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Abstract
Diabetes and sepsis are important causes of morbidity and mortality worldwide, and diabetic patients represent the largest 
population experiencing post-sepsis complications and rising mortality. Dysregulated immune pathways commonly found 
in both sepsis and diabetes contribute to worsen the host response in diabetic patients with sepsis. The impact of diabetes 
on mortality from sepsis is still controversial. Whereas a substantial proportion of severe infections can be attributed to 
poor glycemic control, treatment with insulin, metformin and thiazolidinediones may be associated with lower incidence 
and mortality for sepsis. It has been suggested that chronic exposure to high glucose might enhance immune adaptation, 
leading to reduced mortality rate in septic diabetic patients. On the other hand, higher risk of acute kidney injury has been 
extensively documented and a suggested lower risk of acute respiratory distress syndrome has been recently questioned. 
Additional investigations are ongoing to confirm the protective role of some anti-diabetic treatments, the occurrence of acute 
organ dysfunction, and the risk/benefit of less stringent glycemic control in diabetic patients experiencing sepsis. Based on 
a MEDLINE/PubMed search from inception to December 31, 2020, the aim of this review is therefore to summarize the 
strengths and weaknesses of current knowledge on the interplay between diabetes and sepsis.
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Introduction

Sepsis is defined as a “life-threatening organ dysfunction 
caused by dysregulated host response to an infection”, and 
represents a leading cause of death worldwide, with a mor-
tality rate > 10% [1]. In 2017, almost 50 million incident 
cases of sepsis were estimated worldwide and 11 million 
sepsis-related deaths were reported, representing nearly 20% 
of all global deaths [2]. Septic shock is highly prevalent in 
the general population, occurring in the 8–10% of Inten-
sive Care Unit (ICU) patients, with a high mortality rate 
(almost 40%) [3]. The expanding elderly population suffer-
ing from extensive comorbidity burden, physiological frailty 

and immune senescence [4] leads to predict an increased 
mortality rate for sepsis over the next couple of decades [5].

With the rising globalization of Western diet and lifestyle, 
the incidence of Type 2 Diabetes Mellitus (T2D) is increas-
ing and its prevalence is expected to exceed 700 million 
worldwide in the near future, reaching pandemic proportions 
[6]. T2D and diabetes-related complications are also a lead-
ing cause of hospitalization, disability and mortality [7, 8].

Although still under debate [9–11], several lines of evi-
dence indicate that diabetic patients have an increased risk of 
infection [9, 12–17], and a 2 to 6 times higher risk of sepsis 
compared to the age-matched non-diabetic people [12, 17]), 
and higher sepsis-related morbidity and mortality compared 
to non-diabetic individuals [12, 15, 18, 19]. Diabetic patients 
are also likely to have higher rates of colonization by resist-
ant pathogens, including methicillin-resistant Staphylococ-
cus aureus, than non-diabetics [20]. These considerations 
support the finding that diabetes is an increasingly common 
comorbidity among septic patients [21, 22]. As a matter 
of fact, during a 25-year study period (1979–2003), sepsis 
occurred in 12.5 million of 930 million acute-care hospi-
talizations, and diabetes was reported in 17% of cases [21]. 
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Moreover, diabetic patients account for the largest popula-
tion experiencing post-sepsis complications and rising mor-
tality [15].

Despite current improvements in diagnosis and treat-
ment options, diabetes and sepsis remain common, costly 
and lethal worldwide [3, 11, 14]. This work aims at review-
ing the current state of knowledge about: (1) the impact of 
diabetes and sepsis on the immune system, (2) the influence 
of diabetes on the risk of sepsis and its outcomes, and (3) 
the optimal target for blood glucose control during sepsis in 
patients with diabetes.

A MEDLINE/PubMed search was conducted from incep-
tion to December 31, 2020, using the MeSH terms Diabetes 
mellitus AND Sepsis AND the following: Immune system 
processes, Glycated hemoglobin, Insulin, Hypoglycemic 
agents, Metformin, Sulphonylurea compounds, Thiazoli-
dinediones, Incretin, Multiple-organ dysfunction syndrome, 
Lung injury, Acute respiratory distress syndrome, Acute kid-
ney failure, Blood glucose, Mortality.

