
Introduction

Various operative techniques are described for restoration
of form and function of the thoracolumbar spine for pa-
tients with unstable traumatic lesions, tumors, or post-

traumatic deformity [1,2 3, 7, 8, 9, 10, 11, 13, 20, 21, 25,
27, 28, 29, 34, 35, 36, 39, 40]. The standard procedure
most commonly practised these days is posterior stabiliza-
tion with an angularly stable internal fixation device [4, 5,
6, 22, 24].
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the displacement was recorded with
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curve. The mean ultimate compres-
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A combined posterior-anterior approach should allow
immediate weight-bearing of the anterior spine and reli-
able fusion with no loss of correction [5, 6, 7, 11, 13, 20].
However, this approach has its own drawbacks: on the
one hand we have observed increased morbidity as a re-
sult of harvesting strut grafts from the iliac crest while, on
the other, complications specific to the procedure itself
have occurred, e.g. healing problems or graft fracture.
There are still no long-term results confirming the superi-
ority of this method and justifying the extra effort in-
volved [4, 6, 23].

Synex (STRATEC Medical, Oberdorf, Switzerland) is
a new titanium implant for vertebral body replacement de-
signed to avoid the disadvantages of bone removal from
the iliac crest and, at the same time, restore normal load-
bearing in the anterior spine and normal load-sharing be-
tween anterior and posterior column of the spine (Fig.1 A).
The range of indications for the implant include traumatic
lesions, post-traumatic kyphosis, tumors, and infections
of the thoracolumbar spine. Synex is a hollow titanium
implant that can be distracted in situ after interbody place-
ment in the spinal lesion, with a view to ensuring a per-
manently secure fit with axial loadability and minimizing
the risk of secondary dislocation and loss of correction.
The operation itself is made easier by the fact that the im-

plant is smaller than the anterior defect when first fitted,
and is only distracted to the desired height with a special
distractor after precise positioning (Fig.1 B). Our own
clinical experience with MOSS (DePuy Orthopädie
GmbH, a Johnson&Johnson Company, Sulzbach, Ger-
many) has shown that the placement may be problematic.
A subsequent operation as a third step for the tensioning
of posterior fixation was recommended [34, 35].

We performed comparative biomechanical tests to in-
vestigate the compressive performance of implants in the
vertebral bodies. For comparison purposes we tested the
corresponding size of the MOSS vertebral body replace-
ment spacer (“Harms mesh cage”) fitted with an internal
stabilization ring, as this implant has already been in use
for several years (Fig.2). This compression testing at con-
stant speed should quantify, firstly, the displacement of
both implants as they “settle,” i.e., sink into the end-plates
of the vertebral body and, secondly, the compression
forces transmitted at the interface between implant and
vertebral body. With this test series we wanted to deter-
mine whether the end-plates of the newly developed im-
plant were at least as suitable as those of the MOSS spacer
for transmitting compression forces or whether rapid col-
lapse is likely to occur.
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Fig.1A, B Synex and MOSS. A Original implants, B Synex in the
distractor

Fig.2A–D Test implants. A MOSS with attached punch for fixa-
tion in the test machine, B Synex test punch, C top view of MOSS
with inserted internal stabilization ring, and D top view of Synex
test punch



Materials and methods

We used exclusively freshly collected human vertebral body spec-
imens of L1 with no macroscopically visible pathological or severe
degenerative changes. After removal, the vertebral bodies were
freed of adjoining tissue, sealed in plastic bags and frozen to
–18°C. The cortical and cancellous bone mineral densities (BMDcort
and BMDcanc) of the specimens were determined in a water-bath 
by dual-energy quantitative computed tomography (DE-QCT; 
Somatom plus S, Siemens, Munich-Erlangen, Germany), using
OsteoCT software and a reference phantom [12, 15, 17, 19, 26, 31,
32, 33]. The end-plates of the individual vertebral bodies were em-
bedded in hard plaster for the trials, and the vertebral body end-
plates were aligned as horizontally as possible (Fig.3). This solid
hard plaster bed was placed on the horizontal baseplate of the test
device. Slight movements of the vertebral bodies were excluded by
plaster embedding with a horizontal cutoff at the base.

The test conditions formulated by Wilke et al. [37] were ob-
served during handling of the specimens in the preparatory and test
phases. Twelve specimens of L1 vertebral bodies were assigned to
two comparable groups of six vertebrae, matched for age of death
and bone mineral density (matched pairs). The specimens in group
M were tested with MOSS, those of group S with Synex.

