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Abstract
Aim To identify the potential metabolite markers in diabetic retinopathy (DR) by using gas chromatography coupled with 
time-of-flight mass spectrometry (GC-TOFMS).
Methods GC-TOFMS spectra were acquired from vitreous and aqueous humor (AH) samples of patients with DR and non-
diabetic participants. Comparative analysis was used to elucidate the distinct metabolites of DR. Metabolic pathway was 
employed to explicate the metabolic reprogramming pathways involved in DR. Logistic regression and receiver-operating 
characteristic analyses were carried out to select and validate the biomarker metabolites and establish a therapeutic model.
Results Comparative analysis showed a clear separation between disease and control groups. Eight differentiating metabolites 
from AH and 15 differentiating metabolites from vitreous were highlighted. Out of these 23 metabolites, 11 novel metabolites 
have not been detected previously. Pathway analysis identified nine pathways (three in AH and six in vitreous) as the major 
disturbed pathways associated with DR. The abnormal of gluconeogenesis, ascorbate–aldarate metabolism, valine–leucine–
isoleucine biosynthesis, and arginine–proline metabolism might weigh the most in the development of DR. The AUC of the 
logistic regression model established by d-2,3-Dihydroxypropanoic acid, isocitric acid, fructose 6-phosphate, and l-Lactic 
acid in AH was 0.965. The AUC established by pyroglutamic acid and pyruvic acid in vitreous was 0.951.
Conclusions These findings have expanded our understanding of identified metabolites and revealed for the first time some 
novel metabolites in DR. These results may provide useful information to explore the mechanism and may eventually allow 
the development of metabolic biomarkers for prognosis and novel therapeutic strategies for the management of DR.
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Introduction

Epidemiological survey showed that the estimated standard-
ized prevalence of total diagnosed diabetes in China reached 
to 10.9% in 2013 [1]. The prevalence of diabetic retinopa-
thy (DR) in Chinese type 2 diabetes mellitus increased to 
25% according to a meta-analysis published in 2019 [2]. 
DR is considered to be the major cause of blindness among 
middle-aged adults and has caused increased health and eco-
nomic burden [3]. Rigid control of hyperglycemia is thought 
to effectively prevent the development/progression of DR [4, 
5]; however, the incidence of DR is increasing despite imple-
mentation of proper glycemic control [6, 7]. Early exposure 
to hyperglycemia predisposes diabetics to the development 
of DR. One possible reason for this is that transient expo-
sure to hyperglycemia can induce the development of per-
sistent epigenetic changes [8, 9], referred to as modifications 
of chromatin structure and gene expression to metabolic 
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characteristics (metabolic memory theory) [10], which 
eventually results in the development of DR [11]. Thus, we 
require a better understanding of this pathway to enable bet-
ter management of DR. For this pathway, the metabolites are 
the downstream products of gene transcription and transla-
tion. Given this, the use of metabolomics is considered to 
provide a more sensitive and dynamic approach for eluci-
dating the pathophysiological mechanisms and identifying 
disease biomarkers that can eventually be applied for the 
development of clinical interventions [12–14].

In metabolomics, mass spectrometry (MS) is the most 
frequently employed technology. Of the gas chromatogra-
phy (GC) separation techniques, gas chromatography time-
of-flight mass spectrometry (GC-TOFMS) yields higher 
sensitivity, selectivity, separation capacity, and accuracy of 
metabolite detection and is well suited for the identifica-
tion and quantitation of small molecular weight metabolites 
[15–17]. Therefore, in our study, a GC-TOFMS technology-
based nontargeted metabolomics approach combined with 
multivariate statistical analysis was validated to profile 
patients diagnosed with DR, and non-diabetic patients to 
explore mechanisms underlying DR, to discover potential 
metabolite biomarkers for DR, and to develop pharmaco-
logic approaches to combat pathological change in DR.

