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Abstract Growth hormone/insulin-like growth factor

(IGF) axis may play a role in maintaining glucose

homeostasis in synergism with insulin. IGF-1 can directly

stimulate glucose transport into the muscle through either

IGF-1 or insulin/IGF-1 hybrid receptors. In severely

decompensated diabetes including diabetic ketoacidosis,

plasma levels of IGF-1 are low and insulin delivery into the

portal system is required to normalize IGF-1 synthesis and

bioavailability. Normalization of serum IGF-1 correlated

with the improvement of glucose homeostasis during

insulin therapy providing evidence for the use of IGF-1 as

biomarker of metabolic control in diabetes. Taking apart

the inherent mitogenic discussion, diabetes treatment using

insulins with high affinity for the IGF-1 receptor may act as

an endocrine pacer exerting a cardioprotective effect by

restoring the right level of IGF-1 in bloodstream and target

tissues, whereas insulins with low affinity for the IGF-1

receptor may lack this positive effect. An excessive and

indirect stimulation of IGF-1 receptor due to sustained and

chronic hyperinsulinemia over the therapeutic level

required to overtake acute/chronic insulin resistance may

act as endocrine disruptor as it may possibly increase the

cardiovascular risk in the short and medium term and

mitogenic/proliferative action in the long term. In conclu-

sion, normal IGF-1 may be hypothesized to be a good

marker of appropriate insulin treatment of the subject with

diabetes and may integrate and make more robust the

message coming from HbA1c in terms of prediction of

cardiovascular risk.

Keywords IGF-1 � Diabetes � Insulin � Cardiovascular
risk � Growth hormone

Introduction

Diabetes mellitus is a chronic illness that requires contin-

uing medical care and ongoing patient self-management

education and support to prevent acute complications and

to reduce the risk of long-term complications [1]. Although

therapeutic strategies of diabetes mellitus are manifold and

attention to the problem is growing in the scientific com-

munity, the incidence of the disease is alarmingly

increasing. In fact, approximately 360 million people had

diabetes in 2011, of whom more than 95 % with type 2

diabetes. This number is estimated to increase to 552

million by 2030, and it is thought that about half of those

will be unaware of their diagnosis [2, 3]. It is also estimated

that about 300 million of people may have alteration of

glucose metabolism such as impaired fasting glucose,

glucose intolerance, both often referred as ‘‘prediabetes,’’

gestational diabetes and euglycemic insulin resistance [4,

5]. A total of 281 million men and 317 million women

worldwide died with diabetes mellitus in 2011, most from

cardiovascular diseases related to diabetes. The healthcare

expenditure for diabetes in Europe was about 75 billion

euros in 2011 and is projected to increase to 90 billions by

2030 [3]. In the USA, the estimated national cost of dia-

betes in 2012 was 245 billion dollars, of which 176 billions

(72 %) representing direct healthcare expenditures
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attributed to diabetes [6]. Based on these epidemiological

data, a first challenge is to prevent diabetes in the general

population by implementing beneficial lifestyle interven-

tions [7]. In patients with diabetes, however, the challenge

for clinicians is to choose the best therapeutic approach

which should be at the same time effective and safe (e.g.,

the possible association recently hypothesized of insulin

exposure and cancer risk). As a matter of fact, type 2

diabetes is not just dysglycemia but a complex interplay of

pathophysiological mechanisms which operate involving

multiple organs. Management of this complexity is difficult

because such interplay differs in each patient and reliable

clinical and biochemical markers of individual diabetic

phenotypes are still largely lacking [8, 9]. Moreover, there

is also a need for new and precocious biomarkers able to

identify early patients at risk to develop chronic and irre-

versible complications of diabetes.

Over the recent years, several studies have investigated

the interplay existing between growth hormone (GH)/

insulin-like growth factor-1 (IGF-1) axis and diabetes

mellitus and its treatment. GH and IGF-I secretions are

influenced by metabolic signals [10] and derangements of

GH/IGF-1 axis may occur in patients with diabetes mellitus

potentially influencing the response to anti-diabetic treat-

ments and the outcome of disease [11, 12].