We tested the following two implants:

• MOSS vertebral body replacement (“Harms mesh cage”) size 3
with an oval cross-section of 22×28 mm. The implant was fitted,
at the “test end”, with the original internal stabilization ring,
which was secured inside the cage with three screws. The ring
was deliberately not fitted flush with the edge of the cage, but
was countersunk by 2 mm, as described for the use in vivo [34].
The opposite end (“machine end”) of the cage was equipped
with a steel punch specially produced for these tests. The punch
was connected to the titanium cage, without twisting, via a sec-
ond original internal stabilization ring. The vertical compression
force was applied to the upper end of the cage via the plate on
this punch (Fig.2).

• Synex vertebral body replacement. For the tests we used a solid
titanium punch specially produced for the tests, whose “test end”

was constructed to match that of the end-plate of the original im-
plant, with an oval cross-section of 25×28 mm. We selected this
type of test implant since it would not have been possible to
clamp an original Synex in the test device (Fig.2).

We conducted these tests at the Institute for Materials Testing,
Hannover Technical University. The solid rods at the “machine
end” of both test implants were clamped in the hydraulic chucks of
the universal test machine [100 kN universal test machine (electro-
mechanical); Walter+Bai Company, Löhningen, Switzerland, type
LFEM 100/1400, serial no. 339 with hydraulic chucks; control
panel with digital measuring and control electronics, model PCS-
200, no. 68 with provision for hydraulically-operated chucks; semi-
automated extension sensor MFN-A500/2; class 1 force measure-
ment accuracy according to DIN 51220–23, relative read-out error
q<0.21% (specification: q<0.5%); calibration certificate F001400
dated 09.06.98], so as to position them in vertical alignment above
the “test end”. The vertebral body was placed on the horizontal
baseplate of the test machine in a horizontal and fixed position in
relation to the axial direction of the compression force (Fig.4). The
specimen was positioned such that the implant was aligned with the
center of the end-plate in the sagittal and frontal planes. The center
of the end-plate was defined as half way along the sagittal and
transverse diameter of the vertebral body. The position was only
checked by sight, following the implantation in vivo. The movable
hydraulic head of the test machine, with the implant clamped in po-
sition, was manually lowered until the implant made contact with
the upper end-plate (compression force of F0<10 N). This position
was the starting point (distance d0) of every test. The machine was
switched on and the hydraulic head with fitted implant moved ver-
tically downward at a constant speed of v=5 mm/min. The elec-
tronic measuring unit of the test machine plotted the distance d
travelled by the hydraulic head plus implant and the compression
force F, determined by the electronic sensor incorporated in the
head, as a continuous load-displacement curve. Every test ended
when the end-plate of the specimen had completely and very per-
ceptibly caved in, with a resulting clear drop in force.
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Fig.3 Vertebral body specimen embedded in hard plaster

Fig.4 A Overview of the universal test machine. B, C Detail view
of the electromechanical test unit with specimen and mounted
Synex (B) and MOSS (C) implant



The values determined for distance d travelled and force F
were tested for normal distribution by the Kolmogorov-Smirnov
method with significance correction according to Lilliefors: since
normal distribution was assumed, we were able to compare for sta-
tistically significant differences between the two groups using the
t-test.

Results

The two test groups showed no significant differences as
regards age of the donor or BMD of the L1 specimens
used, and could thus be considered as equivalent (Table 1,
Table 2). In the S group (Synex) we used vertebral bodies
from one female and five male donors with a mean age of
41.7 (range 31–55) years. The average mineral density of
cancellous bone, BMDcanc, was 117.7 mg/cm3 (range
42.9–167.4 mg/cm3), while that of cortical bone, BMDcort,
was 261.4 mg/cm3 (range 146.8–323.0 mg/cm3). In the M
group (MOSS) the specimens originated from 4 male and
2 female cadavers with an average age of 43.3 (range
23–60) years. The mean BMD values were 112.8 mg/cm3

(range 46.3–164.4 mg/cm3) for BMDcanc and 274.8 mg/
cm3 (range 137.8–379.6 mg/cm3) for BMDcort.

The force F0 determined at the starting point d0 of
every test was identical in the two groups: F0=4.2 N(range
0.7–8.0 N) in group S and F0=4.2 N (range 2.0–8.0 N) in
group M. In both groups the compression force was in-
creased after the start of the test, whereupon the implants
“settled” onto the end-plate of the specimens. This was

followed by a period of force increase until, finally, the
vertebral body end-plate caved in and the force dropped
(Fig.5).

