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Abstract

Aims The purpose of the current study was to investigate

the characteristic expression of circular RNAs (circRNAs)

in the peripheral blood of type 2 diabetes mellitus (T2DM)

patients and their potential as diagnostic biomarkers for

pre-diabetes and T2DM.

Methods CircRNAs in the peripheral blood from six

healthy individuals and six T2DM patients were collected

for microarray analysis, and an independent cohort study

consisting of 20 normal cases, 20 pre-diabetes patients and

20 T2DM patients was conducted to verify the five chosen

circRNAs. We then tested hsa_circ_0054633 in a third

cohort (control group, n = 60; pre-diabetes group, n = 63;

and T2DM group, n = 64) by quantitative real-time poly-

merase chain reaction (Q-PCR).

Results In total, 489 circRNAs were discovered to be dif-

ferentially expressed between the two groups, and of these,

78 were upregulated and 411 were downregulated in the

T2DM group. Five circRNAs were then selected as candi-

date biomarkers and further verified in a second cohort.

Hsa_circ_0054633 was found to have the largest area under

the curve (AUC). The diagnostic capacity of hsa_

circ_0054633 was tested in a third cohort. After introducing

the risk factors of T2DM, the hsa_circ_0054633 AUCs for

the diagnosis of pre-diabetes and T2DM slightly increased

from 0.751 (95% confidence interval [0.666–0.835],

P\ 0.001) to 0.841 ([0.773–0.910], P\ 0.001) and from

0.793 ([0.716–0.871], P\ 0.001) to 0.834 ([0.762–0.905],

P\ 0.001), respectively.

Conclusions Hsa_circ_0054633 presented a certain diag-

nostic capability for pre-diabetes and T2DM.

Keywords Circular RNAs (circRNAs) � Circulating
circRNA � Type 2 diabetes mellitus (T2DM) � Pre-
diabetes � Microarray analysis � Biomarker

Introduction

According to the International Diabetes Federation (IDF)

Diabetes Atlas (Seventh Edition, 2015), nearly 410 million

diabetic patients exist worldwide, 46.5% of whom have not

been diagnosed. By 2040, the number of patients with

diabetes may increase to 642 million [1]. In the advanced

stages of T2DM, patients often experience various com-

plications. Therefore, early diagnosis and intervention are

urgently needed. However, current diagnostic methods

show various insufficiencies for the early diagnosis of

T2DM. To improve this situation, researchers have asses-

sed the value of insulin resistance, b-cell function, insulin
sensitivity and fasting insulin for the diagnosis of T2DM

using the homeostasis model [2]. Some researchers have

attempted to identify new indicators of T2DM at early

stages, and others have explored the association between

genetic variants and early-onset T2DM [3, 4], a new and

highly sensitive biomarker that will be of great value.
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In recent years, with advancements in genomics, the

single-nucleotide polymorphism (SNP) sites of related

encoding sequences of some complicated diseases,

including T2DM, have been gradually uncovered [5, 6].

Researchers have found that the human genome can be

widely transcribed into a large number of non-coding

RNAs that are closely linked to the occurrence and

development of diseases [7]. CircRNAs are a type of closed

circular non-coding RNAs, formed by an exon, an intron,

or the reverse splicing of the two [8, 9]. Intracellular cir-

cRNAs have higher biological stability than most linear

RNAs because of their resistance to RNA exonucleases

[10, 11]. CircRNAs have multiple regulatory mechanisms

of gene expression [12]: Some circRNAs can be used as

microRNA (miRNA) sponges, playing a role in posttran-

scriptional regulation by engaging in competitive combi-

nation with miRNA [13]. CircRNAs can also regulate

transcription by interacting with small nuclear RNA

(snRNA) or RNA polymerase II in the nucleus [14] and can

competitively regulate RNA splicing by binding to tran-

scription factors [15]. Substantial amounts of circRNAs are

widely distributed in the cytoplasm and nucleus [16].

CircRNAs play important roles in various diseases,

including cancer, atherosclerosis, osteoarthritis, pulmonary

fibrosis, myotonic dystrophy and Alzheimer’s disease

[17–20]. The high biological stability of circRNAs is a pre-

condition for their usage as biomarkers for various diseases.

For example, Li et al. [21] found that hsa_circ_002059 could

be used as a new biomarker for gastric cancer, Zhang et al.