This review will deal with the physiology of insulin and

GH/IGF-1 actions, the pathophysiological and clinical

aspects correlated with the derangement of GH/IGF-1 axis

in patients with diabetes mellitus with focus on the inter-

play between insulin and IGF-1 in modulating glucose

metabolism and influencing cardiovascular and neoplastic

risk of patients with diabetes.

Insulin central and peripheral actions: physiology

and pathophysiology

Insulin is generally treated as a peripheral hormone con-

trolling glucose metabolism and glucose transport in the

liver and muscles. In reality, although glucose metabolism

in the brain is largely non-insulin dependent, insulin may

exert a relevant activity also in the central nervous sys-

tem, where insulin receptors (IRs) are located. In fact,

insulin crosses the blood–brain barrier with a carrier-

mediated process by a specific transport system coupled

to IRs in cerebral microvessels [13–17]. IR is a member

of protein kinase receptor family that is composed of two

a-subunits and two b-subunits which are linked by

disulfide bonds. Binding of insulin to a-subunits eventu-

ally leads to the activation of tyrosine kinase activity and

initiation of insulin actions [18]. Also the IGF-1 receptor

(IGF-1R) is a tetrameric glycoprotein that belongs to the

receptor tyrosine (Tyr) kinase superfamily. It is composed

of two a (120–135 kDa) and two b (95 kDa) subunits

[19–22]. Due to structural and functional homology,

insulin and IGF-1 can bind to (and activate) both IR and

IGF-1R [23].

Insulin can also be synthesized in specific areas of the

brain in small quantities [24, 25]. Studies suggest that

cerebral glucose metabolism may be controlled in part

directly or indirectly by neuronal insulin/IR signaling

pathways [26–30]. Insulin signaling in the brain limits

food intake. In fact, insulin secretion over the long term

may function as a negative feedback signal of recent

energy intake and body adiposity [31]. Under supra-

physiological glucose levels, brain insulin signaling

activation could result in hyperpolarization of glucose-

sensing neurons decreasing body weight [20, 32, 33].

Conversely, impairment of brain insulin signaling (as it

occurs in peripheral insulin resistance) might promote a

feedback inhibition of IR. This leads to increased body

weight by the activation of arcuate neurons containing

NPY, AgRP and GABA [20, 31, 32, 34]. Interestingly,

long-term central insulin signaling on body weight in

humans has been suggested to have sex-dependent results.

In fact, it may cause weight loss in men and inducing

increase in water storage and weight gain in women [35].

Insulin was also hypothesized to play a role in protecting

the neurons from oxidative stress and apoptotic death [36,

37]. In type 2 diabetes, insulin resistance is accompanied

by down-regulation of insulin transport into the brain.

Consequently, decreased cerebral blood flow, impairment

of oxidative glucose metabolism and possibly progressive

impairment in learning, memory and cognition may occur

[32, 38–42]. The effects exerted by insulin at the

peripheral level are better known with respect to the

central ones. Insulin binding to the IR regulates

the uptake of glucose from the circulation by inducing the

translocation of glucose transporters from the cytoplasm

toward the plasma membrane [39, 40, 43]. Insulin pro-

motes glucose uptake in fat and muscle tissue, stimulates

glycogen synthesis in liver and muscle and hepatic and

adipocyte lipogenesis, and inhibits hepatic glucose pro-

duction and adipocyte lipolysis. Finally, insulin is also a

growth factor which determines cell growth and inhibits

cellular apoptosis via the Ras–Raf–mitogen-activated

protein kinase signaling pathway [44–46]. The mechanism

of insulin resistance involves only the metabolic pathway

of insulin signaling and not the mitogenic pathway [47].

Several studies demonstrated that inappropriate fat accu-

mulation in muscle cells or the release of inflammatory

cytokines by fat cells may affect the GLUT-4 pathway

[48–51]. When the adipose tissue cannot fulfill its normal

storage and lipo-regulatory function, insulin action could

be compromised and insulin resistance may develop [48,

52–55].

