
Introduction

The important questions about the pathogenesis of idio-
pathic scoliosis remain unanswered [23, 71, 81]. The most
favoured explanation at the present time is neurological:
that subtle muscle imbalance affects the growing spine,
causing bony deformity [13, 14, 15]. However idiopathic
scoliosis remains a pathological entity of unknown aetiol-
ogy [12].

This article begins with a speculative hypothesis, which
is then tested by literature review. Speculation can be ap-
propriate [58]: when it is wrong, it attracts no following;
when it is correct, it can be the beginning of a new field of
knowledge.

The hypothesis being examined is: “that in some pa-
tients with scoliosis, there is disproportionate neuro-os-
seous growth. The longitudinal growth of the spinal cord
fails to keep pace with the growth of the vertebral column
and, as a consequence, the spine buckles into a scoliosis
deformity” [90, 91].

This article attempts to refute the hypothesis. It starts
with a discussion of the morphology of idiopathic scolio-
sis, then examines the neurological anatomy and pathol-
ogy, and finally considers whether the literature suggests
why the spinal cord could be disproportionately short.

Morphology

If the spinal cord failed to keep pace with the growth of
the vertebral column, assuming that the spinal cord influ-
enced the surrounding bone, what morphological features
could be expected?

The length of the anterior spinal column would be
greater than the length of the posterior column, with loss
of thoracic kyphosis. In scoliosis there is disproportionate
growth [54, 109, 113]. The anterior spinal column grows
more than the posterior elements. The thoracic kyphosis
straightens out, with lordosis at the apex of the curve [25,
29, 75].
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Somerville [104] thought that the deformity was due to
a relative failure of posterior growth, and that scoliosis
could be explained by a posterior tether. A tether is sup-
ported by surgical experience in cases where posterior
spinal fusion is associated with a progression of the defor-
mity – the crankshaft phenomenon [24, 34].

The spinal cord would deviate to one side of the verte-
bral canal resulting in a lateral deviation of the spine. The
nerve roots on the concavity of the curve would then be
shorter than those on the convexity. The position of the
spinal cord is displaced in the vertebral canal towards the
concavity of both single and double curves [68, 91]. Roth
[98, 99] observed that the nerve roots on the concavity of
the curve were short, and he attributed the deformity to an
asymmetrical increase in neural tension. Roth proposed
that the primary cause of disproportionate neurovertebral
growth was neurological, but no other authors seem to
have taken this suggestion seriously.

With continued disproportionate growth, the anterior
column would buckle, with the vertebral bodies rotating
towards the convexity of the curve. The posterior elements
tend to stay towards the mid-line, whilst the vertebral
bodies rotate in the transverse plane towards the convex-
ity of the curve [1, 70, 97] (Fig.1). When the length of the

vertebral canal is compared with the length of the anterior
aspect of the rotated vertebral bodies, there is axial short-
ening of the canal, significantly related to the Cobb angle
and especially to the degree of vertebral rotation [90].

The rotation of the spine in the transverse plane would
be greater in the anterior column than in the posterior el-
ements. Stagnara [107] and Adams [1] thought that the
vertebrae turned uniformly about a point at the spinous
processes, as if they were held solidly there by a powerful
ligament. However, it has been shown that the rotation is
selective. The posterior elements rotate less than the ver-
tebral body [90, 113]. The vertebral canal does not take
part in the rotation, but it retains its original orientation in
the plane of the body [68]. The intervertebral foraminae
also retain their original orientation, and so, probably, do
the nerve roots [90]. Neither does the spinal cord rotate
with the scoliosis deformity – arteriography has shown
that the anterior spinal artery remains in the anterior mid-
line of the non-rotated cord [55, 68].

The axis of rotation of the vertebral bodies would be
about the position of the eccentric cord. Although the axis
of rotation is difficult to measure, the rotation of the ver-
tebral body appears to be about an axis at the site of the
spinal cord [91].

