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1 Introduction

As soon as we stray from the theory of continuous stochastic processes, we are in
need of a suitable space of discontinuous functions and a topology on it. Skorokhod
proposed in [11] the topology used predominantly today and which has since inher-
ited his name. When I started to work with discontinuous stochastic processes and
needed to understand the Skorokhod space, I struggled to find textbooks or lecture
notes providing an easy start into the topic. The general tenor is that “constructing
[the] Skorokhod topology and deriving tightness criteria are rather tedious” (see [8,
Chap. VI]). That gave me the impression that the Skorokhod topology is a very
technical tool which has no real motivation.

After working with it for some years, I believe that there are simple and intuitive
ideas underlying this construction which might facilitate the understanding. Unfortu-
nately, these are not the main focus in most textbooks as the proofs are already long
enough as is. For the same reason, very few textbooks explore all four Skorokhod
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2 J. Kern

topologies and focus only on the main one, also known as J1-topology. Here, I want
to take the time to expose the ideas underlying the four Skorokhod topologies.

This paper is not meant to give a complete overview on the Skorokhod topologies,
nor will I include any proofs. Instead, I will concentrate on pictures, examples and
heuristics in the hope of building intuition. Nevertheless, I try to give a reference to
every major fact I mention. Note that I will not discuss non-Skorokhod topologies
such as the S-topology defined in [9].

Most of what I present is taken from the two books [1, 12] which I highly
recommend for delving into the subject: the former focuses on the prevalent topology
on real-valued processes, the latter takes a more general approach. Some general
results are taken from [6]. For examples on how to apply these general results to
measure-valued processes, I recommend the first chapter of [4].

The rest of the paper has a very simple structure: first, I try to motivate why we
need a new topology and what we should expect it to look like. Next, I derive the
two main J1- and M1-topologies for real-valued processes on a finite time interval.
Eventually, I conclude by presenting generalisations of these topologies.

2 Motivation

In this first section, I illustrate why we need to define a new topology and what
properties we would want it to have.

2.1 Convergence of Continuous Processes

Let us start with the most famous example of convergence of stochastic processes:
Donsker’s Theorem, a.k.a. the functional central limit theorem. Consider a sim-
ple random walk .Sn/n�0 on Z starting at S0 D 0, and define the rescaled and
interpolated continuous process

Y N
t WD 1p

N

�
SbN tc C .N t � bNtc/

�
SbN tcC1 � SbN tc

��
; t 2 Œ0,1�:

We consider .Y N� /N �1 as a random sequence in C.Œ0,1�/ endowed with the Borel
� -algebra of the topology of uniform convergence. Donsker’s Theorem states that
the sequence .Y N� /N �1 converges in distribution to a standard Brownian motion B

on the time interval Œ0,1�. To prove this, one uses that C.Œ0,1�/ endowed with the
topology of uniform convergence is a Polish space1 so that we may apply Prokhorov’s
Theorem.

Theorem 1 (Prokhorov; see e.g. [1, Sect. 5] or [2, Theorems 8.6.2 and 8.9.4] for
more complete statements) Let E be a Polish space with its Borel � -algebra. Let
P.E/ denote the set of probability measures on this measurable space endowed with
the topology of weak convergence of measures. Then the following holds true:

1 A Polish space is a topological space that is separable and completely metrizable.
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Skorokhod topologies 3

1. the space P.E/ is again Polish,
2. a set of probability measures K � P.E/ is relatively compact if and only if it is

tight2.

Corollary 1 A sequence of processes .XN /N �1 � C.Œ0,1�/ converges in law to
some X 2 C.Œ0,1�/ if and only if the sequence .XN /N �1 is tight and the finite-
dimensional distributions of .XN /N �1 converge to those of X , i.e. for all 0 � t1 <

::: < tk � 1, one has

�
XN

t1
; :::; XN

tk

� .d/�!
N !C1

�
Xt1 ; :::; Xtk

�

in Rk .
That means that one only needs to check those two things to prove Donsker’s

Theorem. More precisely, we really need to worry only about tightness as the con-
vergence of the finite-dimensional distributions is an application of the usual Central
Limit Theorem. Since tightness is a statement about compact sets of the underlying
space, we need a good characterisation of compact sets in C.Œ0,1�/. For this, we use
another powerful theorem:

Theorem 2 (Arzelà–Ascoli; see e.g. [7]) A set K � C.Œ0,1�/ of continuous func-
tions is relatively compact if and only if

1. the set K is uniformly bounded at 0 in the sense that

supf 2K jf .0/j < C1;

2. the set K is uniformly equicontinuous, i.e. for every � > 0 there exists some ı > 0
such that

jf .t/ � f .s/j < �

for all f 2 K whenever jt � sj < ı.
In terms of the modulus of continuity

!ı.f / WD supjt�sj<ı jf .t/ � f .s/j;

the second condition may be rewritten as

limı#0supf 2K!ı.f / D 0.

2 A family .P˛/˛ of probability measures is tight if they vanish uniformly outside compact sets: for every
� > 0 there is a compact set K� such that sup˛P˛.Kc

� / < �.
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4 J. Kern

Corollary 2 A sequence of processes .XN /N �1 � C.Œ0,1�/ is tight if and only if

1. the sequence is bounded at 0 in the sense that for all � > 0 , one has

limC!C1supN �1P.jXN
0 j > C / < �;

2. for every � > 0 , one has

limı#0supN �1P Œ!XN .ı/ > �� D 0.

With all this machinery at our disposal, it becomes straightforward to prove
Donsker’s Theorem. One only needs to do two things:

1. use Prokhorov’s Theorem to prove relative compactness via tightness;
2. identify all limit points through their finite-dimensional distributions.

Don’t get me wrong: each point in itself might be difficult to prove. But at least we
have a strategy on how to approach the problem. It turns out that this strategy is very
general: only the first point depends on the particular topology which we put on the
space of functions. For it to work, we first and foremost need Prokhorov’s Theorem.
That means that we want a Polish topology. But there is a second ingredient on
which we relied heavily. To prove tightness, we need a good way to characterise the
compact sets of the topology we work in. In the case of the uniform topology on
C.Œ0,1�/, this is taken care of by the Arzelà–Ascoli Theorem.

2.2 Convergence of Discontinuous Processes

We will now try to apply our insights from the previous section to the convergence
of discontinuous processes. More precisely, we first need to identify what space of
functions we are interested in and what topology we can endow it with.

A first idea could be to go to the next bigger space we are familiar with and
which extends the topology of uniform convergence: the space of bounded measur-
able functions B.Œ0,1�/ with the topology of uniform convergence. The way I am
presenting this, it becomes clear that this is not a good choice: even though the space
is complete, it is not separable and therefore not Polish. And when we want to do
probability theory, that is not a good sign; particularly with Prokhorov’s Theorem
in mind. Despite having quite a nice characterisation of the compact sets of B.Œ0,1�/

similar to the Arzelà–Ascoli Theorem, it is not the right space to work in.
Now that we ruled out the obvious choice, we need to decide on how to proceed.

The first step is to choose the right space of functions. In other words: what type of
functions are relevant to us? Note that we are mostly interested in martingales and
Markov processes, often characterised through their generator or their martingale
problem. For these, we have a very nice regularity result:
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Skorokhod topologies 5

Theorem 3 (see e.g. [10]) A sub- or supermartingale .Mt/t�0 with respect to
a right continuous filtration has a càdlàg3 modification whenever t 7! EŒMt � is right
continuous. In particular, a martingale w.r.t. a right continuous filtration always has
a càdlàg modification.

That indicates that the space of càdlàg functions seems to be the right choice. We
will denote this so-called Skorokhod space4 by DŒ0,1�.R/. In general, the Skorokhod
space of càdlàg functions on Œ0; T � (resp. Œ0; C1/) with values in a (hopefully
Polish) space E will be denoted by DŒ0;T �.E/ (resp. DŒ0;C1/.E/). Note that we
may view C.Œ0,1�/ as a subspace of DŒ0,1�.R/.