434 Acta Diabetol (2015) 52:433–443

123



GH/IGF-1 axis and insulin in physiology

Growth hormone is produced and secreted by somatotropes

in the anterior pituitary in a pulsatile manner, mainly under

hypothalamic control. The hypothalamic factors involved

in GH regulation include GH-releasing hormone and

somatostatin, which stimulate and inhibit secretion,

respectively [10]. In addition to classic and non-classic

hypothalamic peptides, many other neuropeptides (such as

galanin), neurotransmitters (e.g., acetylcholine), metabolic

signals (such as hypoglycemia, amino acids and free fatty

acids) and peripheral hormones (e.g., IGF-1, thyroid and

sex hormones and glucocorticoids) are involved in the

modulation of GH secretion [56–61]. GH acts by inducing

the synthesis of IGF-1 in the liver [10]. IGF-1 is a peptide

hormone that shares nearly 50 % amino acid sequence

homology with proinsulin, and, like insulin, is composed of

an alpha and a beta chain connected by disulfide bonds

[62]. Besides GH, the liver synthesis of IGF-1 is regulated

by insulin. Studies in vitro demonstrated that insulin

stimulates IGF-1 synthesis by hepatocytes in the absence of

GH and the effects of insulin are additive to those of GH by

increasing liver GH receptors and acting at post-receptor

level [63].

The physiology of IGF-1 is complex because it acts as a

circulating hormone and as a local growth factor [64]. In

contrast to insulin, which is largely unbound to any trans-

port molecules, as much as 99 % of IGF-I in circulation is

bound to one of the six IGF-binding proteins (IGFBPs),

mainly IGFBP-3 and IGFBP-5 [65]. Under normal cir-

cumstances, IGFBP-3 and IGFBP-5 are saturated. There-

fore, abrupt changes in IGFBP-1 and IGFBP-2 that are not

saturated and that occur as a result of changes in either

nutrient intake or insulin secretion can result in major

changes in free IGF-I and thereby regulate tissue respon-

siveness [66]. Indeed, insulin down regulates the synthesis

of IGFBP-1, IGFBP-2, and, although to a lesser extent,

IGFBP-3 from the liver leading to an increase in free IGF-

1. From this point of view, insulin increases both synthesis

and bioavailability of IGF-1.

IGF-1R and IR show 48 % amino acid sequence

homology [67]. Despite these similarities, the ligand-

binding specificity is strict. The affinity for the IGF-1R is

1,000 times greater for IGF-1 than for insulin, and the IR

has a 100-fold greater affinity for insulin as compared to

IGF-1 [68]. Upon ligand binding, the IGF-1R dimerizes

and undergoes auto-phosphorylation, leading to the acti-

vation of the insulin receptor substrate (IRS)-1 and IRS-2,

with the latter being more preferentially activated by IGF-1

after interaction with its receptor [69, 70]. Given the high

degree of homology, the insulin and IGF-1 half-receptors

(composed of one a- and one b-subunit) can heterodi-

merize, leading to the formation of insulin/IGF-1 hybrid

receptors (hybrid-Rs) which in many tissues are the most

represented receptor subtypes [71–74]. The human IR

exists in two isoforms (IR-A and IR-B), generated by

alternative splicing of the insulin receptor gene that either

excludes or includes 12 amino acid residues encoded by a

small exon (exon 11) at the carboxyl terminus of the IR a-
subunit. Predominant IR-A expression in cells coexpress-

ing the IGF-1R leads to an increased formation of hybrid-

Rs, which up-regulate the IGF system binding with high

affinity by both IGF-1 and IGF-2, and activation of the

IGF-1R pathway also after insulin binding [75]. In contrast,

predominant IR-B expression leads to high-binding speci-

ficity whereby insulin activates only its own receptor and

post-receptor signaling. Indeed, IR-B is the classical

receptor for metabolic effects of insulin in muscle, liver

and adipose tissues.

Growth hormone/IGF axis may play a role in main-

taining glucose homeostasis in synergism with insulin.