All types of publications and articles related to human 
studies were initially included. Out of 583 records retrieved 
through the initial database search, 425 remained after 
removing duplicates. After manual assessment based on 
title/abstract, 150 remained for full-text assessment for eli-
gibility. Articles without full text or not written in English, 
case reports and studies involving generically critically 
ill patients or patients with specific infective focus were 

excluded. Based on these exclusion criteria, 92 records 
were excluded, while 58 articles remained. An additional 
46 records were identified by manual search among the ref-
erences cited in these records and further assessed for eligi-
bility according to the above-mentioned criteria, leading to 
exclude 27 and include 19.

Finally, 77 studies were included in the qualitative analy-
sis (Fig. 1).

Interactions between type 2 diabetes 
and sepsis

T2D is a complex clinical syndrome characterized by persis-
tent hyperglycemia, associated with decreased insulin secre-
tion and sensitivity [13]. Several metabolic abnormalities, 
including inflammation and insulin resistance driven by 
both chronic and stress-induced hyperglycemia, and T2D-
related obesity and dyslipidemia, additionally worsen the 
host response against infections.

Also, sepsis exerts a global impact on the immune system, 
impairing the lifespan, generation and function of innate and 
adaptive immune cells and leading to perturbation of the 
immune homeostasis [23].

Currently, the molecular network that cooperates to 
worsen clinical outcomes in patients with T2D and sepsis 
remains uncertain [15]. Figure 2 summarizes the current 

Fig. 1   Study flow diagram
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knowledge on the mechanisms of sepsis and the effects of 
chronic hyperglycemia, both impacting on the immune sys-
tem and translating into poor patient outcome [13, 15].

Premorbid modifiers of the risk of sepsis

Long‑term glycemic control and the risk of sepsis

Glycated hemoglobin (HbA1c), term used to describe “a 
series of stable minor hemoglobin components formed 

Fig. 2   Interactions between diabetes and sepsis in inflammation and 
on the immune system ( adapted from Tiwari et al. [13]). Both T2D-
related chronic hyperglycemia and toxic products released by invad-
ing microorganisms during sepsis contribute to increase inflammatory 
response [13]. It is generally accepted that the chronic and indolent 
inflammation induced by T2D and obesity differs from the acute 
inflammatory response caused by sepsis [77]. However, Frydrych 
et al. [15] outlined the impairment of several inflammatory responses 
in both T2D and sepsis (data not shown in the Figure), including: a 
increased levels of complement proteins (which are defective in T2D) 
driving systemic inflammation, organ failure and mortality; b mito-
chondrial dysfunction and redox imbalance as relevant mediators 
of disease progression; c impaired calcium homeostasis promoting 
elevated inflammatory responses, cellular dysfunction and toxicity. 
The increase in pro-inflammatory cytokines, induced by both T2D 

and sepsis, and the activation of the immune system due to sepsis are 
responsible for the endothelial dysfunction carrying the organ dys-
function characteristic of sepsis and accountable for poor outcome 
[13]. Additionally, functional neutrophil defects and deranged recruit-
ment into sites of infection are commonly found not only in T2D but 
also in sepsis. Apoptosis of both lymphocytes and antigen-presenting 
cells (APCs) is a hallmark of septic-mediated immune suppression, 
whereas endothelial cell dysfunction, fluctuation of pro-inflammatory 
cytokines and the impairment of both the antioxidant machinery and 
humoral immunity are linked to TD2 [15]. Thus, in diabetic patients 
surviving from sepsis, the coexistence of the sepsis-induced immune 
activation over-described and such immune suppression related to 
both T2D and sepsis weakens the immune response contributing 
to create a chronic immune suppression leading to further infective 
complications and poor long-term survival [15]
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slowly and nonenzymatically from hemoglobin and glucose”, 
is the most widely used marker of long-term glucoregulation 
and represents a risk mark for the development of diabetes 
complications [11, 24]. In hyperglycemic sepsis, it allows 
to distinguish non-diabetic individuals experiencing stress 
hyperglycemia from patients with previously undiagnosed 
diabetes and, comparing actual blood glucose values with 
the HbA1c-estimated average levels at preadmission, to 
identify stress-induced glycemic deterioration in patients 
with preadmission diagnosis of diabetes [25].

