulation, solvent,
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concentration, administration rate and other factors criti-

cally affect the pharmacokinetics [14]. Ideally, the agents

used for IP chemotherapy should slowly exit the peritoneal

cavity to allow for optimal surface penetration of the

tumors [14]. For some drugs, use under hyperthermic

conditions can increase the cytotoxicity in the peritoneal

cavity without an increase in systemic toxicity [15].

Investigations into drug delivery systems (DDS) are

ongoing to develop new strategies that can be used in

addition to IP administration of drugs to achieve better

clinical results [16, 17]. Molecular-targeted therapy should

be taken into account as one such option, and the devel-

opment of drugs or solvents specific for IP chemother-

apy may be a future issue that needs to be resolved in this

field.

In this review, we summarize the current status of IP

chemotherapy for PC from gastric cancer (GC) and colo-

rectal cancer (CRC) and ongoing basic research on the

DDS in IP chemotherapy.

Pharmacokinetics of IP chemotherapy

The aim of IP chemotherapy is to increase the dose and

exposure time of anticancer drugs to the intraabdominal

cancer cells, while inducing minimal systemic toxic

effects. The pharmacokinetics after IP administration are

affected by a variety of biophysical parameters, including

the molecular weight and electric charge of the agent, as

well as the temperature, pH and other conditions of the

solution. Prolonged retention in the peritoneal cavity and

clearance from systemic circulation are believed to be the

key attributes for ideal drug candidates designed for IP

chemotherapy [8, 14, 18]. Intraperitoneally administered

materials are mainly absorbed by two anatomical routes.

After IP administration, hydrophilic low-weight molecu-

lar materials, such as cisplatin (CDDP) or mitomycin

C(MMC), are rapidly absorbed into the subperitoneal

capillary vessels through the peritoneal mesothelial layer.

In contrast, hydrophobic high-weight molecular materials,

such as taxanes, are gradually drained, mainly from sto-

mata or milky spots that are the direct openings of

lymphatic vessels [19, 20]. Thus, the time–concentration

curves of drugs in the peritoneum and plasma vary

widely according to the drug type. The area under the

curve (AUC) ratio of the peritoneal cavity to the plasma

(AUC peritoneum/plasma) is approximately 1000 for

paclitaxel (PTX) and approximately 10–21 for CDDP

(Table 1) [14, 21–24]. In IP chemotherapy, the pharma-

cokinetic profile of each drug is as important as its

cytotoxic activity.

Currently used IP chemotherapy agents

HIPEC and agents with heat synergy

The aim of HIPEC is to achieve a high local concentra-

tion of chemotherapeutic agents in the peritoneal cavity

and to promote good absorption of these agents from the

surface of peritoneal tumors with minimal systemic toxic

effects. Practically, multiple drainage tubes are placed in

different areas of the abdomen after CRS. A roller pump

with a heat exchanger is used, and the temperature is

maintained at 42–43 �C throughout the perfusion duration

of 30–120 min [25]. Heat has a synergistic effect with

MMC, CDDP, oxaliplatin, and docetaxel (Table 1).

MMC, CDDP, and oxaliplatin are generally used for

HIPEC for CRC and GC. The previously reported clinical

results of IP chemotherapy for CRC [26–40] and GC [39,

41–53] are shown in Tables 2 and 3, respectively. In these

tables, most studies included only patients who underwent

complete CRS, except for a few references [39, 46, 47,

49, 51–53].

A few studies have compared HIPEC with early post-

operative intraperitoneal chemotherapy (EPIC) or non-

hyperthermic sequential postoperative intraperitoneal che-

motherapy (SPIC). Elias et al. [54] reported that HIPEC

with oxaliplatin was better tolerated than EPIC with MMC,

and that 5-fluorouracil (5-FU) was twice as efficient at

curing residual PC from CRC with minimal residual dis-

ease after surgery. Cashin et al. [40, 55] reported that HI-

PEC was associated with an improved overall survival

(OS) and disease-free survival compared with SPIC, with

similar morbidity and mortality in patients with PC from

CRC. They concluded that CRS and HIPEC might be the

optimal treatment for patients with PC from CRC with

minimal residual disease. However, in the SPIC and EPIC

studies, the IP drug combination was MMC and 5-FU,

whereas IP oxaliplatin was used in HIPEC studies,

Table 1 Drugs used for intraperitoneal chemotherapy against gas-

trointestinal cancer

Drug Mw (Da) AUC

peritoneum/

plasma

Penetration

distance

Heat

synergy

Mitomycin C 334 10–24 2 mm ?