The mean distance travelled, dmax, until the onset of
maximum compression force, Fmax, in the S group, was
2.87 mm (range 2.10–3.53 mm), which was half the mean
distance of 5.83 mm (range 4.40–6.86 mm) covered in the
M group. This difference was significant (P<0.001). The
force F0 was identical in both groups at the start of the
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Table 1 Data for specimens and results measured in the tests with Synex (group S)

Age BMDcanc BMDcort dmax F0 (N) F0.5 mm (N) F1.0 mm (N) F1.5 mm (N) F2.0 mm (N) Fmax (N)
(years) (mg/cm3) (mg/cm3) (mm)

N 6 6 6 6 6 6 6 6 6 6
Mean 41.7 117.7 261.4 2.9 4.2 240.7 861.8 1806.2 2605.2 3395.5
Median 41.0 130.5 274.9 2.9 3.3 230.5 809.0 1767.0 2460.5 3096.0
SD 10.5 47.1 65.3 0.5 3.1 159.3 428.6 946.5 1206.8 1312.0
Min 31.0 42.9 146.8 2.1 0.7 30.0 342.0 854.0 1416.0 2109.0
Max 55.0 167.4 323.0 3.5 8.0 502.0 1588.0 3421.0 4648.0 5446.0
P-valuea ∅ ∅ ∅ <0.001 ∅ ∅ 0.037 0.024 0.01 ∅

a Significance of difference with the comparator group (t-test)

Table 2 Data for specimens and results measured in the tests with MOSS (Group M

Age BMDcanc BMDcort smax F0 (N) F0.5 mm (N) F1.0 mm (N) F1.5 mm (N) F2.0 mm (N) Fmax (N)
(years) (mg/cm3) (mg/cm3) (mm)

N 6 6 6 6 6 6 6 6 6 6
Mean 43.3 112.8 274.8 5.8 4.2 211.0 399.0 714.2 925.0 2719.2
Median 47.0 114.0 291.0 6.1 3.7 223.0 400.0 584.5 752.5 2453.0
SD 15.5 44.3 85.8 0.9 2.4 109.1 198.8 346.1 445.9 1466.3
Min 23.0 46.3 137.8 4.4 2.0 48.0 175.0 430.0 491.0 826.0
Max 60.0 164.4 379.6 6.9 8.0 336.0 682.0 1310.0 1638.0 4741.0
P-valuea ∅ ∅ ∅ <0.001 ∅ ∅ 0.037 0.024 0.01 ∅

a Significance of difference with the comparator group (t-test)

Fig.5 Load-displacement curves of the two specimens with high-
est bone mineral density (BMD) in each group. The cancellous
BMD (BMDcanc), mean ultimate compression force (Fmax) and
mean maximum displacement (dmax) for the two groups were:
group S BMDcanc=167 mg/cm3, Fmax=5446 N, dmax=3.0 mm; group
M BMDcanc=164 mg/ cm3, Fmax=4741 N; dmax=6.0 mm



measurement (d0). While the difference was not statisti-
cally significant after a distance travelled, d ,of 0.5 mm, a
trend towards a higher force was apparent in the S group
(F0.5mmS=241 N vs F0.5mmM=211 N; P=0.81). The differ-
ence in the compression forces F determined thereafter in-
creased with distance travelled and, after distances of
1.0–2.0 mm, the average force was over twice as high in
the S group (Table 1, Table 2, Fig.6). The differences
were significant for d=1.0 mm (P=0.037), d=1.5 mm
(P=0.024) and d=2.0 mm (P=0.01). The average maxi-
mum force Fmax after a distance of dmax tended to be
higher in the S group (FmaxS=3396 N vs FmaxM=2719 N),
though the difference failed to reach the level of statistical
significance (P=0.419).

There was a statistically significant linear correlation
in both groups between the maximum compression force
Fmax and cancellous bone mineral density, BMDcanc, of the
respective vertebral body (Fig.7, Fig.8). In the S group,
the correlation coefficient according to Pearson was
RS=0.836 (P=0.038) and, in the M group cM=0.982
(P=0.001). The following regression equations were de-
termined for the assumption of this linear correlation:

As an approximate value we calculated a theoretical
“standard compression force” Fstand, based on a “standard
BMD” of 100 mg/cm3 as a quotient of compressive force
and BMD, multiplied by a factor of 100:

Comparing this approximate figure, we also determined
significant differences, with a higher force in the S group
in each case for the force Fstand at 1.0 mm, 1.5 mm and 
2.0 mm (Table 3). The “standardized” maximum force in
the S group, Fstand (max), was  3094 N, which was much
higher than the equivalent value of 2285 N for the M
group, though the difference just failed to reach the level
of statistical significance (P=0.093).