IGF-1R is expressed in skeletal muscle [76, 77] and IGF-1

was shown to promote glucose uptake in this tissue [78–

83]. IGF-1 can directly stimulate glucose transport into the

muscle through either IGF-1 or insulin/IGF-1 hybrid-R [84,

85], although this requires high concentrations of free IGF-

1. The GH/IGF-1 axis may also affect lipid metabolism.

Specifically, IGF-1 may have insulin-like effects in pro-

moting the uptake of free fatty acids mainly in muscle,

whereas at physiological concentration, IGF-1 does not

exert direct effects on mature adipocytes. By contrast, GH

has direct effects on mature adipocytes that result in

stimulation of lipolysis with the release of free fatty acids

following triglyceride breakdown [86]. Under physiologic

conditions, therefore, it has been hypothesized that IGF-1

might influence glucose homeostasis largely through its

insulin-like effects on muscle. After a meal, there is a

significant increase in free IGF-1 via an insulin-induced

suppression of IGFBP-1 secretion [68]. The IGFBP-1 gene

is transcriptionally regulated by insulin; thus, the meal-

induced increase in insulin leads to an increase in free IGF-

1. This change may be adequate to stimulate fatty acid

oxidation in muscle and suppress GH, and these changes

may occur at physiologic IGF-1 levels.

GH/IGF-1 axis in diabetes mellitus

The GH/IGF-I axis is variably deranged in patients with

diabetes mellitus. In type 1 diabetes, spontaneous and

stimulated GH secretion is increased with reduced GH

auto-feedback [87, 88] as effect of an impairment of

somatostatin tone [89] likely due to a reduced GABA-ergic

stimulation at the hypothalamic level [90]. Conversely,

serum IGF-1 remains within the low range of healthy age-

matched controls reflecting a state of hepatic GH
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resistance, as already described in other clinical conditions

such as renal and heart failure [11, 91], likely due to an

insufficient portal delivery of insulin to the liver [92].

Indeed, in type 1 diabetes IGF-1 bioavailability is low

because IGFBP-1 production by the liver is increased due

to insulin deprivation. The low IGF-1 availability con-

tributes to sustain the relative GH hypersecretion due to the

lack of the feedback negative signal at the hypothalamus–

pituitary axis [93]. In type 2 diabetes, chronic hypergly-

cemia in the presence of normal or increased insulin causes

an increase in hypothalamic somatostatin tone with con-

sequent impairment of GH secretion [94]. In this clinical

context, IGF-1 values are variable in relationship with

different degrees of insulin resistance and pancreatic beta

cell dysfunction which reduce the ability of insulin to

suppress IGFBP-1 synthesis by the liver [95].

Abnormalities of GH/IGF-1 axis in diabetes mellitus:

clinical implications

The main challenge in the treatment of diabetes is repre-

sented by the prevention of microvascular and macrovas-

cular complications in order to reduce morbidity, mortality,

disability and costs [96]. For many years, a strict glycemic

control has been considered the most important method to

achieve sustained reduction in the occurrence of diabetic

complications, even if recent intervention trials have given

questionable results for macrovascular complications,

especially when very tight diabetes control was pursued.

HbA1c is usually used to estimate glycemic control, since

this biomarker correlates very well with mean glucose

levels. Intervention trials have shown that the closer

HbA1c is to normal values, the better is the prevention of

the microvascular complications. Even if the reduction of

HbA1c to 7 % has been seen associated with a reduction in

the development of macrovascular complications, an

additional reduction in these complications was not

achieved with a tighter glycemic control [96]. This sug-

gests that other mechanisms and biomarkers should be

taken into account in the prevention of macrovascular

complications. Among them, post-prandial glycemia, gly-

cemic variability, hypoglycemias, the so-called metabolic

memory, other metabolic and vascular risk factors, such as

lipids and hypertension which can play a major role [97,

98]. However, we hypothesize that also abnormalities of

the GH/IGF-1 axis may play a role and that low-circulating

IGF-1 may be an interesting marker of cardiovascular risk

in type 2 diabetes.

In fact, low IGF-1 secretion and availability contribute

to insulin resistance in diabetes [99], consistently with the

experimental evidence that animals with the absence of

liver-specific IGF-1 gene are characterized by hyperinsu-

linemia and skeletal muscle insulin resistance [100]. The

mechanisms underlying the association between low IGF-1

and insulin resistance are largely unknown, but it could be

hypothesized that the increase in GH secretion, consequent

to the loss of IGF-1 feedback signal, may play an important

role in favoring the persistence of insulin resistance [100].