Cisplatin 300 12–21 1–3 mm ?

Oxaliplatin 397 3.5 1–2 mm ?

5-Fluorouracil 130 360 0.2 mm -

Irinotecan 677 -

Paclitaxel 854 1000 [80 cell layers -

Docetaxel 862 207–552 ?

Mw molecular weight, AUC area under the concentration–time curve
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suggesting that further studies using oxaliplatin may be

required in future EPIC and SPIC studies for a more rea-

sonable comparison.

As for GC, Yonemura et al. [56] suggested that a

combination of neoadjuvant IP/systemic chemotherapy

(NIPS), such as CRS plus HIPEC, and EPIC/SPIC might be

the best treatment strategy.

Mitomycin C

MMC is the most extensively used clinical IP chemo-

therapy agent that demonstrates favorable outcomes [28].

It is usually the first agent to be selected for HIPEC for

CRC, and is used in combination with other drugs for

GC. MMC can be co-administered with other agents such

as oxaliplatin, CDDP and 5-FU due to its favorable

compatibility profile. HIPEC achieves high peritoneal

concentrations of MMC with limited systemic absorption

[57].

Cisplatin

CDDP is one of the most widely used drugs for various

cancers, including GC [58]. It is used for IP chemotherapy

with or without hyperthermia. The AUC for the perito-

neum/plasma is approximately 12–20 [14], which is not as

high as that of many other drugs. However, significant

antitumor activity during systemic chemotherapy has led

physicians to evaluate IP CDDP, which led to improved

survival compared with IV administration in patients with

ovarian cancer [9]. Heat synergy of CDDP has been

reported [59]. To prolong the retention of CDDP in the

peritoneal cavity, continuous IP infusion was attempted

with tolerable toxicity [60].

Oxaliplatin

Oxaliplatin is the main agent used during systemic che-

motherapy for CRC. Elias et al. [35, 61–64] reported on the

Table 2 The clinical outcomes of intraperitoneal chemotherapy for colorectal cancer

References N Method Intraperitoneally

administered agents

MST

(months)

1-year

OS (%)

2-year

OS (%)

3-year

OS (%)

5-year

OS (%)

Verwaal et al. [26] 54 HIPEC MMC 22.4

Mahteme et al. [27] 18 HIPEC 5-FU 32

Glehen et al. [28] 377 HIPEC and/or EPIC HIPEC: MMC (?CDDP) or

L-OHP EPIC: 5-FU

(?MMC)

32

Elias et al. [29] 16 EPIC MMC ? 5-FU 60

Verwaal et al. [30] 117 HIPEC MMC 21.8 75 28 19

Kianmanesh et al. [31] 30 HIPEC MMC ? CDDP 38.4

Verwaal et al. [32] 54 HIPEC MMC 22.2

Shen et al. [33] 30 HIPEC 41

Bijelic et al. [34] 49 HIPEC (?EPIC) MMC ? 5-FU 33

Elias et al. [35] 48 HIPEC L-OHP 62.7 81 51

Franko et al. [36] 67 HIPEC MMC 34.7

Elias et al. [37] 492 HIPEC and/or EPIC HIPEC: MMC (?CDDP) or

L-OHP (?CPT-11) EPIC:

MMC ? 5-FU

30.1 27

Elias et al. [38] 341 (colon) HIPEC and/or EPIC HIPEC: MMC (?CDDP) or

L-OHP (?CPT-11) EPIC:

MMC ? 5-FU

32.4 46 30

27 (rectum) HIPEC and/or EPIC HIPEC: MMC (?CDDP) or

L-OHP (?CPT-11) EPIC:

MMC ? 5-FU

34 45 38

Glehen et al. [39] 498 HIPEC and/or EPIC HIPEC: MMC (?CDDP) or

L-OHP (?CPT-11) EPIC:

MMC ? 5-FU

30 41 26

Cashin et al. [40] 69 HIPEC HIPEC: MMC (?CDDP) or

L-OHP (?CPT-11)

34 40

57 SPIC MMC ? 5-FU 25 18

MST median survival time, OS overall survival, HIPEC heated intraperitoneal chemotherapy, MMC mitomycin C, 5-FU 5-fluorouracil, L-OHP

oxaliplatin, EPIC early postoperative intraperitoneal chemotherapy, CDDP cisplatin, CPT-11 irinotecan, SPIC sequential perioperative intra-

peritoneal chemotherapy
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pharmacokinetics and significant efficacy of IP oxaliplatin

for patients with PC from CRC. They demonstrated the

effectiveness of bidirectional chemotherapy, that is, a

combination of HIPEC with oxaliplatin and intraoperative

IV chemotherapy [61, 62]. Then, they retrospectively

compared patients with resectable PC treated with com-

plete CRS and HIPEC (n = 48) to those treated with

standard systemic chemotherapy (n = 48). The median OS

was 63 months in the HIPEC group versus 24 months in

the systemic chemotherapy group [35].

