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Abstract
Purpose  An osteoporotic vertebral fracture (OVF) is a common disease that causes disabilities in elderly patients. In particu-
lar, patients with nonunion following an OVF often experience severe back pain and require surgical intervention. However, 
nonunion diagnosis generally takes more than six months. Although several studies have advocated the use of magnetic 
resonance imaging (MRI) observations as predictive factors, they exhibit insufficient accuracy. The purpose of this study 
was to create a predictive model for OVF nonunion using machine learning (ML).
Methods  We used datasets from two prospective cohort studies for OVF nonunion prediction based on conservative treat-
ment. Among 573 patients with acute OVFs exceeding 65 years in age enrolled in this study, 505 were analyzed. The demo-
graphic data, fracture type, and MRI observations of both studies were analyzed using ML. The ML architecture utilized 
in this study included a logistic regression model, decision tree, extreme gradient boosting (XGBoost), and random forest 
(RF). The datasets were processed using Python.
Results  The two ML algorithms, XGBoost and RF, exhibited higher area under the receiver operating characteristic curves 
(AUCs) than the logistic regression and decision tree models (AUC = 0.860 and 0.845 for RF and XGBoost, respectively). 
The present study found that MRI findings, anterior height ratio, kyphotic angle, BMI, VAS, age, posterior wall injury, 
fracture level, and smoking habit ranked as important features in the ML algorithms.
Conclusion  ML-based algorithms might be more effective than conventional methods for nonunion prediction following 
OVFs.
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Introduction

Osteoporotic vertebral fractures (OVFs) comprise a major 
health concern for the elderly population [1]—they degrade 
the quality of life and reduce life expectancy [2, 3]. Although 
most OVFs heal within a few months [4], some exhibit 

nonunion even after conservative treatment, including osteo-
porotic medication, bed rest, and braces [4]. Nonunion can 
lead to severe back pain and neurological deficits [5, 6], 
often requiring surgical intervention [7]. As the efficacy of 
surgical intervention is higher when it is administered early 
[8], early nonunion prediction is essential for effective treat-
ment. Several risk factors for nonunion have been reported 
in the literature [5, 9–13]—in particular, magnetic resonance 
imaging (MRI) has been extensively utilized for prediction. 
However, there is still room for improvement in conventional 
methods for nonunion prediction.

Recently, machine learning (ML) has been widely 
incorporated in prediction models [14, 15]. The most 
widely used ML methods are supervised learning meth-
ods [14], which search for algorithms that produce general 
hypotheses based on externally supplied instances and out-
put predictions for future instances [15]. Accurate disease 
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outcome prediction is one of the most interesting and chal-
lenging tasks for physicians. ML-based techniques can be 
used to discover and identify patterns and relationships 
between them by analyzing complex datasets [16]. Con-
sequently, ML methods have become popular tools among 
medical researchers. There are several ML methods, such 
as general linear regression models, decision trees, random 
forests (RFs), and extreme gradient boosting (XGBoost) 
[17, 18]. In this study, we hypothesized that these models 
would improve the prediction accuracy of conventional 
nonunion prediction models. The purpose of this study is 
to create an ML-based nonunion prediction model.

Materials and methods

Study design

We consider datasets based on two previously conducted 
multicenter cohort studies[4, 19] (Fig. 1). The first cohort 
study was conducted to investigate the risk factors for 
poor prognosis in OVF patients at 25 institutions between 
2005 and 2009. The second cohort study was conducted to 
investigate changes in MRI observations six months after 
the OVF onset at 11 institutions between 2012 and 2015. 
The inclusion and exclusion criteria, treatment protocols, 
and MRI protocols of the two cohort studies were identi-
cal, as described here.

Written informed consent was obtained from all study 
participants. Each study protocol was approved by the Insti-
tutional Review Board of the representative institution.