Indeed, the augmented GH secretion, which occurs in

patients with type 1 diabetes, may also contribute in the

development of late diabetic complications, such as dia-

betic nephropathy and retinopathy [10, 11, 101]. This latter

complication is also favored by the low IGF-1 synthesis

and availability [102]. In fact, IGF-1 is essential for normal

retinal vascular development and maintenance [103], and

the hypoinsulinemia-induced IGF-1 deficiency of diabetes

impairs pericyte replication, regeneration and survival with

consequent loss of pericytes. This latter abnormality is the

first morphological finding in diabetic retinopathy [104].

However, when serum IGF-1 values are restored by treat-

ment of diabetes, neovascularization is favored and pro-

gression of retinopathy may occur [102].

IGF-1 was shown to exert mitogenic actions on vascular

system, including stimulation of vascular smooth muscle

cell proliferation and migration [105–107], which may

prompt to the formation of atherosclerotic plaques sup-

porting the hypothesis of a detrimental role of IGF-I in the

development of cardiovascular disease [108]. More

recently, however, the balance of experimental and clinical

evidence appeared to contradict this view and several

studies have clarified that IGF-1 may be instead a vascular

protective factor, by several effects on the endothelial cells.

In fact, IGF-1 stimulates nitric oxide production from

endothelial cells, induces vasodilatation through the acti-

vation of potassium channels, with a consequent reduction

in intracellular calcium [109], protects against plaque

instability and ruptures by counteracting oxidized LDL-

induced cytotoxicity and vascular smooth muscle cell

apoptosis [108]. Consistently with these concepts, low-

circulating IGF-1 has been associated with angiographi-

cally documented coronary artery disease [110, 111] and

carotid intima-media thickness, a recognized surrogate

marker for subclinical atherosclerosis [112]. This associa-

tion was also demonstrated for patients with diabetes

mellitus [108]. In patients with diabetes mellitus with a

polymorphism in the promoter region of the IGF-1 gene

creating an environment of chronic exposure to low IGF-1

levels, the risk of myocardial infarction was about threefold

increased as compared to the patients harboring the wild-

type allele [113]. Moreover, in patients with diabetes

experiencing an acute myocardial infarction, high IGFBP-

1, that is the expression of low IGF-1 availability, was

shown to be associated with increased risk for cardiovas-

cular mortality and morbidity [114]. Therefore, it is

intriguing to hypothesize that one of the targets of the

treatment of diabetes should be the normalization of
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circulating IGF-1. As for GH-deficient subjects, an IGF-1

level in the low-normal range for age should probably be

safely targeted [115]. In fact, also a sustained increase in

circulating IGF-1 such as found in untreated acromegaly

may be linked to not only increased oncological but even

cardiovascular risk [116, 117].

Abnormalities of GH/IGF-1 axis in diabetes mellitus:

effects of insulin therapy

It is still uncertain whether the metabolic control in dia-

betes may have per se an impact on the IGF system. In

severely decompensated diabetes including diabetic ke-

toacidosis, plasma levels of IGF-1 were low [118]. By

contrast, other studies did not demonstrate any significant

correlation between HbA1c and IGF-1 [119–121].

Insulin delivery into the portal system is required to

normalize IGF-1 synthesis and bioavailability. In fact,

serum free IGF-1 tends to normalize rapidly after starting

insulin therapy, whereas normalization of total IGF-1 was

shown to require several weeks to occur [122]. Consis-

tently with the concept that IGF-1 synthesis and bioavail-

ability are influenced by intraportal insulin delivery,

intraperitoneal insulin administration was shown to be

more effective than subcutaneous route in normalizing the

alterations of IGF-1 system in type 1 diabetes [121]. It is

noteworthy that normalization of serum IGF-1, accompa-

nied by a decrease in serum IGFBP-1, was shown to be

closely correlated with the improvement of glucose

homeostasis during insulin therapy providing evidence for

the use of IGF-1 and IGFBP-1 as biomarkers of metabolic

control in diabetes [123].