Disproportionate neuro-osseous growth might explain
why the apex of scoliosis is frequently in the lower thoracic
spine. The vertebral epiphyses close earlier in the upper re-
gion than in the lower thoracic spine [69], and the major
component of adolescent longitudinal spinal growth takes
place in the lower thoracic spine between T5 and T10 [99].
This part of the spine would be most vulnerable to defor-
mity if at that time there was disproportionate growth.

The age of onset and progression of scoliosis would be
during the most rapid period of growth. The deformity de-
velops and progresses during growth, and especially dur-
ing the adolescent growth spurt. This accelerated growth
starts about 1 year earlier in girls with scoliosis, when
compared with controls [7]. Idiopathic scoliosis can
progress after the cessation of growth, but probably as a
result of biomechanical factors.

Certain anthropometric characteristics of stature could
be expected. Imbalance of neuro-osseous growth may ex-
plain some of the unusual anthropometric features, such
as the increase in sub-ischial height and leg length, with-
out increase in sitting height [21, 84]. Accelerated bone
growth would increase both leg length and vertebral
growth, but, because of a short spinal cord, the sitting
height could be arrested whilst the curve progressed.

Morphology: summary

These morphological features have traditionally been ex-
plained as secondary to some unknown primary cause.
However, disproportionate growth between the spinal
cord and the vertebral column as a primary phenomenon
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Fig.1 Diagram of an apical vertebra, showing how the posterior
elements and the vertebral canal tend to retain their original orien-
tation, whilst the vertebral body rotates towards the convexity of
the curve. The spinal cord is eccentric in the vertebral canal, to-
wards the concavity of the curve



is an equally plausible explanation. None of these features
– lordosis at the apex of the curve; the posterior elements
largely retaining the mid-line position; the cord taking the
shortest route; the cord, nerve roots and vertebral canal re-
taining their original orientation; the vertebral bodies ro-
tating about the axis of the cord; the anthropometric fea-
tures – would contradict the hypothesis. These are exactly
the morphological changes that could be expected.

Neurology

For the hypothesis to be correct, one would expect evi-
dence that the spinal cord can modify the growth of sur-
rounding bone. Holtzer [57] thought that the spinal cord
influences local bone growth during early development,
much as the size of the brain determines the size of the
skull. Recent data confirm a close match between the ver-
tebral canal and the size of the spinal cord in early life
[63, 88, 92]. By contrast, the vertebral canal containing
the cauda equina below L2 does not match its contents
[110].

It may seem counter-intuitive to think of the soft fatty
spinal cord influencing the surrounding bone, and yet
medullary tumours in children cause expansion of the ver-
tebral canal and scallop the vertebrae. Hard bone is not re-
sistant to the influence of soft tissues during growth [27].

The important influence of the spinal cord on the sur-
rounding bone was also illustrated by Hamilton and
Schmidt [52], who described a patient with scoliosis
where the spinal cord had cut through the pedicles, bow-
stringing across a large curve within the extra spinal soft
tissues. This could only be the result of the spinal cord
modifying the growth of the adjacent bone.

Cord dysfunction could be expected in patients with
scoliosis. If the hypothesis is correct, and there is im-
paired cord growth, one might expect that scoliosis pa-
tients would develop serious neurological problems,
much as tethering of the distal cord usually presents with
abnormal neurology. Paraplegia occasionally complicates
untreated idiopathic scoliosis. McKenzie and Dewar [73]
reported 41 patients with paraplegia excluding tuberculo-
sis, but this was only 0.3% of their scoliosis population.
On the other hand, the scoliosis deformity might be a pro-
tective mechanism that helps to preserve normal neuro-
logical function.

Major neurological problems are unusual in idiopathic
scoliosis, but many patients do have subtle neurological
changes [11, 14, 31], which are thought to precede the
scoliosis as a primary phenomenon [11, 48]. However,
these changes may alternatively be a sign of a relatively
short spinal cord undergoing tension, with deformity oc-
curring beyond a certain threshold.