Patients

Details of the patients are described in our previous studies 
[4, 19]. The inclusion criteria were age greater than 65 years 
and diagnosis of fresh OVF. The exclusion criteria were 
pathological fractures, two or more new fractures, malignant 
cancer, dementia, and high-energy injuries. In the first cohort 
study, 485 patients were enrolled. Among them, 15 died, 
six underwent surgery, 11 were excluded because of other 
diseases, and 33 were lost during the follow-up procedure. 
Consequently, 420 patients completed the six-month 
follow-up. Finally, 352 patients (72.6% follow-up rate) with 
the required data, including examinations and completed 
questionnaires at both the time of enrollment and the six-
month follow-up, were analyzed in the present study. In the 
second prospective multicenter cohort study, 218 patients 
with symptomatic OVFs were eligible for participation. 
Among them, three died, eight were excluded because 
of other diseases, and 54 were lost during the follow-up 
period. As a result, 153 patients (125 females and 28 males) 
completed the six-month follow-up (70.2% follow-up rate) 
and were analyzed in the present study.

At the time of enrollment, the severity of pain was 
subjectively assessed using the Visual Analogue Scale 
(VAS), which identified the average level of back pain 
experienced by patients over the week preceding the study.

Imaging assessment

At the time of enrollment and the six-month follow-up, 
patients were examined using plain radiography. The 
kyphotic angle of the fractured vertebrae was determined 
using the segmental angle in weight-bearing positions. 
The relative height of the anterior wall (%) of the 
affected vertebra was calculated as follows: [2 × affected 
vertebral height/(lower vertebral height + upper vertebral 
height)] × 100[4]. Bone mineral density was measured at 
the toe and hip in the first and second cohorts, respectively.

MRI

The patients were examined using MRI at the time of enroll-
ment and the six-month follow-up. The signal change pat-
terns within the fractured vertebral bodies identified via MRI 
were classified based on midsagittal and bilateral parasagittal 
(medial aspect of pedicles) T1WI and T2WI. Signal change 
patterns on T1WI were classified into three categories—
diffuse low, confined low, and no signal change—whereas 
those on T2WI were classified into four categories—high 

Data set n=505

Cohort data 1
2005-2009
n=352

Cohort data 2
2012-2015
n=153

Conservative treatment for 6 months

Machine Learning to predict nonunion at final follow-up

Classifier selection: 
Logistic regression, Decision tree, Random forest, Xgboost

Training data (70%)

Cross-validation (5- fold): 
Hyperparameter tuning, Feature selection

Test data (30%)

Model evaluation

Fig. 1   Study flow chart
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(Fig. 2A), confined low, diffuse low (Fig. 2B), and no sig-
nal change. The intensity of the high signal changes on 
T2WI was defined to be similar to that of the cerebrospinal 
fluid. If at least two of the three slices exhibited a low sig-
nal change over more than 50% of the area of the vertebral 
body, the observation was considered to be a diffuse low 
signal change. With respect to intra- and inter-reliability, 
the kappa values of the MRI observations were in the range 
of 0.712–0.942 [4].

Nonunion definition

Plain radiographs were assessed based on comparisons of 
lateral profiles between supine and weight-bearing positions 
because intravertebral cleft can be easily identified in the 
supine position. Nonunion was defined as a recognizable 
intravertebral cleft and apparent segmental motion on 
dynamic plain radiographs (difference greater than 5° 
between supine and weight-bearing positions) observed at 
the six-month follow-up.

Treatment strategy

Treatment with braces was continued for 2–3 months, with 
soft and hard braces prescribed to 60 and 40% of the patients, 
respectively. The patients were allowed to maneuver into 
an erect posture when the brace was applied. Additionally, 
patients were prescribed anti-osteoporotic and pain-relief 
medications according to their individual status.

Prediction by the surgeon

Nonunion was predicted based on MRI observations. T2 
high or T2 diffuse low-signal change was previously reported 
as a predictive factor for nonunion [5, 19, 20].

Machine learning

Four ML models—logistic regression, decision tree, 
XGBoost, and RF—were utilized for nonunion prediction 
following OVF (Fig. 1). A Python (v. 3.7.6) library called 
scikit-learn (v. 0.22) was used for this purpose. The specific 
parameters of the ML models are depicted in Fig. 1. The 
scikit-learn package was used for logistic regression, 
decision trees, and RF. XGBoost was used as the gradient 
boosting machine, which features split finding algorithms 
that handle sparse data with node default directions, address 
weighted data using merge and prune operations, and 
efficiently enumerate over all possible splits for splitting 
threshold optimization [17, 21].