Only a few studies have investigated the relationship 
between glycemic control and infectious diseases [26, 27]. 
A recent review of higher-quality population-based epide-
miological studies [26] have reported an association between 
high HbA1c (> 7–8% or > 53–64 mmol/mol) and a 1.5–3.5-
fold increased risk of infection in diabetic patients. However, 
these studies are still debated, since their statistical power 
and controls for confounders are missed.

A further large-size retrospective cohort study [27] on 
more than 150,000 patients, among whom approximately 
85,000 were diabetics (mostly T2D), confirmed a powerful 
association between poor glycemic control and high risks 
of serious infections (not just sepsis). Specifically, diabetic 
patients showed greater hospitalization risks for infections 
compared to non-diabetics, regardless of glycemic con-
trol (sepsis rates were elevated even among patients with 
HbA1c < 6% or 42 mmol/mol). Nevertheless, for several 
infections, an association trend was found between increas-
ing HbA1c level and the risk of infection. Within diabetic 
patients, a poor metabolic control was associated with a 
threefold risk of hospitalization. Overall, 15.7% of infection-
related deaths, 16.5% of infection-related hospitalizations, 
6.8% of infections requiring a prescription, and up to 20% 
of sepsis cases, have been attributed to HbA1c value differ-
ent from 6–7% (42–53 mmol/mol). In detail, the incidence 
rate ratio for sepsis ranged from 1.2 (for HbA1c ≥ 7% or 
53 mmol/mol) to 3.64 (for HbA1c ≥ 11% or 97 mmol/mol). 
Interestingly, even a tight metabolic control (HbA1c < 6% 
or 42 mmol/mol) was associated with an increased risk of 
infections in the older population, among whom the infec-
tious risk and poor outcomes were found globally higher. 
The authors hypothesized for these patients that a less strin-
gent glycemic control (up to HbA1c 8%; 64 mmol/mol) may 
be beneficial, while a tighter control would be associated 
with additional risks [27].

Thus, although evidence suggests that a better glycemic 
control might reduce the risk of infections, further trials 
including older patients, people with a poor metabolic con-
trol, and whit a history of significant infectious disease are 
required [26, 27].

Impact of insulin and other anti‑diabetic 
medications on the incidence and mortality 
for sepsis

Immunomodulatory effects of both insulin and non-insulin 
glucose-lowering agents have been extensively documented, 
and their beneficial impact in diabetic patients with sepsis 
has been suggested [9, 11, 28–32].

Insulin may protect against over-activation of the immune 
system by preventing the adverse effects on immune func-
tions related to high blood glucose and exerting direct and 
indirect anti-inflammatory effects [9, 28]. However, two 
large-size observational studies failed to reveal differences 
in mortality attributable to previous insulin treatment. A 
first report on critically ill subjects (among whom 7% with 
previously diagnosed insulin-treated diabetes) [33] revealed 
that formerly insulin-treated diabetic individuals were more 
severely ill, however, they did not display an increased mor-
tality rate. In a further prospective observational study [34], 
including ICU septic patients with and without diabetes (the 
first either insulin- and non-insulin treated), the disease pro-
gression and mortality for sepsis in diabetic patients was 
similar regardless of insulin treatment.

Some non-insulin glucose-lowering agents have been 
associated with several immune-modulating effects in pre-
clinical studies. Specifically, metformin may exert important 
pleiotropic effects, involving the regulation of lactate metab-
olism and AMPK activation, and produce anti-inflammatory, 
anti-endotoxemic, vasoactive and antimicrobial actions [31]. 
Thiazolidinediones (TZD) increase neutrophil migration, 
suggesting potential benefits in the modulation of the inflam-
matory response and in the outcome of septic patients [11]. 
An anti-inflammatory action has been shown and an immu-
nomodulatory effect has been hypothesized also for incretin 
hormones, since they are involved in inflammatory response 
[30, 32, 35]. Preclinical models of sepsis have demonstrated 
that incretin-based therapies decrease immune cell activa-
tion, inhibit pro-inflammatory cytokine release and reduce 
organ dysfunction and mortality [32]. Although incretin-
based therapies have not yet been tested in clinical trials of 
sepsis, it has been hypothesized that both incretin-mimetics 
[32] and DPP4 inhibitors [35] may exert positive pleiotropic 
effects on both inflammation and immunomodulation. On 
the contrary, insulin secretagogue-mediated off-target effects 
driven by the inhibition of the adenosine triphosphate-sen-
sitive potassium channel in β cells were found to impair the 
immune response against invading pathogens in preclinical 
studies [29].