Agents without heat synergy

Paclitaxel and docetaxel

PTX is water insoluble, and for clinical use, it is conven-

tionally solubilized in a polyoxyethylated castor oil called

Cremophor EL and ethanol (i.e., Taxol�) [65, 66]. Taxol� is

considered to be suitable for IP chemotherapy due to its large

particle size (10–12 nm in diameter), which can result in

prolonged retention of the drug in the peritoneal cavity [14, 67,

68], although Cremophor EL can cause severe hypersensi-

tivity reactions, which occur in 2–4 % of patients [65, 66].

In patients with GC, IP PTX was demonstrated to be

clinically safe and effective in phase I and II trials [51, 69–

72]. The bidirectional administration of IV and IP PTX

maintained effective concentrations of PTX in the peritoneal

cavity for over 72 h [70] (Fig. 1). In a phase II trial of

combination chemotherapy with oral S-1 and IV and IP PTX

for patients with PC from GC, the one-year OS rate was 78 %

and the overall response rate (ORR) was 22 %, even though

most of the patients had highly advanced PC [51]. The

advantage of this regimen was the administration of IP

chemotherapy both before and after CRS, whereas in the

previous studies, IP therapy was limited to a short postop-

erative period. A randomized, multicenter, phase III trial

(PHOENIX-GC trial, UMIN Trial ID: UMIN000005930)

comparing S-1 in combination with IV and IP PTX versus

S-1 with IV CDDP, as a standard regimen for Japanese

patients with advanced or recurrent GC [58], began in

November 2011 (Fig. 2).

IP docetaxel for patients with PC from GC was also

evaluated; the one-year OS rate was 70 % and the ORR

was 22 % [53, 73].

Taxanes are not commonly used for systemic chemo-

therapy for patients with CRC since phase II trials yielded

negative results [74–76]. However, clinical evaluation of

IP PTX could also be considered for patients with PC from

CRC, because the pharmacokinetics of PTX after IP

administration are very different from those after IV

administration, and preclinical investigations of IP PTX for

CRC showed desirable efficacy [77, 78].

Table 3 Clinical outcomes of intraperitoneal chemotherapy for gastric cancer

References N Method Intraperitoneally

administered agents

MST

(months)

1-year

OS (%)

2-year

OS (%)

3-year

OS (%)

5-year

OS (%)

Fujimoto et al. [41] 48 HIPEC MMC 54 42 31

Beaujard et al. [42] 28 HIPEC MMC 48 33

Hall et al. [43] 34 HIPEC MMC 11.2 45 45 21

Glehen et al. [44] 25 HIPEC MMC 21.3 75 37 29

Yonemura et al. [45] 47 HIPEC MMC ? CDDP ? VP-16 15.5 13

Yonemura et al. [46] 61a NIPS DOC ? CBDCA 14.4

Cheong et al. [47] 154a EPIC 5-FU ? CDDP 11.4 12.2

Yonemura et al. [48] 41 NIPS DOC ? CDDP 20.4 67 40 30

Yang et al. [49] 28a HIPEC MMC ? HCPT, MMC ? CDDP 12 50 43

Glehen et al. [50] 85 HIPEC and/or

EPIC

HIPEC: MMC (?CDDP) or

L-OHP (?CPT-11) EPIC:

MMC ? 5-FU

15 61 31 23

Glehen et al. [39] 152a HIPEC and/or

EPIC

HIPEC: MMC (?CDDP) or

L-OHP (?CPT-11) EPIC:

MMC ? 5-FU

9 18 13

Ishigami et al. [51] 40a SPIC PTX 78

Yang et al. [52] 34a HIPEC MMC ? CDDP 11

Fushida et al. [53] 27a SPIC DOC 16.2 70 33.4

MST median survival time, OS overall survival, HIPEC heated intraperitoneal chemotherapy, MMC mitomycin C, CDDP cisplatin, VP-16

etoposide, DOC docetaxel, CBDCA carboplatin, 5-FU 5-fluorouracil, HCPT hydroxycamptothecin, EPIC early postoperative intraperitoneal

chemotherapy, L-OHP oxaliplatin, CPT-11 irinotecan, SPIC sequential perioperative intraperitoneal chemotherapy, PTX paclitaxel
a Including data for R2 surgery or without surgery
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Irinotecan

Irinotecan is one of the key drugs used for the treatment of

CRC and GC. It is a pro-drug that exerts its anticancer

activity after transformation into SN-38 by carboxylester-

ases in the liver. SN-38 is 100- to 1000-fold more cytotoxic

than irinotecan. Carboxylesterases are reported to be min-

imally present in the peritoneum [79], and Elias et al. [80]

performed an IP administration of irinotecan and reported

that SN-38 was detected in the peritoneal cavity just after

the IP administration of irinotecan. However, their clinical

trial comparing CRS plus HIPEC using oxaliplatin with or

without irinotecan showed that the addition of irinotecan

did not confer a survival benefit, and instead increased

morbidity [81]. These results were unexpected, but might

be explained by the local inefficiency of irinotecan from

the viewpoint of its metabolism. In addition, it was spec-

ulated that the efficiency of HIPEC might be less depen-

dent on the drug used, unlike the case for systemic

chemotherapy.

5-Fluorouracil

5-FU is a widely used IP agent for the treatment of patients

with gastrointestinal cancer. Because it has no heat syn-

ergy, 5-FU is currently used in EPIC and SPIC for CRC

and GC. Since IP administration of 5-FU results in

absorption from the peritoneum and direct first-pass

metabolism in the liver, IP administration requires a 1.5-

fold higher dose than that used for systemic administration

[82]. Cashin et al. [40] reported a retrospective cohort

study of SPIC treatment consisting of IP 5-FU at

500–600 mg/m2 and IV leucovorin at 60 mg/m2 once a day

for 6 days. Eight cycles of SPIC with at 4- to 6-week

intervals over a six-month period were planned as an

adjuvant chemotherapy regimen. The OS of 57 patients

who underwent CRS and received SPIC was 25 months,

with a five-year survival rate of 18 %. Glehen et al. [28]

reported that the OS of 235 patients with CRC who

received EPIC with 5-FU and/or MMC was 19.2 months.

Molecular-targeted therapy in patients with malignant

ascites

Catumaxomab

Epithelial cell adhesion molecule (EpCAM, CD326) is a

surface antigen present on various kinds of epithelial can-

cer and normal epithelial cells [83]. Catumaxomab is a

trifunctional monoclonal antibody with two different anti-

gen-binding sites and a functional Fc domain [84]. It binds

to human EpCAM-positive cancer cells and redirects CD3-

positive T lymphocytes and Fcc-receptor-positive acces-

sory cells to the cancer cells, thereby activating a complex

antitumor immune reaction through various effector func-

tions, such as antibody-dependent cellular cytotoxicity,

phagocytosis and T cell-mediated cytotoxicity [85–89]

(Fig. 3).

A randomized phase II/III trial of catumaxomab in

patients with malignant ascites due to epithelial cancer,

including ovarian, gastric, breast, pancreatic, colorectal and

endometrial cancers was conducted. Patients with malig-

nant ascites (n = 258) were randomized to receive para-

centesis plus catumaxomab or paracentesis alone and

stratified by cancer type. The puncture-free survival was

significantly longer in the catumaxomab group than in the

control group (46 vs. 11 days, hazard ratio = 0.254,

P \ 0.0001) as was the median time to the next

Fig. 2 The design of the PHOENIX-GC trial. GC gastric cancer, PC

peritoneal carcinomatosis, IP intraperitoneal, IV intravenous, PTX

paclitaxel, CDDP cisplatin

Fig. 1 The concentration-versus-time curves of intraperitoneal and

serum PTX. After the administration of PTX (50 mg/m2 intrave-

nously, 20 mg/m2 intraperitoneally), serum and intraperitoneal fluid

was periodically collected. The PTX concentrations were measured

by a reverse-phase high-performance liquid chromatography assay.

PTX paclitaxel (adapted from Ref. [70])
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paracentesis (77 vs. 13 days, P \ 0.0001). The OS showed

a positive trend in the catumaxomab group and was sig-

nificantly prolonged in patients with GC (71 vs. 44 days,

P = 0.0313) [90]. Moreover, treatment with catumaxomab

significantly delayed the deterioration of the patient quality

of life (QoL) in the same trial [91].