Serum metabolomics has been mainly used to explore 
metabolic signatures associated with diabetes [18–20]. We 
postulate that a distinct metabolic signature for DR exists, 
and this signature can be resolved from that of diabetes 
alone. Vitreous samples have been examined for DR, but 
there are only a few studies until now and the repeatabil-
ity is low. Currently, there is also limited knowledge about 
aqueous humor (AH) metabolomics in the context of DR. 
AH serves as the main fluid that fills the anterior chamber 
and supplies nutrients. The breakdown of AH homeostasis 
might play a major role in the formation of iris neovascu-
larization (INV) in DR. Metabolic analysis of AH may sup-
ply some valuable information. Therefore, we designed the 
metabolic profile analysis of human vitreous and AH taken 
from diabetes-free patients and diabetic patients with DR.

Methods

Research design

The study was prospectively approved by the Ethics Com-
mittee of Shanghai First People’s Hospital of Shanghai Jiao-
tong University, and research was conducted in accordance 
with the Declaration of Helsinki. Signed informed consent 
was obtained from all participants before the procedures. We 
conducted this prospective, observational, and registration 
study from February 2017 to February 2018 at Shanghai 
First People’s Hospital Ophthalmologic Center.

Diabetes was defined as self-report of a previous diag-
nosis, a fasting blood glucose of 7.0 mmol/L or higher, or 
HbA1c level of 6.5% (48 mmol/mol) or higher on two sep-
arate tests. Chronic kidney disease (CKD) was defined as 
self-report of the previous diagnosis. All participants were 
screened based on unified diagnostic standard guidelines 
or the consensus of Chinese Ocular Fundus Disease Soci-
ety. The inclusion criteria for disease group were patients 
with confirmed diagnosis of type 2 diabetes and prolifera-
tive diabetic retinopathy (PDR). The inclusion criteria for 
control group included participants without type 2 diabetes. 
Participants were excluded if they had a history of intravit-
real injection of any anti-VEGF drugs (vascular endothelial 
growth factor, VEGF), the previous ocular surgeries or other 
ocular diseases. Participants who had diffuse vitreous hem-
orrhage were also excluded. All participants’ data including 
sex, age, body mass index (BMI), vital signs, medical his-
tory, concomitant medications, and biochemical variables 
such as low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), and triacylglycerol 
(TAG) were recorded and filed in the electronic case report 
form.

Vitreous samples were collected from 28 patients with 
type 2 diabetes with PDR and 22 non-diabetic patients with 
macular hole (MH). For the AH samples, the disease sub-
jects were 23 participants with type 2 diabetes with PDR. 
Control subjects were 25 non-diabetic patients with cataract.

Sample preparation and mass spectrometry analysis

For the vitreous sample collection, participants underwent 
standard pars plana vitrectomy with a 25-gauge 3-port sys-
tem. We mainly cut the vitreous where there was no diffuse 
hemorrhage. We also set the cut rates to 2500 cuts per min 
(cpm) and the aspiration flow to maximum 350 mmHg in 
order to avoid the aspiration of hemorrhage. For the aqueous 
humor sample collection, participants underwent paracen-
tesis of anterior chamber. Sample aliquots of 0.15 mL were 
transferred into cryovial tubes and immediately stored at 
− 80 °C. An Agilent 6890N gas chromatography coupled 
with a Pegasus HT TOF MS (LECO Corp., St. Joseph, MI, 
USA) was used as the GC-TOFMS platform. The sam-
ple preparation procedures and instrumental analysis are 
referred in the previously published methods [21] with 
minor modifications and are summarized in the Supplemen-
tary Materials.

Statistical and data analysis

The raw data generated by GC-TOFMS were processed 
using XploreMET for automated baseline denoising and 
smoothing, peak picking and deconvolution, creating ref-
erence database from the pooled QC samples, metabolite 
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signal alignment, missing value correction and imputation, 
and QC correction. Metabolites in the study samples were 
annotated with self-built mammalian metabolite database 
JiaLib™ using both retention times and fragmentation pat-
terns in the mass spectrum.