A large nested case–control study analyzing the impact of 
current treatment with non-insulin agents on the incidence 
of sepsis [29] demonstrated that metformin may confer a 
persistent benefit on the rate of hospitalization for sepsis. 
TZD administration was also inversely associated with the 
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occurrence of sepsis, unlike meglitinide. Treatment with sul-
fonylureas and DPP4 inhibitors is not associated with altered 
incidence of sepsis. In a recent meta-analysis, also Liang 
et al. [31] linked metformin treatment with reduced mortal-
ity in diabetic patients with sepsis. Nevertheless, although 
of interest, the reliability of this observation is limited by the 
relatively small sample size. A more recent, larger popula-
tion-based cohort study [36] reported that metformin treat-
ment is not significantly associated with the risk for sepsis 
nor with 30-day mortality for sepsis in diabetic patients. 
Although some small clinical trials in critically ill patients 
have suggested potential benefits in glycemic control using 
incretin infusion, these studies included mixed populations 
and had limited power [32].

Thus, an association between preadmission treatment 
with insulin or non-insulin glucose-lowering agents and the 
risk and outcome of sepsis remains controversial. The degree 
of glycemic control, rather than the anti-diabetic therapies, 
could explain the risk and mortality for sepsis. As a matter 
of fact, in a small observational study [37], HbA1c has been 
proved an independent prognostic factor for hospital mortal-
ity and time of hospitalization for diabetic septic patients, 
while no difference in the outcomes were found related to 
prior anti-diabetic treatments.

Further, clinical trials specifically investigating the poten-
tial benefits of anti-diabetic medications in septic cohorts 
are required.

Optimal blood glucose control during sepsis

Progression of sepsis is associated with changes in insu-
lin and cortisol circulating levels, resulting in significant 
glucose perturbations, organ damage and activation of 
the immune system [38]. Besides the well-known stress-
induced hyperglycemia, hypoglycemia may also reflects a 
pathological acute stress response. Indeed, hypoglycemia 
is commonly associated with sepsis and considered an epi-
phenomenon of severe organ dysfunction preceding death. 
Although the mechanisms and relationships between hypo-
glycemia and the severity of the disease in septic patients are 
still debated, the role of inflammatory cytokines has been 
proposed [39].

In critical settings, derangement of glycemic control is 
associated with more severe disease and poorer prognosis 
[39–41]. However, diabetes may modulate the relationship 
between dysglycemia and mortality in sepsis [40]. Indeed, 
the risk of mortality associated with hyperglycemia is lower 
in diabetic than non-diabetic patients [42] and is not influ-
enced by hypoglycemia [39] or glycemic variability [43].

Despite strong recommendations for early insulin admin-
istration, how to monitor and treat stress-induced hypergly-
cemia remains under debate [41, 44].

Several large-size trials have investigated the optimal 
acute blood glucose control in critically ill patients, includ-
ing septic ones [22, 45–47]. However, only a few small 
studies were restricted to septic patients [48, 49], and none 
specifically targeted diabetic patients. Table 1 reports the 
main clinical trials evaluating the impact of different targets 
of acute glycemic control in critically ill and septic patients. 
Van den Berghe et al. [45] first evaluated patients admitted 
to surgical Intensive Care Units (ICU) who were randomly 
assigned to receive intensive insulin therapy (blood glu-
cose target 80–110 mg/dl) or conventional therapy (target 
180–200 mg/dl). Although the number of septic patients was 
not reported at baseline, intensive insulin therapy reduced 
episodes of nosocomial septicaemia of about 46% and the 
proportion of patients requiring prolonged antibiotic therapy. 
Specifically, a tight glucose control (TGC, i.e., blood glu-
cose levels < 110 mg/dl) was associated with lower morbid-
ity and mortality rates (with a 43% relative risk reduction 
of ICU mortality). However, this result relies of the benefit 
obtained in the subgroup of those patients staying in ICU for 
more than 5 days and in cardiac surgical patients (account-
ing for the majority of the study population) who previously 
received intravenous glucose load for nutritional purpose. In 
a subsequent study in medical ICU patients, the same group 
[46] failed to confirm a benefit on mortality in the overall 
population, since demonstrated that TGC prevents morbidity 
in all patients, but reduces mortality only in those staying in 
the ICU for at least 3 days. Moreover, concerns raised on the 
high rates of hypoglycemic events (more than sixfold higher 
than the previous study) in this subgroup of patients. A post-
hoc analysis [50] of pooled data from the two Leuven studies 
[45, 46] further confirmed that TGC carried a significantly 
higher risk of hypoglycemia (which occurred in 11.3% of 
patients on TGC vs. 1.8% of those on conventional insulin 
therapy, p < 0.0001). However, even if hypoglycemia was not 
associated with early deaths and/or neurological sequelae, a 
higher risk of death was reported. Such pooled data finally 
revealed that TGC significantly reduced morbidity and mor-
tality in mixed medical/surgical ICU (particularly in patients 
staying in ICU at least 3 days). In addition it was reported 
that all patient subgroups, including those admitted for sep-
sis, benefit from TGC. Only for diabetic patients, no survival 
benefit was reported. A rapid normalization of blood glucose 
levels rather than hypoglycemic events has been proposed to 
explain the lack of TGC benefit in diabetic patients.