Now that we have identified the “right” space of functions, we need to identify
the “right” topology. It turns out that there is not one good topology. So instead, we
will identify the right properties a good topology should have. The most important
part is the applicability of Prokhorov’s Theorem. In other words, we want

The topology is Polish. (1)

to hold. In most applications, it is enough to weaken this condition to

The space is separable; and if a family of measures on it is tight,
then it is relatively compact w.r.t. the topology of weak convergence.

(2)

which amounts to the “important” part of Prokhorov’s Theorem. However, it is
usually preferable to have a Polish space. The second important ingredient in our
strategy was the Arzelà–Ascoli Theorem that characterises the compact sets for the
topology of uniform convergence. Hence, we would want

An Arzelà-Ascoli type theorem describing compact sets exists. (3)

to hold.
If both conditions (1) and (3) are satisfied, we have a “good” topology. Never-

theless, there are other properties that one could wish for. For example, it would be
great if the new topology extends the topology of uniform convergence on C.Œ0,1�/.
More formally, this means that5

The trace topology on C.Œ0,1�/ is the topology of uniform convergence. (4)

Even though this property seems very natural, there is an important argument against
it: the space of continuous functions with the topology of uniform convergence

3 The acronym càdlàg comes from the French “continue à droite, limite à gauche” which translates to
“continuous from the right with left limits” (at any point t ).
4 I have the impression that there are differences in the nomenclature. Sometimes, the name Skorokhod
space is only used for the space endowed with the usual Skorokhod topology which we will construct later
on. However, in different contexts other Skorokhod topologies are useful, so that it is necessary to give
different names to the topological spaces.
5 The trace topology, also known as subspace topology, is obtained by restricting all open sets to the
subspace.
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6 J. Kern

is complete. That means that if the new topology extends it, it is impossible for
a sequence of continuous functions to converge to a discontinuous function. In other
words, a topology extending the topology of uniform convergence may be too strong
for some applications.

There is a last “bonus” property which would be nice to have. Imagine a se-
quence of functions converging to some continuous function. Since the limit lies
in the subspace where the topology is “stronger”, it would be great if this would
automatically strengthen the mode of convergence to uniform convergence, i.e.

If Xn ! X and X is continuous, then Xn ! X uniformly. (5)

If the new topology satisfies (5), we would not need to worry about the topology of
uniform convergence any more at all. Whenever the limit is continuous, we get the
uniform convergence for free!

Equipped with these constraints, we will start constructing Skorokhod topologies!

3 Skorokhod Topologies on DŒ0,1�.R/

In this main section, we construct the topologies on the Skorokhod space: first, we
will try to understand how we might want to tweak the uniform topology; then,
we will see the actual definitions of these topologies. A little word of caution: the
rigorous proofs of the facts that I will state are very technical. So instead, I will
use the old magician’s trick and refer to the books [1, 12] that present those proofs
nicely.

3.1 What Exactly Goes Wrong with the Uniform Topology?

In Sect. 2.2, I pointed out that one major problem of the uniform topology is that it
is not separable anymore. I did not give any proof of this statement, so here it is: all
functions of the form 11Œx;1/ are at k �k1-distance one of each other. Indeed, if we
take x < y < 1, then

ˇ̌
11Œx;1/.x/ � 11Œy;1/.x/

ˇ̌ D 1 � 0 D 1.

This proves that there is an uncountable family of functions which are all at distance
one from each other in the uniform topology. Hence, the uniform topology is not
separable on DŒ0,1�.R/.

But let us take another point of view. Perhaps the non separability is not the
main problem here. Perhaps it is rather a consequence of an even bigger problem:
shouldn’t the convergence 11Œ 12 � 1

n
;1/ �!

n!1 11Œ 12 ;1/ hold from an intuitive point of v

iew? That would immediately force these functions to get “closer” together and p
revent the non separability6.

6 At least the one induced by this specific example... but it turns out that this is enough.
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Skorokhod topologies 7

Fig. 1 The indicator function
11Œ 1

2 ;1/ with its �-tube

This insight transforms the problem of finding a topology similar to the uniform
topology but preventing non separability into the problem of tweaking the uniform
convergence so that this sort of convergence is allowed. To narrow down on what
exactly keeps these indicator functions apart, let us have a closer look at what �-
balls look like in the uniform topology. Let us take the example of f D 11Œ 12 ;1/.
Then, the �-ball around f contains all functions whose graphs lie in the so-called �-
tube around the graph of f , see Fig. 1. This tube forces functions to be ever closer
to f , but allows them to wiggle a little bit up and down. Note that this corresponds
to a spatial wiggle. When functions are continuous, that is all perfectly fine, because
a wiggle in time can be translated into a wiggle in space. However, when we have
a discontinuity, this is not true anymore. As soon as we move the discontinuity a bit
to the left or to the right, we necessarily leave the tube and are immediately “far
away” from f .