[22] determined that circ-ITCH could be used for the clinical

diagnosis of esophageal cancer, and Qin et al. [23] discov-

ered that hsa_circ_0005075 could be used as a potential

biomarker for hepatocellular carcinoma. Regarding dia-

betes, cerebellar degeneration-related autoantigen 1 (CDR1)

is a protein coding gene located in Xq27.1. As the natural

antisense transcripts of CDR1, circRNA-CDR1 has been

found to affect insulin secretion and b cell renewal [24]. In

this study, we compared the expression profile of circRNAs

in the peripheral blood of T2DM patients and matched

control subjects by microarray analysis and then confirmed

our findings in larger independent cohorts. The results

demonstrated that hsa_circ_0054633 is a sensitive and

specific biomarker for pre-diabetes and T2DM diagnosis.

Materials and methods

Study population

In this study, a total of 259 individualswere classified into three

cohorts (their clinical and demographic characteristics are

presented inSupplementaryTables 1–3).Theparticipantswere

enrolled from among the outpatients and inpatients of the

cardiology and endocrinology departments of the People’s

Hospital ofZhengzhouUniversity fromJuly2015 to June2016.

Subjects with any of the following characteristics were exclu-

ded: (i)malignancies, (ii) liver and kidney dysfunction, (iii) any

other clinically systemic acute or chronic inflammatory dis-

ease(s), (iv) autoimmune disease, (v) untreated hypertension,

and (vi) any endocrine disease other than T2DM.

Study process

The process of this study is shown in Fig. 1 Each study subject

was tested using the oral glucose tolerance test (OGTT) to

determine whether they were healthy or had pre-diabetes or

T2DM. Six control individuals and six T2DM patients were

selected to donate venous blood samples, and total RNA was

extracted formicroarray analysis. The screened circRNAswere

thenvalidated in an independent cohort (control group,n = 20;

pre-diabetes group, n = 20; and T2DM group, n = 20). After

receiver operating characteristic (ROC) curve analysis, the

circRNA with the best diagnostic value was selected as the

biomarker, and its diagnostic value was validated in another

independent cohort (control group,n = 60; pre-diabetes group,

n = 63; and T2DM group, n = 64).

The definitions of pre-diabetes and T2DM

and collection of whole blood samples

In this study, pre-diabetes and T2DM were diagnosed

according to the 1998 Standards of the World Health

Organization (WHO) [25]. Thus, patients meeting either of

the following criteria could be diagnosed as having T2DM:

(i) fasting plasma glucose (FPG) C 125 mg/dL (7.0 mmol/

L), where fasting is defined as no caloric intake for at least

8 h or (ii) two-hour post-load plasma glucose C200 mg/dL

(11.1 mmol/L) during an OGTT.

Additionally, patients meeting either of the following

standards were diagnosed as having pre-diabetes: (i) FPG

C110 mg/dL (6.1 mmol/L) and \125 mg/dL (7.0 mmol/

L); or (ii) two-hour post-load plasma glucose C140 mg/dL

(7.8 mmol/L) and \200 mg/dL (11.1 mmol/L) during an

OGTT.

Blood sample collection was performed as follows:

After overnight fasting, 2 mL of blood was collected from

the median cubital vein of each patient before breakfast

and then stored in ethylenediaminetetraacetic acid (EDTA)

anticoagulant vacutainers. The total RNA was then

extracted as soon as possible.

RNA extraction and Q-PCR

A fast total RNA extraction kit (Biotech, Beijing, China)

was used to extract total RNA from 1 mL of whole blood

according to the manufacturer’s instructions. RNA was
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then dissolved in RNase-free water. The yield and purity

were measured by a NanoDrop 2000 instrument (Thermo

Scientific, Waltham, MA, USA). The integrity of the RNA

was determined by 1% formaldehyde denaturing gel elec-

trophoresis. A PrimeScript RT Reagent Kit (Takara Bio,

Nojihigashi, Kusatsu, Japan) was used for the production of

complementary DNA (cDNA) by reverse transcription,

according to the manufacturer’s instructions. Q-PCR was

performed using SYBR-Green Premix Ex Taq (Takara Bio,

Nojihigashi, Kusatsu, Japan) and monitored by an ABI

PRISM 7500 Sequence Detection System (Applied

Biosystems, Life Technologies, Waltham, MA, USA). The

relative expression levels of circRNAs were determined via

Q-PCR. The sequences of the primers used in the Q-PCR

assay are shown in Supplementary Table 4.