A stiff neck might be associated with scoliosis. The
spinal cord elongates and relaxes during neck flexion and
extension [9], so if in scoliosis the cord is relatively short,

some patients might have a stiff neck. Floman identified a
subgroup of patients with scoliosis whose neck flexion
was less than 50% of normal [40, 41].

There might be a high rate of postoperative neurologi-
cal complications. Acute neurological complications can
occur if the curve is straightened out by over-distraction,
but the reported incidence is less than 2% [72]. One might
have expected a higher overall incidence if the hypothesis
were correct.

Scoliosis could be associated with other spinal cord or
brain stem pathologies, and improvement in the scoliosis
could occur with effective neurosurgery.

• The brain stem. With the advent of magnetic resonance
imaging (MRI), abnormal neuroanatomy and unsus-
pected neurological pathologies have been identified in
the ventral pons and medulla in up to 27% of children
with scoliosis [19, 45, 47].

• Cervical syrinx and Chiari. There is increased preva-
lence of cervicothoracic syrinx and Chiari type-1 mal-
formation in children with adolescent idiopathic scolio-
sis [2, 49, 61, 85, 86], ranging from 17 to 47% [18, 37,
49, 66]. In addition, up to 85% of children with sy-
ringomyelia have a scoliosis [46, 50, 83, 114]. Hind
brain decompression in these patients frequently leads
to regression of the scoliosis [39, 101].

• Cervical cord tumour. Tachdjian and Matson’s large se-
ries [108] of medullary tumours recorded scoliosis in
27% of cases. Neurosurgical procedures for these le-
sions may halt the progress or reduce the severity of the
scoliosis [50, 83, 94].

• Neurofibromatosis. The presence of spinal deformity in
patients with neurofibromatosis is between 10 and
64%. Ten percent of patients with scoliosis have neu-
rofibromatosis [35], and many of these have spinal neu-
rofibroma.

• Friedreich’s ataxia. This condition, with progressive
degeneration of the spino-cerebellar tracts, is associated
with scoliosis in 75–100% of cases [16]. Although the
scoliosis is classified as neuromuscular, only 14% had a
classic neuromuscular-type thoraco-lumbar curve [64].
The scoliosis generally has the characteristics of ado-
lescent idiopathic scoliosis, and the curve is non-pro-
gressive in adulthood.

• Poliomyelitis. Curves are sometimes long and sweep-
ing, but some curves are similar to adolescent idio-
pathic scoliosis [8]. There is poor correlation between
the side of paralysis and the laterality of the curve [16].
Could the virus affect not only the anterior horn cells,
but also, secondarily, the mechanical properties of the
cord [89]?

• Spinal cord injury in children and experimental cord in-
jury in animals. Children with paralysis from spinal
cord injury above T10 invariably develop scoliosis [16,
67, 74]. Experimental division of the dorsal column and
posterior horn of the spinal cord in rabbits caused sco-
liosis unrelated to paralysis [5]. Intraspinal injection of 
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live, attenuated, oral poliomyelitis vaccines into a series
of monkeys during safety testing also resulted in inci-
dentally induced scoliosis in some of the monkeys [89].

• Distal spinal pathology. Distal spinal cord pathologies
usually present neurologically. Although these lesions
are sometimes associated with scoliosis [56], one might
have expected a higher incidence if a relatively short
cord is important in scoliosis.

• The conus might be high. In scoliosis, the cord is
shorter than the length of the rotated vertebral column
[90], but the level of the conus in scoliosis is not signif-
icantly different to its position in the normal population
[93].