That means that we need to modify the �-tubes to allow for some temporal wiggle
in addition to the spatial wiggle already accounted for. There are two options that
may come to mind. The more minimalistic approach would be to extend the �-
tube by a little bit at a discontinuity to get �-“gloves”, see Fig. 2a. The other, more

Fig. 2 The indicator function 11Œ 1
2 ;1/ with modified �-tubes. a minimalistic approach, b generous ap-

proach
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8 J. Kern

generous approach, would be to connect the two ends of the �-tube at a discontinuity,
see Fig. 2b.

In reality, Skorokhod defined in its foundational paper [11] four different topolo-
gies, a strong and a weak version for each approach. They are now commonly
referred to by the rather obscure names J1-, J2-, M1- and M2-topologies. The J -
topologies arise from the minimalistic approach and the M -topologies from the
more generous one.

For all those intimidated by these cryptic names: in the end, only the J1-topology
is commonly used and therefore referred to as the Skorokhod topology. It appears
that the M -topologies also have their use in various problems, whereas you will most
certainly not encounter the J2-topology at all. That means that this mess reduces to

1. one main (J1-)Skorokhod topology everybody should be familiar with and
2. a second type of (M -)Skorokhod topologies one should have a general idea of.

In this paper, I will only discuss the two main topologies J1 and M1. But before
getting into the details, I want to illustrate how these topologies relate to each other.
Keeping the above in mind, we should expect the J -topologies to be stronger than
the M -topologies, as the latter allow more functions to be close. However, the sit-

Fig. 3 Relationships between
the different Skorokhod topolo-
gies. Here � ! � means that �
is stronger than � in the sense
that any sequence converging in
� does also converge in � . U
denotes the topology of uniform
convergence

K



Skorokhod topologies 9

Fig. 4 Examples of sequences
converging to 11Œ 1

2 ;1/ in the
different Skorokhod topologies.
a J1, b M1 but not J2, c J2 but
not M1, d M2

uation is a bit more complicated, see Fig. 3. The good news is that the Skorokhod
topology J1 is stronger than all the other “new” topologies. That means that when-
ever a convergence is shown to hold in J1, then it holds in all the other Skorokhod
topologies. Fig. 4 illustrates for what extra type of convergence the different topolo-
gies allow. These examples are taken from [12, Fig. 11.2] and can partially be found
already in [11], see also [3, Limit Theorems for Stochastic Processes].

3.2 The Topologies J1 and M1

Now comes the more difficult part of translating our intuition into real definitions.
We will start with the Skorokhod topology J1 and finish with the M1-topology.

In the minimalistic setting, we want to allow for some temporal wiggle, without
connecting the two ends of the �-tube across a discontinuity. To reformulate this
mathematically, we will perform a time change. By a change of time I mean that
we take a strictly increasing bijection � W Œ0,1� ! Œ0,1� and consider f ı � instead
of f . Naturally, we are only interested in parametrisations that are “close” to the
unitary flow of time, corresponding to the trivial parametrisation id W t 7! t . In other
words, we need to penalise parametrisations which are “too far away” from id . This
leads to the following definition of distance:

dJ1.f; g/ WD inf� fkf ı � � gk1 C k� � idk1g ;

where the infimum is taken over all increasing bijections on Œ0,1�. It can be shown
that dJ1 is a metric and it is usually referred to as Skorokhod metric, see e.g. [1,
Sect. 12] and one defines J1 to be the topology induced by this metric.