CircRNA microarray analysis

The RNAs of the peripheral blood of six control subjects

and six T2DM patients were extracted for microarray

analysis. The purity and concentration of the RNA were

determined by a NanoDrop ND-1000 instrument (Thermo

Scientific, Waltham, MA, USA). The integrity of the RNA

was evaluated using a Bioanalyzer 2100 (Agilent Tech-

nologies, Santa Clara, CA, USA). The extracted RNAs

were digested, dephosphorylated, denatured, amplified and

labeled with Cy3-dCTP according to the manufacturer’s

specifications. The purified RNAs were hybridized to a

microarray (Agilent human circRNA Array V2.0) con-

taining 170,340 human circRNA probes. The microarray

data of the circRNAs were then analyzed using GeneSpring

software V13.0 (Agilent Technologies, Santa Clara, CA,

USA). The thresholds were as follows: fold change, C2 or

B-2; P\ 0.05 according to the t test.

Data analysis

Variables with different distributions were expressed as

means ± standard deviations, medians (quartiles) or per-

centages when they fit. In the scatterplot of circRNA

Fig. 1 Study flow
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expression, the horizontal lines represent the median val-

ues. The Chi-square test was used for categorical variables,

whereas the Kolmogorov–Smirnov and Shapiro–Wilk tests

were performed to check data normality for continuous

variables, followed by the test for homogeneity of vari-

ances. The clinical and demographic indicators were

checked for significant differences by one-way analysis of

variance (ANOVA), if the continuous variables were con-

sistent with the normal distribution and homogeneity of

variance; if not, the Kruskal–Wallis H test was used. The

clinical diagnostic value of a given circRNA was verified

by ROC curve analysis, and when the AUC was equal to

0.5, the circRNA was defined as having no diagnostic

value. Furthermore, logistic regression analysis was per-

formed to obtain an odds ratio (OR) when the relative

expression of circRNAs was expanded by ten times.

P\ 0.05 was considered statistically significant. All sta-

tistical analyses were conducted using SPSS 22.0 (SPSS

Inc., Chicago, IL, USA).

Results

Expression profiles of circRNAs in the peripheral

blood of diabetic patients

To investigate the expression profiles of circRNAs in

healthy individuals and T2DM patients, six healthy sub-

jects and six T2DM patients were selected. Microarray

analysis of the expression profiles of circRNAs in

peripheral blood was performed using the Agilent human

circRNA Array (V2.0). The results showed clear differ-

ences in the expression profiles of circRNAs between the

two groups (Fig. 2). Differential expression was detected in

a total of 489 circRNAs; of these, 78 were upregulated and

411 were downregulated in the T2DM group (Supple-

mentary Table 5). To obtain the biomarkers that would be

most applicable in clinical practice, the candidate

biomarkers were selected from the 78 upregulated cir-

cRNAs utilizing stricter screening criteria: fold change

[2.4 and P\ 0.01. Five circRNAs met these standards:

hsa_circ_0068087, hsa_circ_0054633, hsa_circ_0124636,

hsa_circ_0139110 and hsa_circ_0018508 (highlighted in

Supplementary Table 5). These circRNAs were used as

candidate biomarkers in a subsequent validation utilizing a

larger cohort.

The expression profile of circRNAs verified

by Q-PCR

To validate the five selected candidate circRNAs, Q-PCR

was conducted in an independent cohort (control group,

n = 20; pre-diabetes group, n = 20; and T2DM group,

n = 20). The results are shown in Fig. 3. The levels of

hsa_circ_0124636 and hsa_circ_0139110 expression

among the three groups presented no significant differ-

ences. The levels of hsa_circ_0018508 expression in the

pre-diabetes and T2DM groups did not differ, but both

were higher than that of the control group. The expression

levels of hsa_circ_0054633 and hsa_circ_0068087 were

Fig. 2 Heat map of the

circRNA microarray profiles in

control individuals and T2DM

patients. The expression of

circRNAs is hierarchically

clustered on the y-axis, and

blood samples are hierarchically

clustered on the x-axis. The

expression levels are presented

in red and green, which indicate

upregulated and downregulated

circRNAs, respectively.