In aggregate, 17 explanatory variables, including the 
variables listed in Table 1, were used in the ML models. 
Before developing the prediction models, the collected 
data were divided into two categories—70% were allocated 
to the training dataset and 30% to the test dataset. The 
cases in the training dataset were used to develop ML and 
logistic regression models. The cases in the testing dataset 
were used to validate and compare the performance of the 
developed models. Each ML method had its own set of 
hyperparameters—such as the number of layers in XGBoost 
or the number of trees in RF. Five-fold cross-validation was 
used to determine the optimal hyperparameters. This cross-
validation process was used only for model development; 
the performance of the final models was evaluated using 
the testing dataset.

Recursive feature elimination (RFE), known as wrapper 
feature selection, employs ML models for the computation 
of relevance scores of features [22–24]. It first trains a model 
with an entire feature set and computes a relevance score 
for each feature. In the next step, the feature with the least 
relevance score is neglected, and the model is retrained to 
compute the relevance scores of new features. This process 
is continued until the desired number of features remains in 
the feature set.

Performance evaluation

As mentioned previously, the data were randomly divided 
into two groups—a training group (used to train the 
model) and a testing group (used to evaluate the model’s 
generalization ability)—with relative proportions of 70 
and 30%, respectively. The cases in the testing dataset 
were used to validate and compare the performances of 
the developed models. Optimal hyperparameter values 
were identified using five-fold cross-validation to avoid 
overfitting during model development. The cross-valida-
tion process was used only during model development, 
and the performance of the final models was evaluated 
using the testing dataset. To identify the most important 

Fig. 2   MRI observations in the acute phase (A) High-signal change 
on T2 weighted image was observed at the fractured vertebral body. 
(B) Diffuse low-signal change on T2 weighted image was observed at 
the fractured vertebral body
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features for nonunion prediction, XGBoost and RF were 
used to rank the variables in terms of importance. SHAP 
(SHapley Additive exPlanation) interpretation was used 
(model-agnostic) to compute feature importance using 
RF [25]. We trained XGBoost using all generator features 
and then obtained the feature importance scores (F-score) 
[26]. The top 10 variables present in all four ML algo-
rithms were considered during the subsequent stages of 

model development. The area under the receiver operating 
characteristic curve (AUC) was used as the performance 
metric for each model—higher AUC values correspond 
to better predictive performances. The AUC results were 
considered excellent for AUC values between 0.9 and 1, 
good for AUC values between 0.8 and 0.9, fair for AUC 
values between 0.7 and 0.8, poor for AUC values between 
0.6 and 0.7, and failed for AUC values between 0.5 and 
0.6 [27]. In addition, accuracy was used as a performance 
quality metric for the ML classifiers.

Data comparison

The chi-square test or Fisher’s exact test was used to 
compare categorical variables. The t-test was used to 
compare continuous variables. Statistical significance 
was taken to correspond to p < 0.05. All p values were 
two-sided.

Results

Comparison between the nonunion and union 
groups

Table  1 presents a comparison between the nonunion 
and union groups in terms of demographic, clinical, and 
radiological data. Age was observed to have higher values 
in the nonunion group than in the union group (78.4 vs. 
76.4 years, p = 0.012). The nonunion group exhibited higher 
weight than the union group (52.7 vs. 50.6 kg, p = 0.046). No 
significant differences in sex, smoking habits, history of oral 
steroid use, old OVF, and VAS score for LBP at enrollment 
were noticed between the two groups. In the nonunion 
group, OVFs were more frequent at the thoracolumbar level 
(88.2% vs. 71.2%, p = 0.002). In terms of MRI observations, 
diffuse low-signal change in T1 weighted image was more 
frequently observed in the nonunion group than in the 
union group (76.3% vs. 63.1%, p = 0.031). On T2 weighted 
images, diffuse low- and high-signal changes were more 
frequently observed in the nonunion group than in the union 
group (31.8% vs. 14.5% and 37.7% vs. 6.7%, respectively, 
p < 0.001). Posterior wall injury was more frequent in the 
nonunion group than in the union group (56.5% vs. 29.3%, 
p < 0.001). The kyphotic angle and anterior height ratio 
were more severe in the nonunion group than in the union 
group (13.0° vs. 9.2°, p < 0.001 and 75.8% vs. 84.5%, 
p < 0.001, respectively). The T-scores of bone mineral 
density exhibited no apparent differences. Moreover, there 
was no difference in nonunion incidence between the first 
and second cohorts.