Unfortunately, it turns out that this is actually a bad metric in the sense that
it is not complete. Consider the following example from [1, Example 12.2]. Take

K



10 J. Kern

Fig. 5 The change of time �n

compared to the usual time flow
id

the indicator functions fn WD 11Œ0;2�n/ and define the change of time �n as the
linear interpolation of the three points .0,0/, .2�n; 2�.nC1// and .1,1/, see Fig. 5.
One easily checks that the change of time is such that fn D fnC1 ı �n leading
to k fnC1 ı � � fnk1 D 0. To bound the penalty k �n � idk1 on the change
of time, note that they differ maximally at x D 2�n yielding k �n � idk1 D
j2�n � 2�.nC1/j D 2�.nC1/. This gives

dJ1.fnC1; fn/ �k fnC1 ı �n � fnk1C k �n � idk1 D 2�.nC1/:

In particular, this error is summable and we conclude that .fn/n is a Cauchy se-
quence. Since fn.x/ converges to 0 for all x 2 .0,1/, the only possible limit is the
null function f D 0. However, whatever change of time we apply, the null function
doesn’t change. Hence,

dJ1.f; fn/ Dk fnk1 D 1.

That means that although .fn/n is Cauchy, it does not converge.
The problem of the Skorokhod metric is quite subtle and lies within the penalty

we put onto the parametrisation �: we measure the absolute distance between � and
id . However, it is better to think of parametrisations as a modified flow of time. In
this sense, it would be better to measure the difference in flow speed. In other words,
we want parametrisations with a nearly constant speed

�.t/ � �.s/

t � s
� 1.

In the above example, the slope of �n will never converge to 1 (not even pointwise),
as

�n.2�n/ � �.0/

2�n D 2n � 2�.nC1/ D 1

2

K



Skorokhod topologies 11

for every n � 1. To fix this, we introduce the new penalty

k �kı WD supt¤s

ˇ̌
ˇ̌log

�
�.t/ � �.s/

t � s

�ˇ̌
ˇ̌ ;

leading to the modified metric

bd J1.f; g/ WD inf� fkf ı � � gk1 C k�kıg :

It turns out that both metrics are equivalent, i.e. induce the same topology. How-
ever, this modified metric is complete! For this reason, this metric is sometimes
called Skorokhod metric instead of the previous one, leaving the original metric
without any special name. It can be shown that J1 is separable (see e.g. [1, Theo-
rem 12.2]), meaning that J1 satisfies (1).

Recalling that the uniform topology on continuous functions does not care about
small temporal distortions, one easily verifies that J1 also satisfies (4), i.e. if a se-
quence of continuous functions converges in J1, then the convergence is uniform
(and conversely).

The only thing we still need is a good description of compact sets, i.e. that
J1 satisfies (3). Fortunately, there is indeed a result similar to the Arzelà–Ascoli
Theorem! The only thing we need to adapt is the definition of the modulus of
continuity so that it ignores jump discontinuities. This is achieved by allowing the
function to jump at a finite number of points:

! 0
ı.f / WD inffti gv

iD0
sup1�i�v sups;t2Œti�1;ti /jf .t/ � f .s/j;

where the infimum is taken over all finite partitions 0 D t0 < ::: < tv D 1 of Œ0,1� of
finite size v � 1. Note that the innermost supremum only ranges over the right open
interval Œti�1; ti /, allowing for jumps at times ti . To distinguish it from the “real”
modulus of continuity, I refer to it as modulus of continuity type function.

Theorem 1 (Compactness in J1, see e.g. [1, Theorem 12.3]) A set K � DŒ0,1�.R/

is relatively compact in J1 if and only if

1. the set is uniformly bounded in the sense that

supf 2K k f k1 < C1I
2. the modulus of continuity type function vanishes uniformly over K:

limı#0supf 2K! 0
ı.f / D 0.

Note that it is not enough to have a uniform bound of jf .0/j as before! This
was possible in the case of continuous functions, because we also imposed uniform
equicontinuity. Since we now allow for jumps, we need to strengthen this condition
to a uniform bound on the entire interval.

K



12 J. Kern

That means that J1 satisfies all of the constraints that are really important to us.
The only thing we are left to check is the property (5) of strengthened convergence
whenever the limiting function is continuous. From the heuristic, it is conceivable
that this holds for J1 as we only allow for small distortions in time. This idea can be
made rigorous by noting that we may shift the change of time onto the limit: take
fn ! f in J1 with f continuous. Then there is a sequence .�n/n of time changes
such that

limn .kf ı �n � fnk1 C k�nkı/ D 0.