However, further studies failed to confirm these benefits 
from TGC [22, 46–48], although differences in study design, 
selection of patients, nutritional support, targeted glucose 
range and blood glucose measurements make the compar-
ison challenging [41]. As a matter of fact, a further trial 
specifically involving patients with severe sepsis [48] not 
only failed to demonstrate a benefit on mortality from TGC, 
in both diabetic and non-diabetic patients, but was early 
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stopped for safety reasons (e.g., a significantly increased 
rate of severe hypoglycemic events). Two further large-scale 
trials including mixed populations of medical and surgical 
patients, the Glucontrol study [47] and the Normoglyce-
mia in Intensive Care Evaluation—Survival Using Glucose 
Algorithm Regulation (NICE-SUGAR) Trial [22], reported 
higher rates of hypoglycemia in the TGC group. The former, 
prematurely stopped for the high rate of unintended protocol 
violations, did not find differences in mortality from TGC, 
while the second one revealed that a less stringent glyce-
mic control translates into lower mortality rate, regardless 
of diabetes. Finally, a recent meta-analysis by Yamada et al. 
[51] confirmed the absence of clinical benefits of a strin-
gent glycemic control in term of mortality, while report-
ing an increased rate of hypoglycemia in both diabetic and 
non-diabetic patients on TGC compared to patients on mild 
(140–180 mg/dl) and very mild control (180–220 mg).

The U-shaped curve describing the relationship between 
glycemic control and mortality (patients with low and high 
glucose levels have worse outcomes than those in the nor-
mal/moderate range) suggests that moderately elevated gly-
cemic level may represent the ideal target in diabetic patients 
[9, 15, 52]. However, whether this effect was actually due 
to such glucose levels or to confounding variables driving 
hypoglycemia and poor outcome is still a matter of debate 
[52]. Additionally, the relationship between longer time in 
blood glucose range 70 to 140 mg/dl and lower mortality 
rate, clearly described in non-diabetic patients, is missing 
in diabetics [53].

Current guidelines recommend to treat hyperglycemia 
in critical patients to a target of 140–180 mg/dL, regard-
less of the presence of previously known diabetes [54, 55]. 
The need for specific targets of glycemic control in diabetic 
patients has been postulated [44, 56, 57], and some stud-
ies have suggested that less stringent glycemic control (e.g., 
targeting blood glucose levels at 180–250 mg/dL) may be 
beneficial in critical patients with premorbid chronic hyper-
glycemia (e.g., HbA1c level > 7% or > 53 mmol/mmol). 
However, concerns (including increased risk of infection, 
glycosuria and polyneuropathy) have raised against such 
permissive glucose levels in critically ill diabetic patients 
[58]. Based on these observations, Egi et al. [58] proposed 
to adopt a uniform blood glucose target for patients with 
and without diabetes (≤ 180 mg/dL), at least until the ran-
domized control LUCID trial (Liberal GlUcose Control in 
Critically Ill Patients with Preexisting Type 2 Diabetes trial) 
[59] will inform on the risks and benefits of more liberal 
glucose control strategies.