Results are expressed as the mean ± SD for continuous 
variables. Principal component analysis (PCA) and orthog-
onal projection to latent structure-discriminant analysis 
(OPLS-DA) were performed in our study using SIMCA-
P version 14.0 (Umetrics AB, Umea, Sweden). In addition 
to the multivariate statistical method, the Mann–Whitney 
U test and fold change were also applied to measure the 
significance of each metabolite. The resultant p values for 
each metabolite in all cross-comparisons were corrected by 
Bonferroni correction. The p values across all metabolites 
within each comparison were adjusted to account for multi-
ple testing by a false discovery rate method. Pathway analy-
sis and spearman rank correlation analysis were conducted 
using MetaboAnalyst 4.0 (http://www.metab oanal yst.ca/) 
[22]. Eight differential metabolites in AH and 15 differential 
metabolites in vitreous were evaluated for pathway analysis 
using the “Homo sapiens (KEGG)” library with the default 
parameters (“Hypergeometric test” and “Relative-between-
ness Centrality”) specified as the algorithms for pathway 
enrichment and topological analysis, respectively. Spearman 
rank correlation analysis was implemented among those sig-
nificantly changed metabolites and clinical data of diabetes 
retinopathy patients. A forward stepwise logistic regression 
analysis and receiver-operating characteristic (ROC) analy-
sis were performed using SPSS software version 18.0 (IBM 

Corp., Armonk, New York) for diagnosis of different diabe-
tes retinopathy from controls.

Results

Sample characteristics

The clinical characteristics of participants selected for dis-
covery metabolomic profiling are shown in Tables 1 and 2. 
Patient characteristics were well matched between control 
and DR groups.

Global metabolomics profiles between control 
and DR groups

The metabolic profiles were evaluated between control 
and DR groups using unsupervised statistics. As shown in 
Fig. 1, the PCA score plot with the first two and three prin-
cipal components showed a suggestion separation between 
the control and DR groups, means that DR caused gradual 
alterations in metabolism.

Significant disturbed metabolites between control 
and DR groups

Metabolite profiling demonstrated a suggestion difference 
between control and DR groups. To further investigate 
the potential biomarkers that account for DR, supervised 
OPLS-DA was performed. In the OPLS-DA model, clear 

Table 1  Clinical characteristics 
of vitreous samples selected for 
discovery metabolomic profiling

Data are mean (range), unless stated otherwise. Independent samples t test
BMI body mass index, HbA1c% glycated hemoglobin, FBG fasting blood glucose, TC total cholesterol, 
LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, TAG  triacylglyc-
erol, and SCr serum creatinine

Clinical characteristics DR cases Control subjects P value

N 28 22 –
Gender (M/F) 12/16 8/14 0.650
Age (years) 49.61 (26–65) 53.95 (32–71) 0.193
Hypertension (y/n) 13/14 8/14 0.345
Diabetes (y/n) 28/0 0/22 < 0.001
On diabetes medication (y/n) 28/0 0/22 < 0.001
Chronic kidney disease (y/n) 1/27 0/22 0.381
BMI (kg/m2) 23.42 (19.27–33.05) 23.70 (17.3–27.78) 0.734
HbA1c (%) 6.157 (4.9–7.8) 5.145 (4.5–6.4) < 0.001
FBG (mmol/L) 7.52 (4.53–14.3) 6.12 (4.25–8.42) 0.015
TC (mmol/L) 4.58 (2.9–6.89) 4.26 (2.4–6.53) 0.266
LDL-C (mmol/L) 2.89 (1.41–5.06) 2.72 (1.23–4.76) 0.495
HDL-C (mmol/L) 1.17 (0.55–1.84) 1.19 (0.65–1.8) 0.856
TAG (mmol/L) 2.18 (0.4–8.49) 1.76 (0.88–3.12) 0.363
SCr (µmol/L) 73.28 (54.79–101.85) 74.82 (59.83–91.72) 0.619

http://www.metaboanalyst.ca/


44 Acta Diabetologica (2020) 57:41–51

1 3

differences were obtained for the following: aqueous humor 
DR (ADR) versus control group, cumulative R2Y at 0.677 
and Q2Y at 0.482 (Fig. 2a); vitreous DR (VDR) versus 
control group, cumulative R2Y at 0.713 and Q2Y at 0.529 
(Fig. 2b). A cluster of 200 permutated models was visualized 
using validation plots. The validation plots (Fig. 2c, d) from 
permutation test strongly supported the validity of the estab-
lished OPLS-DA model as all permuted R2 and Q2 values 
on the left were lower than the original point on the right, 
and that the Q2 regression line in blue had a negative inter-
cept [23]. Figure 2e, f shows the S-plot of OPLS-DA. The 
potential biomarkers from S-plot in our study were selected 
according to the parameter of VIP. In the S-plot, 25 and 29 
features (red highlighted) were found to have VIP values 
higher than 1 in AH and vitreous, respectively. Then, the 
variables were further confirmed by Mann–Whitney U test, 
and metabolites listed in Table 3 were selected as potential 
biomarkers (p < 0.05).