Since f is continuous and k �kı ! 0, one has k f ı �n � f k1 ! 0. This in
turn implies that k f � fnk1 ! 0. An extension of this statement can be found
e.g. in [6, Proposition 3.6.5] and the preceding comment.

We finish with the J1 topology by pointing out that there is an immediate draw-
back in satisfying (4): continuous functions cannot converge to discontinuous func-
tions as C.Œ0,1�/ is closed in the uniform topology! This explains why we cannot
expect to see convergences of the type shown in Fig. 4b.

Let us now come to the M1-topology. Recall that the idea was to generously
extend the �-tube across the discontinuity, see Fig. 2b. To make this more rigorous,
we will work with the so-called completed graph

�.f / WD f.t; z/ 2 Œ0,1� 	 R W z D f̨ .t�/ C .1 � ˛/f .t/ for some ˛ 2 Œ0,1�g

of f 2 DŒ0,1�.R/ containing the graph of f together with the straight lines con-
necting the two ends of a jump discontinuity. Here, I use the notation f .t�/ to
denote the left limit of f in t which exists by definition of DŒ0,1�.R/. For example,
in Fig. 2b, the completed graph corresponds to the graph together with the dotted
line.

From here on, the idea is very similar to the one used for the J1-topology. To
allow for some freedom, we use again parametrisations. The only difference is that
we will now parametrise the completed graph, i.e. we will take non decreasing
functions .�; �/ W Œ0,1/ ! �.f / which are onto. Here, � is the temporal component
and � is the spatial component. Note also that we use the intuitive order on �.f /

to define monotonicity:

.t1; z1/ � .t2; z2/ iff .t1 < t2 or t1 D t2 and jz1 � f .t�/j � jz2 � f .t�/j/ :

In words, we use the temporal ordering coming from drawing the completed graph
from left to right without lifting the pencil. We then define the distance between two
functions f and g through

dM1.f; g/ WD inf.�f ;�f /;.�g;�g/

˚k�f � �gk1 C k�f � �gk1
�

as the minimal distance between any two parametric representations of f and g.
Again, one checks that dM1 indeed is a metric and one defines M1 to be the induced
topology.

K



Skorokhod topologies 13

The advantage of this metric is that we get the additional convergence illustrated
in Fig. 4b. Symmetrically, the drawback is that M1 does not verify (4). Except from
this, all other constraints are satisfied: M1 defines a Polish topology7 on DŒ0,1�.R/,
see e.g. [12, Theorem 12.8.1] and also satisfies the property (5) of strengthened
convergence whenever the limit is continuous. The description of compact sets is
a bit more difficult, but it is still possible. Before we define the new modulus of
continuity we will need here, one should keep in mind that M1 is weaker than J1.
That means in particular that the above criterion for compactness still is sufficient.
Then again, in most of the cases if the above applies, one usually directly works
with the J1-topology.

Define the new modulus of continuity type function

! 00
ı .f / WD supt2Œ0,1�w.f; t; ı/

with

w.f; t; ı/ WD sup0_t�ı�t1<t2<t3<tCı^1 infz2Œf .t1/;f .t3/�jf .t2/ � zj:

Using the notation d.x; A/ for the distance between x and the set A, this can be
written more compactly as

w.f; t; ı/ WD sup0_t�ı�t1<t2<t3<tCı^1d .f .t2/; Œf .t1/; f .t3/�/ :

A small modulus of continuity type function ensures that on small intervals, the
graph is close to straight lines. This is a way to exclude oscillations, but allows for
ever steeper slopes, see Fig. 4b.

Theorem 2 (Compactness in M1, see e.g. [12, Theorem 12.12.2]) A set K �
DŒ0,1�.R/ is compact in M1 if and only if

1. the set is uniformly bounded in the sense that

supf 2K k f k1 < C1I
2. the oscillations vanish uniformly over K:

8
<

:

limı#0supf 2K! 00
ı
.f / D 0

limı#0supf 2K jf .ı/ � f .0/j D 0
limı#0supf 2K jf .1�/ � f .1 � ı/j D 0

:

The above description seems to differ from the short characterisation in Theo-
rem 1, but a similar description for compact sets w.r.t. J1 can be found e.g. in [1,
Theorem 12.4].