Numbers marked with A and B

are from control individuals and

T2DM patients, respectively
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Fig. 3 Expression levels of the

selected circRNAs quantified by

Q-PCR. a, b and c show the

relative expression levels of

hsa_circ_0054633,

hsa_circ_0068087 and

hsa_circ_0018508. *P\ 0.05;

d, f present the ROC curve

analyses of hsa_circ_0054633

and hsa_circ_0068087 for the

diagnosis of pre-diabetes; e,
g are the ROC curve analyses of

hsa_circ_0054633 and

hsa_circ_0068087 for the

diagnosis of T2DM. The AUC

values are given on the graphs
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significantly different among the three groups and

increased gradually from the control group to the pre-dia-

betes group to the T2DM group.

ROC curve analysis of circRNAs with differential

expression

To determine the diagnostic values of hsa_circ_0054633 and

hsa_circ_0068087 for pre-diabetes and T2DM, ROC curve

analysis was performed (Fig. 3). The AUCs of hsa_circ_

0054633 for the diagnosis of pre-diabetes and T2DM were

0.747 ([0.589–0.906], P = 0.007) and 0.72 ([0.562–0.878],

P = 0.017), respectively. The AUCs of hsa_circ_0068087 for

the diagnosis of pre-diabetes and T2DM were 0.692

([0.529–0.856], P = 0.037) and 0.717 ([0.557–0.878],

P = 0.019); the sensitivity and specificity are shown in

Table 1. Because hsa_circ_0054633 showed higher AUC and

lower P values than hsa_circ_0068087, the former was chosen

as the diagnostic biomarker for pre-diabetes and T2DM.

Further clinical validation of the biomarker

To verify its clinical diagnostic capability, hsa_circ_0054633

was tested in another cohort (control group, n = 60; pre-dia-

betes group, n = 63; and T2DM group, n = 64). The results

are shown in Fig. 4. The level of hsa_circ_0054633 expression

increased gradually from the control group to the pre-diabetes

group to theT2DMgroup,with a fold changeof1.8between the

first twogroups and1.7 between the latter twogroups.Then, the

ROC curve analysis was performed.When used as a biomarker

for the diagnosis of pre-diabetes and T2DM, the AUC,

threshold, sensitivity and specificity of hsa_circ_0054633were

0.751 ([0.666–0.835], P\0.001), 0.103, 0.905 and 0.483,

respectively, and 0.793 ([0.716–0.871], P\0.001), 0.270,

0.719 and 0.778, respectively. The crude ORs were 3.05

([1.803–5.159], P\0.001) and 2.056 ([1.530–2.762],

P\0.001), respectively. After introducing the risk factors of

T2DM (smoking, hypertension, body mass index [BMI], total

cholesterol [TC], triglycerides [TG], high-density lipoprotein

[HDL] and low-density lipoprotein [LDL]), the AUCs

increased to 0.841 ([0.773–0.910], P\0.001) with a sensi-

tivity of 0.778 and a specificity of 0.783 and 0.834

([0.762–0.905], P\0.001) with a sensitivity of 0.766 and a

specificity of 0.794, respectively. The adjustedORswere 6.797

([3.025–15.273], P\0.001) and 2.769 ([1.881–4.077],

P\0.001), respectively.

Biomarker expression levels in different gender

and age groups

To investigate the levels of hsa_circ_0054633 expression

in different gender and age groups, the three groups of the

third cohort were divided according to age (cut-off:

50 years old) and gender. The results are shown in Table 2

and indicate that no differential expression of hsa_

circ_0054633 was identified between the different gender

and age groups.

Discussion

The high morbidity of T2DM and its various complications

severely threaten human health. In the advanced stages of

T2DM, patients often experience various complications,

which severely impact their quality of life. Multiple large-

scale investigations have revealed that intensive glucose-

lowing therapy in the early phases of T2DM can benefit

patients substantially, reducing the incidences of

macrovascular and microvascular complications [26, 27].

However, in the early stages of T2DM, most patients are

asymptomatic, and they rarely visit hospitals to seek

diagnosis and therapy.

Current diagnostic methods have various deficiencies

for the early diagnosis of T2DM: OGTT is the gold stan-

dard for diagnosing T2DM. However, because this proce-

dure is time-consuming and complicated, it is only

considered when there is a strong suspicion that a patient

has T2DM. FPG is convenient, but the rate of missed

diagnoses is high [28]. Finally, hemoglobin A1c (HbA1c)

test has not been standardized in Chinese hospitals.

Therefore, a convenient, highly specific and sensitive

diagnostic method is urgently needed to facilitate the early

diagnosis of T2DM.