Metabolic pathway analysis associated with DR

As metabolites and enzymes involved in the same biologi-
cal processes are often dysregulated together [24], higher-
order quantitative representations of metabolomics features, 
such as pathway-based metabolomics features, are coherent 
surrogates of metabolomics biomarkers that provide more 
information on biological functions. In order to identify bio-
logically meaningful patterns that are significantly enriched 
in metabolomic data [25], pathway analysis was performed 
using Metaboanalyst software. The relevant pathways on the 

basis of the eight differential metabolites in AH are shown 
in Fig. 3a, and those related to the 15 differential metabo-
lites in vitreous are shown in Fig. 3b. Glycolysis or gluco-
neogenesis, galactose metabolism, and ascorbate–aldarate 
metabolism were three significantly perturbed pathways in 
ADR (p < 0.01). Similarly, valine–leucine–isoleucine bio-
synthesis, taurine–hypotaurine metabolism, arginine–proline 
metabolism, alanine–aspartate–glutamate, aminoacyl-tRNA 
biosynthesis, and nitrogen metabolism are highlighted as the 
notably disturbed pathways in VDR group (p < 0.01), which 
are indicated with the high pathway importance.

Potential biomarkers analysis 
for discrimination

We assessed the impact of multiple metabolites and selected 
the best combination of potential biomarkers for discrimi-
nation, using a forward stepwise regression selection pro-
cedure. The ROC presentation on the basis of the logistic 
regression of each biomarker panel is shown in Fig. 4. ROC 
curve shows improving effects of adding demographic char-
acteristics. The model containing panel metabolites cor-
rected for the effect of gender, age, and BMI showed the best 
characteristics and allows very good discrimination between 
control and DR groups. The AUC, sensitivity, and specificity 
of the logistic regression model established by d-2,3-Dihy-
droxypropanoic acid, isocitric acid, fructose 6-phosphate, 
and l-Lactic acid from ADR were 0.965, 88%, and 95.7% 
(Fig. 4a). The AUC, sensitivity, and specificity of the logistic 

Table 2  Clinical characteristics 
of aqueous humor samples 
selected for discovery 
metabolomic profiling

Data are mean (range), unless stated otherwise. Independent samples t test
BMI body mass index, HbA1c% glycated hemoglobin, FBG fasting blood glucose, TC total cholesterol, 
LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, TAG  triacylglyc-
erol, and SCr serum creatinine

Clinical characteristics DR cases Control subjects P value

N 23 25 –
Gender (M/F) 12/11 13/12 0.991
Age (years) 54.39 (35–79) 58.39 (48–79) 0.114
Hypertension (y/n) 12/11 9/16 0.269
Diabetes (y/n) 23/0 0/25 < 0.001
On diabetes medication (y/n) 23/0 0/25 < 0.001
Chronic kidney disease (y/n) 0/23 0/25 1
BMI (kg/m2) 24.30 (17.96–32.06) 23.41 (18.6–27.18) 0.288
HbA1c (%) 7.143 (5–9.6) 5.112 (4.4–6) < 0.001
FBG (mmol/L) 10.75 (5.46–29.04) 5.28 (3.89–7.02) < 0.001
TC (mmol/L) 4.58 (2.15–7.9) 4.18 (1.47–7.21) 0.385
LDL-C (mmol/L) 2.26 (0.94–4.45) 2.69 (1.2–4.35) 0.131
HDL-C (mmol/L) 1.15 (0.45–1.73) 1.07 (0.23–2.09) 0.494
TAG (mmol/L) 1.62 (0.34–7.6) 1.18 (0.45–2.09) 0.170
SCr (µmol/L) 72.81 (57.11–98.18) 76.06 (60.7–94.13) 0.290
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regression model established by pyroglutamic acid and pyru-
vic acid from VDR were 0.951, 95.5%, and 85.7% (Fig. 4b). 
Spearman rank correlation analysis was performed among 
different metabolites with individual phenotypes. d-2,3-Di-
hydroxypropanoic acid, isocitric acid, and l-Lactic acid in 
AH showed significantly negative correlation with FBG and 
HbA1c (Figure S1A). Meanwhile, the two potential vitreous 
biomarkers, pyruvic acid, and pyroglutamic acid exhibited 
strong positive correlation with HbAlc (Figure S1B).