7 Again, the metric we defined is not complete. An equivalent complete metric is defined in [12,
Sect. 12.8].
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We finish this section with a small overview of which topologies have which
properties. For completeness, I also include the topologies J2 and M2. These addi-
tional properties follow columnwise from [12, Theorem 11.6.6]; [3, Limit Theorems
for Stochastic Processes, Sect. 2.7] and [12, Theorems 12.12.2]; a similar argument
for J2 as in Sect. 3 and for M2 the fact that it is weaker than M1; and [12, Corollary
12.11.1] together with the fact that J2 is stronger than M2.

Polishness
(Eq. 1)

Separable+Prokhorov
(Eq. 2)

Arzelà–Ascoli
(Eq. 3)

Extension
Property (Eq. 4)

Bonus Property
(Eq. 5)

J1 Yes Yes Yes Yes Yes

M1 Yes Yes Yes No Yes

J2 ? Yes Weakly Yes Yes Yes

M2 ? Yes Weakly Yes No Yes

3.3 Convergence of Stochastic Processes in J1 and M1

In this section, I simply restate the previous compactness results in terms of tightness
of stochastic processes on DŒ0,1�.R/. I will furthermore state the generalisation
of Corollary 1 to the topologies J1 and M1. This is not immediate, because the
projections �t W f 7! f .t/ are not continuous anymore: already in J1, the projection
�t , t 2 .0,1/, is continuous in f if and only if f is continuous in t . (The projections
�0 and �1 are always continuous.) That means that we cannot hope to have the
convergence of all finite-dimensional distributions.

Instead, we define the set of all continuity points of a stochastic process X by

TX WD ft 2 .0,1/ W P.X is continuous at t/ D 1g [ f0,1g
D ft 2 Œ0,1� W P.�t is continuous in X/ D 1g:

Note that 0 is always a continuity point of any stochastic process X , but X may be
discontinuous in t D 1. As such, it would be better to say that TX is the set of times
t 2 Œ0,1� such that the projection �t W f 7! f .t/ is a.s. continuous. It turns out to be
enough to check convergence on TX , which is almost surely dense in Œ0,1�, see [1,
Sect. 13].

Theorem 3 (see e.g. [12, Theorem 11.6.6]) A sequence of càdlàg processes
.Xn/n�1 converges in law to a càdlàg process X w.r.t. either J1 or M1 if and only
if .Xn/n�1 is tight in the respective topology and all finite dimensional distributions
at times ti 2 TX converge to those of X .

Let us now turn to tightness criteria.

Theorem 4 (Tightness in J1, see e.g. [1, Theorem 13.2]) A sequence of càdlàg
processes .Xn/n�1 is tight w.r.t. J1 if and only if
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1. it holds that

limC!C1limsupnP ŒkXnk1 � C � D 0I
2. for every � > 0, it holds that

limı#0limsupnP
�
! 0

ı.Xn/ � �
� D 0.

Theorem 5 (Tightness in M1, see e.g. [12, Theorem 12.12.3]) A sequence of
càdlàg processes .Xn/n�1 is tight w.r.t. M1 if and only if

1. it holds that

limC!C1limsupnP ŒkXnk1 � C � D 0I
2. for every � > 0, it holds that

8
<

:

limı#0limsupnP
�
! 00

ı
.Xn/ � �

� D 0
limı#0limsupnP ŒjXn.ı/ � Xn.0/j > �� D 0
limı#0limsupnP ŒjXn.1�/ � Xn.1 � ı/j > �� D 0

:

For sufficient criteria of tightness in J1 in a very general setting, one may refer
to [6, Chap. 3], or [4, Chap. 1] for a less general approach. Convergence criteria for
M1 and M2 may be found in [12, Chap. 12].