In addition to the effects on IGF synthesis and bio-

availability, exogenous insulin may also activate IGF-1

signal in target tissues although, at physiological concen-

trations, little receptor cross talk occurs [124]. Another

consequence of the structural homology of IR and IGF-1R

is the formation of hybrid receptors which are highly

expressed in patients with diabetes [125–130] and behave

like full IGF-1R with regard to binding affinities for IGF-1

and insulin, as well as downstream signaling [131]. It is

noteworthy that insulin analogs used in the clinical prac-

tice, such as insulin glargine, may have higher affinity for

IGF-IR and hybrid receptors as compared to native insulin

with potential promitogenic effects of these drugs [132,

133]. Preclinical studies showed that insulin glargine

increases resistance to apoptosis in several tumor cell lines

including colorectal, breast and prostate cancers [134],

although the affinity of insulin analogs for IGF-1R was

shown to be much lower than that of native IGF-1 [135].

The clinical relevance of these in vitro data is still uncer-

tain. Although some studies reported an overall increased

cancer risk associated with high doses of insulin glargine

[136, 137], at the current time there is still inconclusive

evidence to support the hypothesis that insulin glargine at

physiological doses may increase the risk of tumors in

clinical practice [138–140]. Notably, there are available

new insulin analogs that, unlike insulin glargine, showed

lower IGF-1R binding affinity and a low mitogenic/meta-

bolic potency ratio [141–144].

Each insulin analog has an own affinity for IR, when

compared to human ‘‘regular’’ insulin [145]. In addition,

in vitro each analog has shown a specific affinity for IGF-

1R and accordingly a different mitogenic power [145].

Insulin glargine in vitro showed an affinity for IGF-1R

sixfold higher than that of human insulin, while other

analogs had affinities for IGF-1R similar or even lower

than those of the insulin reference. In addition, glargine

showed in vitro a mitogenic power about eightfold greater

than human insulin. Therefore, it has been hypothesized

that glargine may increase cancer risk because of its IGF-

1R affinity and mitogenic power. Really, several sub-

sequent clinical studies did not confirm these data, and a

specific large randomized controlled trial, designed to test

cardiovascular and cancer risk of glargine, did not show

any increase in cancer risk in patients treated with glar-

gine [146]. This has been confirmed by other several large

studies [147–149]. In particular, the use of glargine was

not associated with either an increased mortality for

cancer [147] or a higher incidence of malignancies [148,

149].

These results may be easily explained by the fact that

after the subcutaneous administration of glargine, the real

exposure to glargine is marginal, even at supra-thera-

peutic doses, as glargine is quickly processed to the so-

called Metabolite 1 (M1), which mediates all metabolic

effects of glargine [150]. There is another metabolite,

called Metabolite 2 (M2), which is not virtually present in

plasma. It is important to remember that both M1 and M2

have even lower binding to IGF-1R and less mitogenic

potential when compared to human ‘‘regular’’ insulin

[151].

Therefore, it is unlikely that glargine U100 or U300

(slow release from injection site depot) or other insulins

such as detemir or degludec (acylated insulin and

plasma albumin bound based mechanism of action) or

human insulin [152] can increase in vivo mitogenesis.

However, two considerations should be made: All

insulins can exert an action on IGF-1R, albeit with

different affinities, and this effect may be even positive.

Indeed, it may promote all effects of IGF-1 that are

decreased in diabetes. Therefore, therapy in diabetes

with insulin with high affinity for the IGF-1R may exert

a cardioprotective effect by restoring the right level of

IGF-1 in bloodstream and target tissues, whereas insu-

lins with low affinity for the IGF-1R may lack this
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positive effect. Furthermore, an excessive and indirect

stimulation of IGF-1R due to sustained and chronic

hyperinsulinemia (therefore likely not due to a specific

insulin), over the therapeutic level required to overtake

an acute/chronic insulin resistance status (what we can

call the ‘‘individual critical threshold’’), may be dele-

terious as it may increase the cardiovascular risk in the

short and medium term and mitogenic/proliferative

action in the long term.