Bevacizumab

Vascular endothelial growth factor A (VEGF-A) is a key

mediator of angiogenesis [92, 93]. The activities of VEGF-

A are mediated by two tyrosine kinase receptors, vascular

endothelial growth factor receptors 1 and 2. In patients

with CRC, bevacizumab, a humanized variant of an anti-

VEGF antibody, has shown significant efficacy in combi-

nation with chemotherapy, and is now widely used in the

clinical setting [94]. Although, the primary endpoint of OS

was not reached in the AVAGAST trial, the addition of

bevacizumab to chemotherapy was associated with signif-

icant increases in progression-free survival and the ORR in

the first-line treatment of patients with advanced GC [95].

Malignant ascites caused by PC not only leads to the

deterioration of the patients’ QoL, but also results in a poor

prognosis [96, 97]. VEGF is markedly elevated in malig-

nant ascites, where it worsens the condition by increasing

the endothelial cell permeability [98]. VEGF inhibition in

the peritoneal cavity is therefore considered to be beneficial

not only as an inhibitor of tumorigenesis, but also as an

inhibitor of the formation of malignant ascites [99]. In

surgically resected specimen from patients with GC, the

VEGF expression was indicated to be an independent

predictor of peritoneal recurrence [100].

With regard to the route of administration, bevacizumab

should be administered systemically, because it is rapidly

absorbed from the peritoneum and enters the systemic

circulation when administered by IP injection [101, 102].

There have been so far no clinical trials addressing the

use of bevacizumab with IP chemotherapy, although the

effects of bevacizumab on murine PC models of GC were

promising [103, 104].

Utilization of new DDS in IP chemotherapy

Nanodrugs

Nanodrugs are a new type of drug formulation, comprising

particles of 20–100 nm in molecular diameter, smaller than

conventional drugs. Since the discovery of selective

accumulation by passive targeting, known as the enhanced

permeability and retention (EPR) effect [105], various

kinds of nanodrugs have been developed for cancer treat-

ment (Table 4) [106–108]. One of the barriers to systemic

chemotherapy is the high interstitial pressure of solid

tumors, which prevents drugs from leaking from vessels

and penetrating into tumor tissue [109–112]. Nanodrugs

accumulate in tumor tissue by the EPR effect, which results

in enhanced antitumor effects and less toxicity in normal

tissues. The EPR effect is based on the special character-

istics of solid tumor tissues, such as incomplete vascular

architecture, hyperpermeability of tumor vessel walls and

immature lymphatic drainage [105] (Fig. 4). Nanodrugs of

the polymeric micellar type are retained for a long period

in the systemic blood stream [113, 114], where they are

easily extravasated from tumor vessels into the interstitium

of tumor tissue, resulting in greater intratumoral exposure

compared with conventional small-molecule agents [105,

115].

Various types of Cremophor-free, nanoparticulate PTX

have recently been investigated to reduce the risk of

allergic reactions and to take advantage of the EPR effect

[116–120]. Abraxane�, an albumin-bound PTX, is cur-

rently in clinical use for breast, lung and gastric cancers

[121, 122]. NK105 is a PTX-incorporating ‘‘core–shell-

type’’ polymeric micellar nanoparticle formulation [123,

124] (Fig. 5). A phase II trial of NK105 as second-line

chemotherapy in patients with advanced GC reported an

Table 4 Nanocarrier-based drugs licensed for gastrointestinal cancer

Drug Platform Compound Mean

diameter

(nm)

Clinical

stage

Abraxane Albumin

conjugate

Paclitaxel 120 Approved

NK105 Micelles Paclitaxel 85 P3

NK012 Micelles SN-38 20 P2

NC-6004 Micelles Cisplatin 20 P1/2

NC-4016 Micelles Dachplatin 40 P1

Fig. 3 The mechanism(s) of action of catumaxomab. ADCC anti-

body-dependent cellular cytotoxicity, DC dendritic cell, DC-CK1

dendritic cell cytokine 1, EpCAM epithelial cell adhesion molecule

(adapted from Ref. [89])
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ORR of 25 % and a median OS of 14.4 months [125]. A

phase III trial to verify the non-inferiority of NK105 to

Taxol� in terms of the progression-free survival in patients

with metastatic or recurrent breast cancer is ongoing

(NCT01644890).