stand
canc

F
F 100

BMD
= ⋅

max(MOSS) cancF 32.5 BMD 946= ⋅ −

max (Synex) cancF 23.3 BMD 654= ⋅ +
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Fig.6 Grouped error bar chart showing mean values ±1 standard
deviation (SD) for compression force F at 0.5–2.0 mm and the
maximum compression force Fmax

Fig.7 Regression lines showing the significant correlation be-
tween the maximum compression force Fmax and trabecular bone
mineral density, BMDcanc, in group S. The correlation coefficient
R2 was 0.6982

Fig.8 Regression lines showing the significant correlation be-
tween the maximum compression force Fmax and trabecular bone
mineral density BMDcanc in group M. The correlation coefficient
R2 was 0.9636
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Discussion

General test conditions and guidelines for the treatment of
human vertebral body specimens have been formulated by
Wilke et al. [37]. These were taken into account and ob-
served during the tests.

Before we conducted the tests, the BMD values of all
specimens were determined by DE-QCT, currently consid-
ered to be the method of choice [12, 15, 17, 19, 26, 31, 32,
33]. However, since the results of series investigations into
BMD have shown considerable dispersion, only a range of
physiological reference values exist. Reference values of
93–145 mg/cm3 have been reported for trabecular bone
density for the age range of 20–59 years [12]. Ito et al. [17]
determined values of 95.3–112.2 mg/cm3 for trabecular
BMD and 228.8–379.0 mg/cm3 for cortical BMD. But
these figures were only comparable to a limited extent,
since we anticipated a systematic difference when deter-
mining bone density of isolated vertebral bodies in a water
bath. In our test series the standardized measurement of
BMD was crucial in ensuring identical preconditions in
both test groups. The bone densities determined for our
specimens were comparable to the in vivo figures.

The literature offers no uniform recommendations for
the test conditions in compression trials of this type, and
test speeds of 5 mm/min [14, 30], 0.4 mm/s [18], 35 mm/
min [38] and 2.54 mm/s [16] are described in the litera-
ture. Since no group of authors offers any rationale for
their respective test speed, we assumed that the various
speeds were determined by the test machine employed in
each case. We selected a constant speed of 5 mm/min, a
fairly slow test speed that should ensure improved obser-
vation of any changes at the interface between implant
and vertebral body. A current test certificate confirmed
that the test machine used met all the official quality cri-
teria. Additionally, the test series was professionally su-
pervised at the Materials Testing Laboratory of the Han-
nover Technical University.

All 12 tests proceeded as expected. Since no irregular-
ities in the load-displacement curve and no positional
changes of the specimens or changes in the plaster em-
bedding were observed, all 12 tests could be evaluated.

In both tested implants – and as expected – a steady
rise in compression force during the first few millimeters

of the test run resulted in a “settling” of the prominent
ends of the implant in the end-plate of the vertebral body.
During testing of the Synex implant, this proved to be a
significantly shorter distance, even with a sharp rise in
force, thanks to the surface arrangement of 1-mm-high
tips whose cross-sections increase towards the implant
surface. The MOSS implant sank into the end-plate with a
flatter rise in compression force until the internal stabi-
lization ring, countersunk to a depth of 2 mm, checked up
against the end-plate, whereupon the force increased more
sharply. The maximum compression force Fmax measured
for the MOSS implant was reached only after it had cov-
ered double the distance, requiring an average of 5.8 mm
of collapse into the vertebral body end-plate until the
point of maximum resistance, compared to an average
distance of 2.9 mm for the Synex. This 2.9-mm discrep-
ancy could represent a small additional loss of correction
when using the MOSS implant compared with Synex.

A margin of less then 2 mm would lead to earlier con-
tact between the stabilizing ring and the end-plate, likely
resulting in less displacement and higher compressive
forces with MOSS. The use of the Harms cage in vivo
was also described without the inner stabilizing ring [34],
under which conditions one would expect a decreased
maximum compressive force and greater settling of the
implant into the vertebral body.

Comparing the mean maximum compressive forces of
both implants, we demonstrated a difference of 20% fa-
voring Synex (Synex 3396 N, MOSS 2719 N), which was
not significant. Comparison of the contact areas of the
two implants (Fig.2) revealed a difference of 16% favor-
ing Synex (Synex 360 mm2, MOSS 302 mm2). Due to the
higher difference in the mean maximum compressive
forces, we also calculated a higher mean maximum point
loading, which was revealed to be 9.4 N/mm2 for Synex
and 9.0 N/mm2 for MOSS. Although these differences
may indicate a better compressive performance with
Synex, the differences were not significant.