Finally, a role was suggested for closed-loop glucose con-
trol systems and immunomodulatory treatment options, to 
avoid hypoglycemia during insulin therapy and to control the 
rise in circulating cytokine levels in diabetic patients with 
severe sepsis and septic shock [60].

Acute organ dysfunction during sepsis

The occurrence of organ dysfunction in diabetic patients 
with sepsis was first evaluated in a cohort of 12.5 mil-
lion people admitted to hospital for sepsis between 1979 
and 2003, among whom over 2 million had diabetes [21]. 
The study revealed that diabetic patients were less likely to 
develop acute respiratory failure (9% versus 14%, p < 0.05), 
regardless of the source of infection, but more likely to 
develop acute renal failure (13% versus 7%, p < 0.05) than 
non-diabetic ones. No differences were found in dysfunc-
tion of other organs (cardiovascular failure occurred in the 
4% of the overall population, while hepatic, hematological, 
metabolic and central nervous system dysfunction globally 
occurred in the 6%).

In both sepsis and chronic hyperglycemia, injury of the 
glycocalyx, due to generation of reactive oxygen species 
and inflammatory mediators, impacts the microcirculation 
and leads to organ damage [61]. The coexistence of diabetes 
and severe sepsis additionally compromises red blood cell 
deformability, worsens the microcirculation and hastens the 
progression of organ dysfunction [62].

A recent retrospective observational study [61] supports 
the link between premorbid chronic hyperglycemia and pro-
gression to organ dysfunction in septic patients. The authors 
demonstrated that, in septic patients admitted to the ICU, 
HbA1c values ≥ 6.5% (≥ 47.5 mmol/mmol) were indepen-
dently associated with the progression of liver and kidney 
failure within 72 h, and with ICU mortality. Only, a positive 
trend for the progression of lung and cardiac dysfunction and 
clotting disorders was reported.

Unlike lower risk of acute respiratory dysfunction [14], 
higher risk of acute kidney injury in diabetic patients was 
confirmed in a large nationwide retrospective study [63] and 
in a recent meta-analysis [14].

Acute respiratory failure

Acute Lung Injury (ALI) and Acute Respiratory Distress 
Syndrome (ARDS) are common life-threatening condi-
tions in critically ill patients. A protective role of diabetes 
against the development of ALI/ARDS has been extensively 
documented in different cohorts of critically ill and septic 
patients [28, 63–67]. However, such protection has recently 
been questioned, since a meta-analysis by Wang et al. [14] 
demonstrated a similar incidence of respiratory dysfunction 
in diabetic and non-diabetic septic patients.

Moreover, the potential mechanisms for such presump-
tive protective effect are still unclear [21, 28, 63, 66, 67]. 
Among the proposed mechanisms the impaired neutrophil 
function and altered neutrophil–endothelial interaction [68], 
the immunomodulatory effects mediated by hyperglycemia 



1146	 Acta Diabetologica (2021) 58:1139–1151

1 3

and resulting in a impaired response against endotoxin-
mediated injury [28, 68], as well as the presence of obesity 
and dyslipidemia-related metabolic effects [28] are included. 
Finally, some potential protective effects may result from 
extensive and earlier medical care and the anti-inflammatory 
properties of anti-diabetic medications, including insulin, 
TZD and metformin [21]. Similarly, whether and how dia-
betes may conversely contribute to increased incidence of 
other organ dysfunction in sepsis, such as renal failure, is 
still unclear [66].

Acute kidney injury (AKI)

AKI develops in one-fourth of all septic patients and half 
of those with bacteremia or shock [69]. In diabetic patients, 
observational studies reported an incidence of AKI ranging 
from 27% [63] to 73% [70].

Although diabetes is an established risk factor for both 
AKI [21, 33] and sepsis [9, 12–16], and reported as an inde-
pendent risk factor for persistent renal dysfunction in ICU 
septic patients developing AKI [70], the impact of diabetes 
in increasing the risk of AKI is still debated.

As a matter of fact, in a prospective single-center ICU 
study [71], elevated serum creatinine on the first day was 
associated with the occurrence of AKI in patients with 
severe sepsis, though not in diabetic patients. In a further 
large cross-sectional multicenter study involving patients 
with severe sepsis or septic shock, diabetes resulted not 
associated with the occurrence of AKI or the need for renal 
replacement therapy [70]. Despite these findings and the 
wide heterogeneity of data related to the incidence of AKI 
in diabetic septic patients, the above-mentioned meta-anal-
ysis [14] confirmed that the incidence of AKI is definitely 
increased (over 50%) in diabetic compared to non-diabetic 
septic patients.