Because of their convenience of sampling and low cost,

hematological markers play an important role in the diag-

nosis of many diseases. One of the most important func-

tions of circRNAs is their role as ‘‘miRNA sponges,’’

which competitively bind miRNAs to generate post-tran-

scriptional regulation. Long non-coding RNAs (lncRNAs)

can also interact with miRNAs to regulate gene translation,

suggesting a potential correlation among the three types of

non-coding RNAs [29]. Some lncRNAs and miRNAs have

been demonstrated to be involved in the occurrence and

development of T2DM; furthermore, they can be used as

biomarkers for T2DM diagnosis [30, 31]. CircRNAs are

much more stable than linear RNAs in cells, and in some

tissues, their expression levels are ten times higher [10];

thus, circRNAs make better biomarkers.

The current study revealed significant differences

between the expression levels of circRNAs in the periph-

eral blood of T2DM patients and that of healthy subjects.

To reduce the interference of factors other than T2DM to

the minimum, we strictly matched the demographic and

clinical characteristics (especially the hematological indi-

cators, such as the blood cell count and percentage of white

242 Acta Diabetol (2017) 54:237–245

123



blood cells) of the first cohort. But individual differences

among the patients were huge; the differential expression

of circRNA might be attributed to changes in the activation

states of different blood cell types. Therefore, we selected

the five circRNAs with the most significant differences as

candidate biomarkers. Hsa_circ_0054633 showed the

highest diagnostic value for pre-diabetes and T2DM among

the five candidate biomarkers and was further verified in

another cohort. It continued to have reliable diagnostic

value, suggesting that hsa_circ_0054633 has the potential

to be used as a diagnostic biomarker for pre-diabetes and

T2DM in clinical practice.

The field of circRNAs is quite new, and thus, to the best

of our knowledge, no definite evidence demonstrating the

Table 1 Validation of the

selected circRNAs by Q-PCR
CircRNA AUC 95% CI P value Sensitivity Specificity Fold change

hsa_circ_0054633

Pre-diabetes 0.747 0.589–0.906 0.007 0.75 0.70 1.7

T2DM 0.720 0.562–0.878 0.017 0.55 0.85 1.8

hsa_circ_0068087

Pre-diabetes 0.692 0.529–0.856 0.037 0.80 0.50 1.8

T2DM 0.717 0.557–0.878 0.019 0.90 0.50 1.6

Fig. 4 Expression levels of

hsa_circ_0054633. a The

expression levels of

hsa_circ_0054633 in the

control, pre-diabetes and T2DM

groups. *P\ 0.05. b, c present

the ROC curve analyses of

hsa_circ_0054633 and

hsa_circ_0054633 ? risk

factors for the diagnosis of

pre-diabetes and T2DM,

respectively
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functions of hsa_circ_0054633 is available. The results of

gene ontology (GO) analysis revealed that hsa_-

circ_0054633 not only participates in biological processes,

such as cell cycle and mitotic cell cycle arrest, but is

strongly correlated with molecular catabolism. The cell

cycle is the basic process of cellular life activities. The

proliferation of b cells is regulated by cell cycle progress,

and decreased b cell proliferation is the major cause of

insufficient insulin secretion [32], which is the basic

characteristic of T2DM. Besides, T2DM is a chronic

metabolic disease characterized by disordered carbohy-

drate, lipid and protein metabolism, and we hypothesize

that hsa_circ_0054633 may participate in the pathogenesis

of T2DM by influencing the cellular metabolism and cell

cycle.

To the best of our knowledge, this study is the first to

investigate the expression profiles of circRNAs in the

peripheral blood of patients with T2DM and to validate the

utility of hsa_circ_0054633 as a diagnostic biomarker for

pre-diabetes and T2DM. The biomarker identified in this

study (hsa_circ_0054633) can be easily tested using

peripheral blood. Furthermore, its relatively low cost and

high specificity and sensitivity make it a potentially highly

useful tool for the diagnosis of T2DM and pre-diabetes.

In the present study, only hsa_circ_0054633 was vali-

dated; thus, the expression profiles of other circRNAs in

T2DM and pre-diabetes patients remain to be explored.

Additionally, this was a single-center study, with a high

geographic concentration of subjects. Therefore, whether

populations in other regions exhibit similar circRNAs

expression profiles is unknown. Thus, the results of our

study require further verification in larger and more diverse

cohorts.
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