Table 1   Comparison of baseline data between nonunion and union 
groups

BMI: body mass index, OVF: osteoporotic vertebral fracture, VAS: 
visual analog scale, BMD: bone mineral density

Nonunion Union P-value

n = 85 n = 420

Mean (SD) or 
n(%)

Mean (SD) or 
n(%)

Age (years) 78.4 (6.7) 76.4 (6.8) 0.012
Height (cm) 152.1 (7.4) 151.6 (7.5) 0.596
Weight (kg) 52.7 (9.8) 50.6 (8.6) 0.046
BMI (kg/m2) 22.7 (3.7) 22.0 (3.5) 0.088
Sex (female) 53 (62.4) 274 (65.2) 0.612
Smoker
 Non 69 (81.2) 306 (72.9)
 Former 9 (10.6) 67 (16.0)
 Current 7 (8.2) 447 (11.2) 0.274

History of oral steroid use 7 (8.2) 32 (7.6) 0.846
Old OVF
 0 44 (51.8) 266 (63.3) 0.130
 1 39 (45.9) 148 (35.2)
  ≥ 2 2 (2.4) 6 (1.4)

VAS at enrollment (cm) 8.3 (2.1) 7.9 (2.1) 0.113
Level
 Thoracic 6 (7.1) 40 (9.5) 0.002
 Thoracolumbar 75 (88.2) 299 (71.2)
 Lumbar 4 (4.7) 81 (19.3)

MRI T1
 Diffuse low 64 (76.3) 265 (63.1)
 Confined low 21 (24.7) 155 (36.9) 0.031

MRI T2
 Diffuse low 27 (31.8) 61 (14.5)
 Confined low 26 (30.6) 284 (67.6)
 Iso 0 (0) 47 (11.2)
 High 32 (37.7) 28 (6.7)  < 0.001

Posterior wall injury 48 (56.5) 123 (29.3)  < 0.001
Kyphotic angle (degrees) 13.0 (7.1) 9.2 (6.2)  < 0.001
Anterior height ratio (%) 75.8 (16.6) 84.5 (13.5)  < 0.001
T-score of BMD − 3.01 (0.79) − 2.82 (0.87) 0.092
Cohort
 First 55 (15.6) 297 (84.4) 0.272
 Second 30 (19.6) 123 (80.4)
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Performance evaluation of machine learning 
algorithms

Table 2 presents the results obtained using the logistic 
regression model for nonunion incidence. Greater age, lower 
anterior height ratio, and T2 WI observations, including con-
fined high and diffuse low-signal changes, exhibited a sig-
nificant increase in adjusted ORs. Figure 3 depicts the results 
obtained using a decision tree with a depth of 3. Among the 
13 patients with T2 high-signal change, VAS ≥ 9 cm, and 
age ≥ 72 years, 12 exhibited nonunion at the final follow-up 
consultation.

ML-based systems, including RF and XGBoost, used the 
following variables: age, sex, VAS, smoking habit, MRI T2 
weighted image, posterior wall injury, old OVF, kyphotic 
angle, steroid use, BMI, anterior wall height, and fracture 
level. Table 3 presents the optimal hyperparameter values 
and the performances of the ML classifiers. The ranking 
of features in terms of importance for the RF and XGBoost 
models is depicted in Figs. 4A and B, respectively. Table 3 
and Fig. 5 present a comparison of the test AUC for nonun-
ion prediction using the proposed models. RF and XGBoost 