The following average maximum compression forces
were measured with various grafts or implants against the
vertebral body end-plate by Hollowell et al. [16]: 1473 N
(“Harms mesh cage”, 17×22 mm), 1165 N (iliac crest
bone graft), 1038 N (humerus), 1037 N (3×ribs) and 537 N
(1×rib). The deformation (distance covered) measured for

Table 3 Theoretical compres-
sion forces Fstand (N) with
Synex (group S) and MOSS
(group M), calculated accord-
ing to a standardized bone den-
sity BMDcanc=100 mg/cm3 ac-
cording to:

aSignificance of difference
with the comparator group 
(t-test)

stand
canc

F
F 100

BMD
= ⋅

Fstand 0.5 mm Fstand 1.0 mm Fstand 1.5 mm Fstand 2.0 mm Fstand max

S M S M S M S M S M

Mean 185.4 211.8 739.5 369.4 1585.2 674.8 2355.7 854.3 3094.2 2285.2

Median 194.7 225.3 739.3 400.1 1693.7 746.7 2411.0 888.1 2892.9 2160.1

SD 78.3 108.2 175.3 125.9 515.1 238.0 812.8 266.2 987.5 406.2

Min 69.9 30.9 490.8 123.6 752.1 279.9 1185.9 406.7 2096.6 1784.0

Max 299.9 358.5 948.6 479.3 2043.6 928.7 3531.5 1129.3 4916.1 2883.8

P-value ∅ 0.002 0.006 0.002 ∅ (0.093)
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the “Harms mesh cage” was 5.9 mm, i.e., almost identical
to our own results.

Hollowell et al. [16] also mentioned a statistically sig-
nificant correlation (P<0.001) between BMD and maxi-
mum compression force, though they do not provide any
figures to demonstrate the statistical quality of this correla-
tion. Hansson et al. [14] found a linear correlation between
BMD and maximum compression force, calculating a sig-
nificant (P<0.01) correlation coefficient of 0.81–
0.90. In compression tests with “interbody cages” between
vertebral bodies, Jost et al. [18] observed a significant
(P<0.0005) linear correlation between the above variables.

We calculated regression equations for Synex and
MOSS for the significant linear correlations observed be-
tween the cancellous bone mineral density and the maxi-
mum compression force. The constant determined in
these calculations for MOSS was a negative figure
(–946), which demonstrates the unreliability of the linear
correlation since, in practice, one would only expect a
force with a positive figure with a spongious bone mineral
density set at 0. Curve adjustments for an exponential
(non-linear) regression likewise showed good correspon-
dence on the graph, with a significant (PSynex=0.019;
PMOSS=0.0001) correlation (Fig.9, Fig.10), suggesting
that an exponential correlation might also be possible.
Tests with larger sample sizes would be needed for a more
accurate analysis of the statistical relationship.

Although no data are currently available on the specific
compression forces that are actually generated in the inter-
vertebral space in vivo, clinical experience has shown that
iliac crest bone grafts or MOSS perform their function be-
tween stabilized segments without any extreme loss of cor-
rection. The question regarding the proportion of the load

borne by the vertebral body replacement or graft and the
degree of the relieving effect provided by anterior or poste-
rior implants remains unanswered. Many other factors with
a potential influence on the therapeutic outcome are in-
volved; for example, the surgical technique and the success
of any intervertebral fusion. The results presented here,
therefore, demonstrate only a theoretical advantage in fa-
vor of Synex, the significance of which needs to be as-
sessed in further biomechanical tests with a three-dimen-
sional spinal loading simulator or in clinical trials.

Conclusions

1. In comparison we observed significantly higher com-
pressive forces with Synex with an average 2.9 mm
less bony collapse on compression because of the 2 mm
rim of the MOSS cage above the stabilization ring
compared with the 1 mm height of the milling on the
surface of the Synex implant. This might lead to slight
reduction in postoperative settlement into kyphosis
when the Synex implant is used.

2. We determined a strong correlation between trabecular
BMD and the maximum compressive forces. A QCT
scan in addition to the standard preoperative CT scan
might be a helpful tool in detecting patients with a
higher risk of postoperative implant failure.
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Fig.9 Curve adjustment for exponential regression between the
maximum compression force Fmax and trabecular bone mineral
density BMDcanc in group S. The correlation coefficient R2 was
0.7984

Fig.10 Curve adjustment for exponential regression between the
maximum compression force Fmax and trabecular bone mineral
density BMDcanc in group M. The correlation coefficient R2 was
0.9939
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