The hypothesis could offer an explanation for the lateral-
ity of the scoliosis. Some authors think that the thoracic
spine is predisposed to rotate to the right [71, 112]. If that
is correct, and there was symmetrical reduction in cord
growth, then the direction of lateral deviation and rotation
would depend on this predisposition. However, about
45% of patients with neural pathology and scoliosis have
left-sided curves [2, 22, 37, 46, 50, 114]. If these patholo-
gies sometimes affect spinal cord growth asymmetrically,
the spine might then reasonably deviate to that side, and
half of these patients would have left-sided curves.

Neurology: summary

The subtle neurological abnormalities that are sometimes
seen in children with scoliosis, the rarity of major neuro-
logical problems, the frequency of scoliosis with cervical
cord pathologies such as Chiari, syringomyelia, tumour
and trauma, and sometimes with regression after treat-
ment, is not incompatible with the hypothesis.

Uncoupled neuro-osseous growth

How does the spinal cord grow in length?

The anatomy of spinal cord growth

By 22 weeks of intrauterine life the conus has risen to L2
[110], and thereafter the length of the cord matches the
length of the growing vertebral column. The average
length of the spinal column is 19.5 cm at birth, and it in-
creases to 44.5 cm by 17 years of age. The T1–S1 spinal
segment grows at 0.9 cm per annum from 5 to 10 years of
age, and then more rapidly, at 1.8 cm per annum, during
the adolescent growth spurt [30].

Normal dynamic changes in the cord

When relaxed, the angles of intersection of the collage-
nous elements in the spinal cord are folded with a “tissue

reserve”. Then, as the neck flexes, the vertebral canal
elongates and the cord lengthens. The parenchymal fibres
are stretched and pulled out smoothly, allowing up to 18 mm
of excursion of the upper spinal cord [9].

Growth in response to stretch

Leg-lengthening procedures have shown that peripheral
nerves grow in response to slow stretch, although neuro-
physiological abnormalities are not uncommon [44]. A
similar physical process may occur in the spinal cord,
growing in length in response to bone growth. Adequate
oxygenation is necessary for nerve growth in leg length-
ening [60]. Similarly, in the spinal cord, Breig [9] thought
that over-stretching reduced the lumen of the supplying
blood vessels, and caused cord damage by hypoxia.

How could the growth of the spinal cord be impaired?

Abnormal elastic system

If the spinal cord grows in response to stretch, its growth
may be impaired by an abnormality in the elastin fibre
system. There is an association between joint laxity and
idiopathic scoliosis [6, 10, 111], and up to 60% of children
with Marfan syndrome have scoliosis with characteristics
similar to idiopathic scoliosis [95, 106]. This led Hadley-
Miller and colleagues to examine the elastic fibres of the
ligamentum flavum in patients with scoliosis but without
Marfan syndrome, and they found an underlying patho-
logical change in 82% of patients [51].

Deficient hormonal environment

It used to be thought that the growth spurt of the vertebral
column was mainly due to the increase in growth hor-
mone – a hormone that does not directly affect nervous
tissue [100]. However, the control of growth is complex
and involves the interaction of many hormones and
growth factors, such as thyroxine, growth hormone and its
releasing factor, various growth factors, and modulators
such as calmodulin [71].

Reduced melatonin

Melatonin is thought to have a role in scoliosis, because
the deformity occurs in about 50% of pinealectomised
chickens [4, 33]. Chickens with scoliosis were heavier
than those without [87]. A pineal autograft may prevent
the deformity [76]. Patients with progressive scoliosis had
a 35% decrease in melatonin levels through the night [32,
75]. Melatonin deficiency may be present in only a sub-
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group of patients [38]. It may have a secondary role, by
interaction with growth mechanisms [71]. Alternatively,
reduced melatonin may reflect the deficiency of another
unidentified product of the pineal gland [4].

Increased calmodulin

Calmodulin is a calcium-binding receptor protein, which
regulates cellular actin and myosin-contractile proteins
that are present in skeletal muscle and platelets. Surpris-
ingly, platelet calmodulin was reported to be high in pa-
tients with idiopathic scoliosis [20], and it is a better pre-
dictor of progression than Risser’s sign [62]. The presence

of these changes in cells outside the spine suggests that an
underlying systemic disorder may involve the structure or
the function of the protein contractile system [71].