Table 2   Result of multivariate logistic regression model for nonunion

BMI: Body mass index, CI: Confidence interval, TL: Thoracolumbar

Odds ratio 95% CI lower Upper p-value

Age 1.056 1.009 1.106 0.018
Sex 0.652 0.349 1.22 0.181
BMI 1.084 0.993 1.184 0.072
T-score 0.983 0.973 0.995 0.006
Anterior height ratio 

(%)
0.979 0.960 0.999 0.042

Posterior wall injury 1.786 0.946 3.372 0.074
MRI T2
Confined low or iso ref
Diffuse low or high 7.638 4.145 14.073  < .0001
Level
 Lumbar ref
 Thoracic 1.637 0.377 7.11 0.511
 TL 2.65 0.862 8.15 0.089

Fig. 3   Decision tree for this study, which aids the analysis to yield 
the best prediction. Classification results for nonunion and union are 
highlighted in blue and orange, respectively. Smaller values of the 

Gini index correspond to darker colors. BMI: Body mass index; VAS: 
Visual analog scale

Table 3   Optimal values 
of hyperparameters and 
comparison of area under the 
receiver operating characteristic 
curve among the different 
models during the prediction of 
nonunion

AUC​: Area under curve, CI: Confidence interval

Model Optimal values of hyperparameters AUC (95% CI) Accuracy

Logistic regression 0.745 (0.656–0.832) 0.784
Decision tree Maximum depth = 3

Criterion = Gini index
0.726 (0.637–0.804) 0.757

Random forest Maximum depth = 10
Number of estimators = 100

0.860 (0.784–0.916) 0.840

Gradient boosting machine Maximum depth = 8
Number of estimators = 200
gamma = 0.4

0.845 (0.768–0.905) 0.824
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exhibited good prediction accuracy, while logistic regres-
sion and decision tree exhibited fair results. RF exhibited 
the highest AUC (0.860, 95% CI: 0.784–0.916), followed 
by XGBoost (0.845, 95% CI 0.768–0.905). In both models, 
T2 WI observation was the most important feature (Fig. 4A 
and 4B,). Additionally, anterior height ratio, kyphotic angle, 
BMI, VAS, age, posterior wall injury, fracture level, and 
smoking habit were ranked as the top risk factors.

Discussion

This study presents the first attempt to predict nonunion in 
OVFs based on ML. Evaluation of risk factors of nonunion 
following OVF onset is essential for efficient treatment, 
including early surgical intervention [8]. This study 
compared the predictive abilities of three ML models and 
a logistic regression model for nonunion following OVF 
onset. The results demonstrated that RF exhibited the largest 
AUC and the highest accuracy in nonunion prediction. The 
XGBoost model also exhibited good AUC and accuracy. 

In comparison, we previously reported that the prediction 
accuracy of spine surgeons based on MRI observations was 
75.5%–79.1% using this dataset [5]. Therefore, ML-based 
models remarkably improved the accuracy compared to 
human prediction.

ML is not limited by parametric or model-based 
assumptions that may be difficult to determine a priori. 
Therefore, ML-based approaches have been used to 
detect patterns in data to automate complex tasks or make 
predictions and offer different advantages [28]. Especially, 
ensemble learning methods comprise popular and powerful 
ML tools for multivariate regression and classification 
problems that are used to predict nonlinear relationships 
[29, 30]. RF constituents of the ensemble are tree-structured 
predictors, each of which is constructed using an injection 
of randomness [28]. The XGBoost algorithm balances 
the influence of each tree by adding weights to reduce 
overfitting using only a random subset of descriptors during 
the construction of a tree [31]. The main idea behind the 
ensemble methodology is to aggregate multiple weighted 
models to obtain a combined model that outperforms every 

Fig. 4   Variance importance plot. (A) Variance importance plot for the RF model. (B) Variance importance plot for the XGBoost model. T2WI: 
T2 weighted image; BMI: Body mass index; VAS: Visual analog scale
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single model in it [32]. Our results demonstrate that these 
algorithms are effective and efficient ML methods.