Mortality from sepsis

Increased susceptibility to infection and sepsis in diabetes 
is extensively documented [9, 12–17], but equivocal results 
from epidemiological studies pose doubts on the associa-
tion between diabetes and increased risk of infection-related 
morbidity and mortality [9–11]. Different study populations 
(including lack of stratification into Type 1 and Type 2 Dia-
betes, different adjustments for comorbidities, sepsis etiol-
ogy and disease severity), drug administration regimens to 
control blood glucose and methods to measure outcomes 
have been proposed to explain this heterogeneity [10, 11].

Table 2 reports recent clinical studies investigating the 
association between diabetes and mortality for sepsis. 
Among them, a large-size observational study [72] dem-
onstrated that diabetic patients experienced an increased 

mortality from infectious diseases (persisting even after 
adjustment for comorbidities) and a twofold increased risk 
of mortality for sepsis compared to the general population. 
Additionally, two large-size retrospective cohort studies [12, 
19] found higher mortality rate related to infections in dia-
betic compared to non-diabetic patients, whereas others [33, 
34, 63, 66, 70, 73, 74] failed to demonstrate such associa-
tion, and Esper et al. [21] even reported improved survival 
in diabetic patients.

Few observational studies have investigated the link 
between premorbid glycemic state and sepsis outcome, 
showing that HbA1c levels at admission are in direct corre-
lation with hospital mortality in diabetic patients with sepsis 
[37, 61].

The results by Tayek et al. [75], firstly reporting a global 
benefit on mortality from diabetic status, were confirmed in 
the meta-analysis by Wang et al. [14], which demonstrated 
that diabetes is not associated with adverse outcomes in 
patients with sepsis, while beneficial. As a matter of fact, 
some studies notably demonstrated an association between 
hyperglycemia and increased mortality in non-diabetic 
patients, unlike in diabetic patients, suggesting that acute 
hyperglycemia may drive different pathophysiologic effects 
in diabetic and non-diabetic patients. Nevertheless, whether 
the link between hyperglycemia and mortality in non-diabet-
ics relies on hyperglycemia-induced toxic effects or is the 
hallmark of disease severity still remains to be clarified [9]. 
Although the mechanisms for such protective effect driven 
by diabetes remain uncertain, previous exposure to high 
glucose has been proposed to enhance immune adaptation 
and to induce benefits [9, 14, 75]. The role of inflammation 
has been also investigated in this context. In particular, Ste-
genga et al. [73] reported comparable cytokine levels and 
procoagulant responses in critical septic patients with and 
without preexisting diabetes, while a different study unveiled 
the presence of elevated levels of markers of endothelial cell 
activation in patients with diabetes and septic shock, com-
pared to patients without diabetes [76]. Beneficial effects 
of insulin administration, prevention of acute lung injury, 
adaptation to previous oxidant stress and nutritional intake 
in obese patients with diabetes were also proposed as protec-
tive against sepsis [9].

Conclusions

Sepsis represents a rising cause of mortality worldwide and 
diabetes is a common and increasing comorbidity in septic 
patients. Although the higher risk of infection in diabetic 
patients is well documented, the impact of diabetes on the 
outcome of sepsis and the mechanisms underlying their 
interactions are still debated.
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Critical issues that need clarifying include the impact of 
diabetes and sepsis on the immune system, the role of glyce-
mic control and the potential protective role of anti-diabetic 
treatments, on the occurrence of sepsis and its outcome, 
including the risk of renal failure and acute respiratory dys-
function. Also, recommendations for glycemic targets during 
sepsis do not stand on firm grounds.

Further large-size prospective studies, randomized con-
trolled trials whenever possible, specifically including dia-
betic patients with sepsis instead of generically critically ill 
or patients with specific infective focus, could clear some of 
these unsolved questions, including the risk/benefit balance 
of more liberal acute glycemic control.

Finally, interesting and challenging therapeutic options, 
including immunomodulatory approaches targeting the path-
ways activated in T2D and sepsis, are under investigation 
and may result in clinical benefits.
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