Discussion

Metabolomics is a prospective approach to explore the 
pathogenesis of the disease. The metabolomic information of 
vitreous and AH can provide a direct indication of the physi-
ological status of the eyes [26]. In our study, we discovered 
eight metabolites in AH sample (d-2,3-Dihydroxypropanoic 

acid, isocitric acid, threonic acid, d-glucose, myoinositol, 
l-Lactic acid, fructose 6-phosphate, and citrulline) and 15 
metabolites in vitreous sample (pyruvic acid, uric acid, 
ornithine, l-lysine, l-leucine, pyroglutamic acid, l-alanine, 
l-threonine, hydroxylamine, l-valine, l-alloisoleucine, 
l-phenylalanine, creatinine, myoinositol, and l-glutamine). 
Our results supported the identification of eight vitreous 
metabolites as reported in the previous vitreous studies (uric 
acid [27], l-lysine [28], l-leucine [28], l-alloisoleucine [28], 
hydroxylamine [29], l-valine [30], l-phenylalanine [31], 
and creatinine [32]). Three AH metabolites from our study 
were found in the vitreous from other studies (d-glucose 
[33], myoinositol [34], and citrulline [35]). There were 11 
novel metabolites that have not been detected previously 
(d-2,3-Dihydroxypropanoic acid, isocitric acid, threonic 
acid, l-threonine, l-glutamine, l-Lactic acid, fructose 
6-phosphate, pyruvic acid, ornithine, pyroglutamic acid, and 
l-alanine). These metabolites detected in our research may 

Fig. 1  Global metabolomics profile analysis. a, b Principal compo-
nent analysis scatter plots showing the first two and three principal 
components with control and ADR groups; c, d principal component 

analysis scatter plots showing the first two and three principal com-
ponents with control and VDR groups. Aqueous humor DR, ADR; 
vitreous DR, VDR
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merit further investigation as key molecules in DR patho-
genesis. In order to fully understand biologically meaning-
ful patterns of these identified metabolites, we carried out 
entire metabolic pathways analysis to explore pathway-based 
metabolomics features.

In our research, the ascorbate–aldarate pathway and mark-
edly disturbed threonic acid were detected in ADR group. 
Ascorbic acid and threonic acid are central signaling hubs 

in ascorbate–aldarate pathway. Threonic acid is considered 
to be a major breakdown product of ascorbic acid. Ascorbic 
acid is a cofactor for several hydroxylases including proline 
hydroxylase and dopamine hydroxylase [36], which play 
important roles in neuropeptide synthesis. Hence, the lack 
of ascorbic acid may have an important effect on the early 
neurodegeneration observed in DR. Studies also indicate that 
ascorbic acid probably inhibits angiogenesis, a central event 

Fig. 2  Significant disturbed metabolites analysis. The orthogonal pro-
jection to latent structure discriminant analysis (OPLS-DA) between 
control and ADR groups (a, c, and e), between control and VDR 
groups (b, d, and f). OPLS-DA score plots a, b showed clustering, 

validation plot using a 200 times permutation test c, d showed the 
performance of OPLS-DA model, while an S-plot e, f identified the 
different metabolites. Aqueous humor DR, ADR; vitreous DR, VDR
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Table 3  Statistical analysis of 
significant disturbed metabolites

No. Name HMDBID VIP Mann–Whitney U 
test (P value)