The incidence of nonunion in OVFs was reported to range 
between 13.5 and 19.6% [5, 12, 19]. Patients with nonunion 
in OVFs generally present functional deterioration, severe 
pain, and limited mobility. A systematic review [33] 
reported that the current evidence for using orthotic devices 
in patients with OVF was inconsistent and of limited quality; 
therefore, clinicians should undertake careful consideration 
before prescribing them in practice. Two randomized 
controlled trials [34, 35] demonstrated no apparent effect 
of braces on the treatment of OVFs. Some patients required 
surgical intervention. Early intervention was reported to 
lead to better clinical and radiological outcomes of vertebral 
augmentation [8, 36] because the vertebral height of the 
anterior wall progressed steadily from incidence during 
the six months of follow-up in patients with non-union [5]. 
Therefore, early nonunion prediction is essential to improve 
treatment strategies for OVFs.

The present study established MRI findings, anterior 
height ratio, kyphotic angle, BMI, VAS, age, posterior wall 
injury, fracture level, and smoking habit as risk factors in the 
RF and XGBoost models with high accuracy. Several risk 
factors of nonunion, e.g., posterior wall injury, instability of 
fractured vertebrae, and MRI observations depicting high-
signal changes on T2WI, diffuse low-signal changes on 
T2WI, and diffuse low-signal changes on T1WI, have been 
reported. Our previous studies [5, 19] showed that diffuse 
low- and high-signal changes on T2 MRI were correlated 

with an increased risk of nonunion in the acute phase. In 
addition, other studies [12, 20] demonstrated that MRI 
revealed the association of delayed union with T1 and T2 
diffuse low-signal changes and T2 high-signal changes in 
the acute phase. Posterior wall injury and anterior vertebral 
height are also risk factors for nonunion [5, 12, 19]. Inose 
et al. [12] demonstrated that the degree of pain is also an 
important predictor of nonunion. Although instability 
evaluation may be an important step in instability prediction, 
approximately 30% of patients have been reported to be 
incapable of undergoing dynamic radiography because of 
severe pain [5]. However, bone mineral density was not 
reported as a risk factor for nonunion. Therefore, dynamic 
radiography results in the acute phase and bone mineral 
density were not included in this model. The performance 
of the proposed RF and XGBoost models demonstrated 
that the T2WI observation was the most important feature, 
confirming the reports of previous studies [5, 12, 19, 20]. 
RF demonstrated that the degree of compression and pain 
VAS score were important features. Additionally, obesity 
and smoking were identified as important features in the 
proposed RF and XGBoost models. Smoking and obesity 
have been reported as significant risk factors for nonunion 
in long bone patients [37]. Smoking can lead to local 
vasoconstriction, and the high affinity of carbon monoxide 
to hemoglobin can decrease the total amount of oxygen 
transported to the healing site [37, 38]. The literature on 
obesity and fracture healing is similarly inconclusive, with 
some authors reporting no correlation and others reporting 

Fig. 5   Areas under the receiver operating characteristic curve for nonunion prediction. AUC: area under the curve



3795European Spine Journal (2023) 32:3788–3796	

1 3

an increased nonunion risk [32]. Obesity can include several 
conditions, including diabetes, vascular disease, and fracture 
load, which suggest that obesity is currently not a reliable 
model of impaired fracture healing [32]. In the current study, 
information regarding diabetes and vascular disease was not 
included in the ML models.

This study suffers from certain limitations. Osteoporosis 
treatment was not included in the ML-based models. 
However, there have been no reports revealing the effect 
of osteoporosis agents on the bone healing process in OVF. 
Further, owing to the small sample size, the data included 
in the training set for validation were insufficient. Because 
of this limitation, we did not search for a better ML model; 
rather, we trained the considered model using various 
hyperparameters in a predetermined manner. Moreover, the 
models are only valid corresponding to data collected using 
the measurement equipment used in this study. Therefore, 
further research is necessary to generalize the model to 
higher-dimensional data.

In conclusion, the ML-based system developed in this 
study based on MRI observations is an effective tool for 
nonunion prediction following OVFs. The proposed RF 
and XGBoost models exhibited good performance. Further 
research is warranted to increase the sample size and apply 
the proposed ML system to other populations.
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