The IV administration of NK012, an SN-38-releasing

polymeric nanomicellar agent, showed a significantly

enhanced antitumor effect against PC in a mouse GC

xenograft model compared with irinotecan [126]. However,

the IP administration of nanoparticulate anticancer

agents for PC has received little attention despite the

existence of data indicating the potency of this type of

treatment [127].

PMB-30W is a water-soluble, amphiphilic polymer

composed of 2-methacryloxyethyl phosphorylcholine and

n-butyl methacrylate. As is the case for NK105, this co-

polymer is biocompatible, forms micelles when dissolved

in aqueous media, and provides hydrophobic domains in

such media. As a solvent, PMB-30W is 1000-fold better

than water, and enables the construction of PTX-containing

nanoparticles approximately 50 nm in diameter [119]. The

IP administration of nanoparticulate PTX resulted in dee-

per penetration into peritoneal nodules and exhibited

enhanced antitumor effects compared to conventional

Cremophor-conjugated PTX (Fig. 6) [128, 129], although

the reason why nanomicellar particles can penetrate deeply

into peritoneal nodules is unclear.

Higher and longer retention in the systemic circulation

after IP administration of NK105 was also shown in a

mouse model [130]. IP NK105 showed significantly

enhanced antitumor effects against both subcutaneous and

peritoneal xenografts of human GC compared with IP

Taxol�. IP chemotherapy with nanoparticulate agents

could be a promising strategy for the treatment of PC.

Controlled absorption and drug release

Water-soluble low molecular weight agents such as CDDP

are rapidly absorbed via the capillary blood vessels of the

peritoneum after IP administration [14]. Therefore, the

ratio of the AUC for the peritoneum to that for plasma of

these agents is low [15, 18, 131]. To keep this ratio high,

frequent or continuous IP administration of these agents

has been attempted, which sometimes caused stress for

patients because of catheter-related complications [4, 17].

The IP administration of CDDP in a hypotonic solution

resulted in a high AUC in the plasma, a high intratumoral

uptake and prolonged survival in animal models; however,

Fig. 4 The enhanced permeability and retention (EPR) effect.

a Small molecules easily leak from normal capillary vessels and are

drained via lymphatic vessels in normal tissue, whereas nanoparticle

macromolecules do not pass through the normal vessel walls.

Nanoparticles do not harm the normal tissue. b In contrast,

nanoparticles leak from vessels and persist for a long time in the

tumor tissue, where the vascular permeability is elevated and the

lymphatic system is immature. As a result, nanoparticles accumulate

in the tumor tissue

Fig. 5 A core–shell-type

polymeric nanomicellar

paclitaxel. Hydrophilic

paclitaxel was made water

soluble by its incorporation into

micelles of amphiphilic

polymers
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the AUC in the IP fluid was low, and this strategy caused

an increase in the renal toxicity [132, 133].

However, IP administration of water-soluble agents is

still widely performed without any special artifice in DDS

in clinical practice, but further research is needed to pro-

long the retention of drugs in the peritoneal cavity [14, 17,

134].

Hydrogels are formed by cross-linking hydrophilic

macromolecules. They have been reported to prolong drug

retention in the peritoneal cavity and to enhance the anti-

tumor effects for PC [135–138]. The hyaluronic acid (HA)-

based hydrogel is a biocompatible material that prevents

peritoneal adhesion after surgical processes [139–141].

Hydrogels that are sensitive to stimuli such as temperature

[136, 137, 142, 143] or pH [144] have considerable

potential in biomedical and pharmaceutical applications,

especially in site-specific and controlled DDS [145].

The IP administration of CDDP via a HA-based

hydrogel resulted in the sustained release of CDDP in the

peritoneal cavity and enhanced antitumor activity against

PC in a mouse model [146], revealing a novel DDS for the

treatment of PC. A combination of controlled release and

target-specific delivery by HA-based hydrogel through

interactions between CD44 and HA also seems promising

[147–149].

Conclusion

This review has attempted to highlight the current status

and future prospects of IP chemotherapy for patients with

PC from GC and CRC, with a focus mainly on the phar-

macokinetics. Since the infusion of anticancer agents into

the abdominal cavity enables direct exposure of a high

concentration of drugs to each tumor cell, it seems to be a

reasonable drug delivery method. The results suggest that

multimodal treatment including IP chemotherapy may be

the best approach for PC, with the potential to improve the

survival of the patients with this dismal disease.
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