Fold change

ADR vs. control
1 d-2,3-dihydroxypropanoic acid HMDB0031818 2.791 0.000 0.352
2 Isocitric acid HMDB0000193 4.006 0.000 0.254
3 Threonic acid HMDB0000943 1.931 0.002 0.515
4 d-glucose HMDB0000122 1.503 0.002 6.206
5 Myoinositol HMDB0000211 2.381 0.007 0.718
6 l-lactic acid HMDB0000190 7.404 0.011 0.574
7 Citrulline HMDB0000904 1.954 0.013 0.698
8 Fructose 6-phosphate HMDB0000124 2.575 0.018 0.750
VDR vs. control
1 Pyruvic acid HMDB00243 1.064 0.000 2.877
2 Ornithine HMDB00214 1.678 0.000 2.614
3 Uric acid HMDB00289 1.035 0.000 2.502
4 Pyroglutamic acid HMDB00267 3.454 0.000 2.251
5 Creatinine HMDB00562 1.313 0.004 2.056
6 l-leucine HMDB00687 2.139 0.000 1.989
7 l-alanine HMDB00161 1.338 0.001 1.953
8 l-threonine HMDB00167 1.326 0.001 1.847
9 l-lysine HMDB00182 1.489 0.000 1.696
10 l-valine HMDB00883 2.334 0.001 1.659
11 l-phenylalanine HMDB00159 1.212 0.003 1.619
12 l-alloisoleucine HMDB00557 1.127 0.004 1.556
13 l-glutamine HMDB00641 2.070 0.038 1.540
14 Myoinositol HMDB00211 2.873 0.042 0.568
15 Hydroxylamine HMDB03338 1.395 0.002 0.474

Fig. 3  Pathway analysis. a Pathway analysis of eight different metab-
olites associated with ADR, and the x-axis represents the pathway 
impact, and the y-axis represents the log(p); b pathway analysis of 15 

different metabolites associated with VDR, and the x-axis represents 
the pathway impact, and the y-axis represents the log(p). Aqueous 
humor DR, ADR; vitreous DR, VDR
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in DR, as suggested by experiments with corneal neovas-
cularization in rodent models [37]. Ascorbic acid metabo-
lism impairment was discovered in patients with diabetes 
who developed DR [38]. We conceived that regulation of 
ascorbic acid might provide a valuable approach to combat 
angiogenesis change in DR, especially for the patients who 
are inclined to develop INV.

d-glucose was notably disturbed, and glycolysis pathway 
was highlighted as an important pathway in ADR sample. 
Glucose flux is known to inhibit the glycolytic enzyme 
GAPDH and divert upstream metabolites from glycolysis 
into pathways of glucose overutilization, which can result 
in increased flux of dihydroxyacetone phosphate (DHAP) to 
de novo synthesis of diacylglycerol (DAG) and downstream 
protein kinase C (PKC) [39–41]. PKC is a family of ten 
enzymes, in which the β isoform appears to be closely asso-
ciated with the development of DR [42, 43]. Hyperglycemia-
induced activation of PKC β increases vascular permeability 
as well as expression of VEGF and neovascularization in 
animal models [44]. Two-phase three trials suggest that an 
orally administered PKC inhibitor has a magnitude of effect 
on reducing vision loss in patients with DR [45]. Although 
the sustained moderate visual loss in PKC inhibitor group 
was 2.3% and not considered statistically significant com-
pared to 4.4% of the placebo group (P = 0.069). PKC β 
pathway alone may not be sufficient to completely inhibit 
the development of DR. But based on our discoveries, we 
believe PKC is still a prospective intervention target. We 
hypothesize that blocking the PKC β-related metabolic path-
way or second-generation PKC inhibitor might offer a valu-
able opportunity for slowing the progression of DR.

In our vitreous sample, the arginine–proline metabo-
lism pathway was highlighted. Meanwhile, the associated 
ornithine significantly augmented. In retina, arginine is 
metabolized through two distinct pathways: the arginase 
pathway through which ornithine and urea are generated by 
enzyme arginase II (Arg-II), and the nitric oxide synthase 
(NOS) pathway, which produces citrulline and NO [46]. The 
increased ornithine in diabetic status indicated the overac-
tivity of the enzyme Arg-II, which is known as proinflam-
matory factor for macrophages-mediated chronic inflamma-
tion in type 2 diabetes mellitus. Meanwhile, overactivity of 
Arg-II can consequently cause a shortage of arginine for the 
NOS pathway, leading to a deficiency of NO. This can result 
in consequential endothelial cell dysfunction and impaired 
vasodilation, which are characteristics of DR. It can also 
lead to NOS uncoupling which generates increased level of 
oxygen and nitrogen reactive species that can accelerate DR 
[47]. Based on our discoveries, we conjectured that block-
ing Arg-II might serve as a potential therapeutic strategy to 
delay the progression of DR.