4 Extending J1 and M1 to More General Skorokhod Spaces

There are some generalisations we are interested in. The first concerns the time
interval: obviously, there is no problem with substituting Œ0,1� with some other finite
time interval Œ0; T �, but what about the entire half line Œ0; C1/? Secondly, we would
like to be able to consider the space DŒ0;T �.R

k/ and compare its topology with the
product topology DŒ0;T �.R/k . Finally, we would like to generalise the topology to
a more general range space E to get Skorokhod topologies on DŒ0;T �.E/.

This section is relatively short as I will simply point out possible restrictions and
the necessary modifications needed to generalise the topologies.

4.1 Extending Time

As mentioned above, there is no difficulty in extending the topology to DŒ0;T �.R/

for any finite time horizon T > 0. One simply replaces the 1s in all definitions by
T s.

Once we can define the topology on any finite time horizon, we would like to
extend it to DŒ0;C1/.R/ in the usual way: a sequence .fn/ � DŒ0;C1/.R/ converges
to f 2 DŒ0;C1/.R/ if and only if all restrictions to time intervals of the form
Œ0; T � converge to the restrictions of f to these intervals. However, this approach is
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doomed: the sequence given by fn WD 11Œ1C1=n;C1/ does not converge to 11Œ1;C1/

in DŒ0,1�.R/! The problem is that the endpoint of the time interval is different from
all other points. Since this problem disappears whenever it is a continuity point
of the limit function, one remedy is to say that fn converges to f if and only if
all restriction to the time intervals of the form Œ0; T �, with T a continuity point
of f , converge to the restrictions of f to these intervals. A different approach is
demonstrated in [1, Sect. 16].

It is possible to define a metric which induces this topology, see e.g. [12, Sects. 3.3
and 12.9] or [1, Sect. 16]. One checks that DŒ0;C1/.R/ is again a Polish space, see
e.g. [1, Theorem 16.3] in the case of J1. By our definition, compactness can be
checked by restricting to compact time intervals and using the compactness criteria
discussed above.

4.2 Product Skorokhod Topologies

The next step is to generalise the topologies to processes with values in Rk . The
easiest solution is to wait for the next section and take the range space Rk . However,
there is a second way we can get a topology on DŒ0,1�.R

k/ by using the fact that

DŒ0,1�.R
k/ 
 �

DŒ0,1�.R/
�k

in the sense of a bijection. From the point of view of topologies, this implies that we

may endow DŒ0,1�.R
k/ with the product topology on

�
DŒ0,1�.R/

�k
. It turns out that

this topology differs from the topology we would get from the next section. More
precisely, the product topology is weaker. For this reason, we speak of the strong
topologies obtained by viewing Rk as the range space and the weak topologies
obtained as product topologies. Intuitively, the product topology allows for different
time parametrisations in every component whereas in the strong topology, the same
time change is used for all components.

A detailed discussion of the weak M -topologies can be found in [12, Chap. 12].
Unfortunately, I have not found much literature on the weak J -topologies. It might
be that they are less commonly used. One use may be found e.g. in [5, Proof of
Lemma 4.3], see also [12, Theorem 11.5.1].

4.3 Towards General Range Spaces

Let E be a general Polish space. When going back to the definition of J1 in Sect. 3.2,
we only need to replace k f ı � � gk1 by

supt2Œ0,1�dE ..f ı �/.t/; g.t// ;
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where dE is a complete metric on E. It turns out that everything else goes through
without any problem. To generalise the compactness result, we only need to adjust
again the definition of the modulus of continuity to

! 0
ı.f / WD inffti gv

iD0
sup1�i�v sups;t2Œti�1;ti /dE .f .t/; f .s// :

One can verify that J1 preserves all the good properties as long as E is Polish, see
e.g. [6, Chap. 3].

One would hope that this is also possible with the M1-topology. However, its
definition relies on the fact that we can define the straight line between two points
in E. In other words, we need an additive structure to define M1, i.e. we can
generalise M1 only to Banach spaces. In this setting, the interval Œf .t1/; f .t2/� has
to be interpreted as the line

f.1 � ˛/f .t1/ C f̨ .t2/ W ˛ 2 Œ0,1�g

from f .t1/ to f .t2/. This restriction is another reason why J1 has become the more
prevalent topology.
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