Studies of skeletal muscle also suggest that there may
be a systemic disorder in scoliosis. Although abnormality
of the paraspinal muscles has long been considered as a
cause of scoliosis [105], Yarom and Robin [116] found
myofilament disarray and a marked increased muscle cal-
cium not only in spinal muscles, but also in distal muscles
like the gluteus maximus. They thought that patients with
scoliosis might have a generalised membrane defect –
namely an impaired calcium pump. Furthermore, inferior
bone quality has been observed in idiopathic scoliosis,
with changes in bone density at sites remote from the
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Fig.2 A flow chart showing
how the growth of the spinal
cord might be impaired, and
how continued bone growth
could result in scoliosis



spine [17]. Melatonin may modulate calcium-activated
calmodulin [32]. It binds to calmodulin with high affinity,
and acts as a calmodulin antagonist. It may modulate di-
urnally many of the cellular functions that are involved in
calcium transport [71].

If in scoliosis there is a systemic cell membrane defect
with abnormal function of the contractile proteins, are
these changes also present in the contractile system of the
cells of the spinal cord [78], and do they affect cord
growth?

Failure of melatonin to scavenge free radicals, 
resulting in spinal cord stretch-injury

In vitro stretch-injured astrocytes result in an increase in
cellular phosphatidylcholine biosynthesis [65], and this is
prevented by free radicals scavengers, especially mela-
tonin [43]. Melatonin is a powerful antioxidant [79, 96],
protecting against oxidative ischaemic damage [26] and
traumatic brain injury [80] and facilitating the recovery of
the spinal cord after experimental injury [42].

Stretching of astrocytes in vivo probably causes oxida-
tive damage to the membranes of mitochondria [65], un-
less free radicals are quickly scavenged. Melatonin is one
of the potent scavengers protecting against this cellular
damage [42, 43].

Is there evidence of increased bone growth?

If scoliosis is the result of uncoupling of neural and os-
seous growth, then vertebral growth and levels of growth
hormones are equally important. There are conflicting re-
ports about the role of growth-promoting hormone as an

aetiological factor [82, 103, 115]. Girls with scoliosis tend
to be taller than their peers [3, 85, 102], and the length of
their spines is considerably longer than in the controls [7].
Scoliosis progresses with the growth spurt [53], and there
is an association between the deterioration of scoliosis
and periods of rapid growth [36]. Tallness also conveys a
bad prognosis [28]. Only one of 13 monozygotic twins
was discordant for scoliosis, the unaffected twin being
less mature than the one with scoliosis [59].

Some authors have reported progression of scoliosis
during growth hormone treatment [36], and Machida and
colleagues [77] suggested that a surge of growth hormone
following pinealectomy, may be an important factor.

Uncoupled neuro-osseous growth: summary

The spinal cord probably grows in response to stretch. It
requires healthy cells, a good circulation and a satisfac-
tory environment of hormonal and growth factors. Neural
growth may become uncoupled from bone growth for a
variety of reasons, including an abnormality of the elastic
system, tumour, trauma and neural degeneration. Because
pineal deficiency modulates calcium-activated calmod-
ulin, the spinal cord contractile proteins may be affected
and neural cells fail to grow in response to stretch. In ad-
dition, scavengers may not satisfactorily mop up the free
radicals that are produced by stretch, causing cellular
damage and inadequate cord growth. If the growth of the
spinal cord fails to respond to continued or increased bone
growth, scoliosis may be the result (Fig.2).

It is possible that this hypothesis will be found want-
ing, but it is not contradicted by current literature. It justi-
fies more research into the mechanical and cellular prop-
erties of the spinal cord in scoliosis patients.
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