l-leucine and l-valine were found increased in VDR 
group. The linked branched-chain amino acids (BCAAs) 
(valine–leucine–isoleucine biosynthesis) pathway was also 
revealed. Elevated circulating BCAAs level and related 
metabolites have been significantly associated with insulin 
resistance [48–50] and diabetes-related disease [51, 52]. 
Higher BCAAs level has been considered to track with 
increased neurotoxic level of glutamate in retina, which 
might play a major role in the DR neurodegeneration [53]. 
Primarily, BCAAs exert its function by activation of mam-
malian target of rapamycin (mTOR) pathway, which regu-
lates cell growth, proliferation, and survival [54]. It has been 

Fig. 4  Potential biomarkers analysis for discrimination. a The diag-
nostic outcomes of potential biomarkers are shown via the ROC 
curves for comparison between ADR versus control; b the diagnostic 

outcomes of potential biomarkers are shown via the ROC curves for 
comparison between VDR versus control. Aqueous humor DR, ADR; 
vitreous DR, VDR
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reported that mTOR can activate IKK and NF-κB along with 
downstream inflammatory cytokines [55], chemokines, and 
adhesion molecules, the early components accelerating the 
progression of DR. mTOR is also known to play a pivotal 
role in upregulating VEGF pathway, which leads to aug-
mented Caspase-3 expression and causes consequent retinal 
damages in DR animal model [56, 57]. mTOR can also cause 
leakage and breakdown of the blood–retinal barrier. Experi-
mental findings suggest that inhibition of mTOR pathway 
could prohibit the proliferation and migration of endothelial 
cells which are requirements for neovascularization in DR 
[58]. Thus, it can be surmised that targeting BCAAs–mTOR 
pathway could have beneficial therapeutic effects on pre-
venting the neuropathy and vasculopathy observed in DR. A 
recent clinical trial showed empagliflozin, a sodium–glucose 
cotransporter-2 inhibitor, could particularly regulate BCAAs 
catabolism in patients with type 2 diabetes-related cardio-
vascular disease [51, 59]. We speculated that empagliflozin 
could potentially provide a novel therapeutic opportunity for 
the management of DR.

Besides pathway analysis, we also assessed the impact 
of multiple metabolites. The ROC results indicated that the 
combination of d-2,3-Dihydroxypropanoic acid, isocitric 
acid, and l-Lactic acid from ADR and pyroglutamic acid and 
pyruvic acid from VDR could serve as potential biomarkers 
for good discrimination between control and DR groups. 
The previous metabolomics study of diabetic kidney disease 
(DKD) revealed reduced level of isocitric acid which showed 
better diagnosis values for DKD [60]. Lactic acid was con-
sidered as new risk marker for diabetes mellitus like diabetic 
ketoacidosis and diabetic nephropathy [61, 62]. Changes in 
pyroglutamic acid and pyruvic acid in diabetes provided use-
ful information regarding diagnostic or prognostic biomark-
ers [63, 64]. These studies showed really positive support for 
our outcomes. Our spearman rank correlation analysis also 
indicated these five metabolites differentially expressed in 
DR patients and showed significant correlation with FBG or 
HbA1c. But obtaining AH or vitreous sample for the diagno-
sis of PDR is not practical. Instead, this discovery could be 
used as a prediction of PDR and allow us to perform active 
intervention for this kind of patients.

In conclusion, these discoveries expanded our under-
standing about identified metabolites and revealed for the 
first time some central metabolites that are disturbed in the 
progression of DR. These results may allow the development 
of metabolic biomarkers for prognosis and novel therapeu-
tic strategies to prevent or delay the development of DR. 
However, further investigation is necessary to confirm these 
metabolic reprogramming pathways. We recognize there are 
limitations to our study. The patient sample size is small. 
Subsequent studies will enroll more participants and also 
combine the serum sample assay to reinforce the result.
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