Treatment of diabetes with IGF-1

Exogenous IGF-1 administration was shown to reduce

serum glucose levels in healthy individuals as well as in

patients with insulin resistance, type 1 and type 2 diabetes

[78, 82, 153–163]. Interestingly, IGF-1-induced reduction

in serum glucose levels was accompanied by an improve-

ment in insulin sensitivity [156, 162, 163]. These studies

provide indirect evidence that relatively high endogenous

levels of IGF-1 may reduce insulin resistance and, thereby,

lower the risk of type 2 diabetes. The predominant effect of

IGF-1 on carbohydrate metabolism seems to be secondary

to its effects on lipid metabolism. Because suppression of

insulin and GH secretion occurs at pharmacologic levels of

IGF-1, it is difficult to extrapolate from the results of most

published studies and conclude that these effects can occur

at normal physiologic levels. However, GH suppression

would be expected to lead to decreased free fatty acid flux

in liver and reduced antagonism of insulin action on glu-

coneogenesis [68].

Although most of the effects of IGF-1 on glucose

homeostasis are mediated by its action on IR pathways,

there is also evidence that IGF-1 may directly act on the

endocrine pancreas variably influencing b-cells survival,

replication and hormonal synthesis as well as suppressing

glucagon [164–175]. Several attempts of administration of

IGF-1 in patients with diabetes have been made, both in

type 1 and type 2 diabetes, with the aim of a metabolic

improvement of the disease. In general, in type 1 diabetes

HbA1c was improved and insulin requirements were

decreased accompanied by an enhanced insulin sensitivity,

the latter effect due to the action of IGF-1 per se rather than

by the reduction of GH values [176–178]. In type 2 dia-

betes, IGF-1 administration enhanced insulin sensitivity

with decreases in glucose, endogenous insulin, C-peptide

secretion and, in some cases, an improved area under the

curve after oral glucose administration [160, 179, 180]. As

most of the patients studied were obese with low GH

concentrations, it is highly likely that the enhanced insulin

sensitivity was caused by an effect on free fatty acid

metabolism in muscle and by a suppression of renal glu-

coneogenesis and not simply by suppression of GH secre-

tion [68].

Perspectives

The GH/IGF-1 axis is regulated in a complex manner by

the metabolic alterations occurring in diabetes mellitus and

is very sensitive to changes in endocrine milieu determined

by insulin treatment. Particularly, in decompensated dia-

betes, IGF-1 levels are low and insulin administration may

have beneficial effects by acting at the IGF-1R level.

Different affinities for this latter receptor may lead to

variable degrees of IGF-1 restoration with different insulin

preparations. From lessons learned in GHD and acromeg-

aly patients [115–117], we now know that both very low

and high IGF-1 levels are related to increased cardiovas-

cular risk. Therefore, insulin may be considered an endo-

crine pacer of the GH/IGF-1 axis in diabetes and restored-

to-normal IGF-1 may be hypothesized to be a good marker

of appropriate insulin treatment of the subject and may

integrate and make more robust the message coming from

HbA1c in terms of prediction of cardiovascular risk. We

expect that in near future, a diabetes clinical research focus

will challenge the superiority or non-inferiority of new

insulin analogs and of their biosimilars, back-grounding on

their specific mechanism of action [149], on combined

biochemical end points including HbA1c, GH and IGF-1 in

each personalized treatment at same fixed stage points. In

fact, we need to focus on the concept that exogenous

insulins or incretins, directly or indirectly, may exert their

either metabolic or proliferative effects with different

magnitude, and therefore act as either endocrine pacers or

disruptors, in the same people with diabetes who during

their lifecycle physiologically undergo relevant changes in

the hormonal status [181]. A new era in the approach to

monitoring diabetes treatment can start not only by mea-

suring HBA1c or glucose circadian fluctuations [182, 183]

but also by evaluating the impact of personalized treatment

of diabetes on the ancestral balance between metabolic and

proliferative effect of the integrated system constituted by

insulin, GH and IGF-1 in the circulation and at the tissue

level.
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