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Abstract
Purpose This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4–L5) 
alterations in adjacent segment kinetics.
Methods Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain dis-
tributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material 
properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to 
calculate muscle forces. Simulations represent individuals with an intact L4–L5, a preoperative severely degenerated L4–L5 
(by reducing the disc height by ~ 60% and removing the nucleus incompressibility), and a postoperative fused L4–L5 segment 
with either a fixed or an altered lumbopelvic rhythm with respect to the intact condition (based on clinical observations). 
Changes in spine kinematics and back muscle cross-sectional areas (due to intraoperative injuries) are considered based on 
in vivo data while simulating three activities in upright/flexed postures.
Results Postoperative changes in some adjacent segment kinetics were found considerable (i.e., larger than 25%) that 
depended on the postoperative lumbopelvic kinematics and preoperative L4–L5 disc condition. Postoperative alterations in 
adjacent disc shear, facet/ligament forces, and annulus stresses/strains were greater (> 25%) than those found in intradiscal 
pressure and compression (< 25%). Kinetics of the lower (L5–S1) and upper (L3–L4) adjacent segments were altered to 
different degrees.
Conclusion Alterations in segmental rotations mainly affected adjacent disc shear forces, facet/ligament forces, and annulus/
collagen fibers stresses/strains. An altered lumbopelvic rhythm (increased pelvis rotation) tends to mitigate some of these 
surgically induced changes.
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Introduction

Adjacent segment diseases (ASDs) are prevalent after lum-
bar fusion surgery [1]. Alterations in the kinetics of a motion 
segment likely paly a causal role in the mechanobiology 
of disc degeneration [2]. As far as postoperative ASDs are 
concerned, these changes may come as a result of surgically 
induced modifications in thoraco-lumbo-pelvic kinemat-
ics, spinal anatomy, and paraspinal muscle cross-sectional 

areas [3–5]. With no noninvasive in vivo technique available, 
in vitro setups [6] and force-controlled passive finite ele-
ment (FE) models [7–9] have emerged as alternative meas-
ures to investigate the postoperative alterations in the spine 
biomechanics. Neglecting the crucial role of muscle forces 
before and after surgical interventions, however, casts doubt 
on the reliability of these results [10, 11]. In response, mus-
culoskeletal (MS) models of the spine that incorporate the 
muscle activation have been considered when studying the 
effects of fusion surgery on spine kinetics [12–15].

Previous MS model studies have investigated the role 
of surgically induced alterations in the segmental lordosis, 
spinal anatomy, segmental kinematics, lumbopelvic rhythm 
(ratio of total lumbar rotation divided to pelvis rotation 
[16]), and muscle cross-sectional areas as well as the pre-
operative segmental conditions on the postoperative adjacent 
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segment kinetics [12–15]. Despite their consideration of 
muscle forces, these MS models nevertheless idealize pas-
sive spinal motion segments to different degrees as friction-
less spherical joints, bushing elements, or shear-deformable 
beams with nonlinear properties. As such, they can only pre-
dict the overall segmental compression and shear loads; they 
fail to determine the disc compression/shear loads, ligament/
facet forces, internal stresses/strains. As a remedy, hybrid 
models have been introduced to combine the advantages of 
geometrically detailed passive FE models and active mus-
culature in MS models [17–20]. In this approach, muscle 
forces are first calculated using a MS model with idealized 
motion segments and subsequently applied in a feedforward 
manner onto a detailed passive FE model to determine joint 
load-sharing and internal stresses. This hybrid simulation, 
however, is cumbersome in requiring multiple rounds of 
analyses and corrective iterations between these two distinct 
models. Moreover, errors in the predicted force in muscles 
and passive tissues are inevitable because of the quite dis-
similar passive representations in these two models and the 
complex load- and motion-dependent nonlinearities of the 
passive spine [10, 21].

Recently, we developed and validated a fully coupled 
MS-FE thoraco-lumbo-pelvic (T12–S1) model in which 
the detailed active and passive structures are both present 
together within a single model [21]. The present study 
aims to use this model to evaluate the alterations in adja-
cent segment kinetics following a single-level (L4–L5) 
solid fusion surgery. Two distinct simulations are carried 
out for each of the preoperative and postoperative condi-
tions. These four simulations represent patients having: (1) 
an intact (healthy) or a preoperative condition with normal 
or mild degeneration that does not noticeably affect spinal 
kinematics, (2) a preoperative high-grade L4–L5 degen-
erated segment with substantial loss of disc height and 
motions, (3) a postoperative fused L4–L5 segment with 
fixed lumbopelvic rhythm (LPR) with respect to the intact 
condition (where the lost motion at the fused segment 
is compensated by adjacent segments) based on clinical 
observations [22], and (4) a postoperative fused segment 
with altered LPR (where the lost motion at the fused seg-
ment is compensated by the pelvis alone) based on some 
other observations [23]. Surgically induced changes in 
segmental and pelvis kinematics as well as muscle cross-
sectional areas (due to intraoperative iatrogenic injuries) 
are considered while simulating three static daily activi-
ties. Using such a model could substantially improve our 
understanding of the biomechanical etiology of ASDs. It 
is hypothesized that different postoperative lumbopelvic 
(with fixed or altered rhythm) and preoperative (intact or 
degenerated) scenarios affect adjacent segment kinetics to 
quite different degrees.

Methods

Preoperative intact model

An intact preoperative L4-L5 disc condition is simulated. 
This represents an intact (healthy) or a preoperative condi-
tion with normal or low-grade degeneration that does not 
affect spinal kinematics. A previously developed coupled 
3D MS-FE model consisting of the pelvis, thorax, lumbar 
vertebrae, intervertebral discs (nucleus and annulus as a 
composite of a homogeneous matrix reinforced by col-
lagen fiber networks), ligaments, facet joints, and 56 local 
and global muscle fascicles with their wrapping effects 
is used (Fig. 1) [21]. The FE model is reconstructed in 
ABAQUS (version 6.12, Simulia Inc., Providence, RI, 
USA). For the annulus matrix, material properties are 
modified based on findings of a recent study [24]; a com-
pressible Mooney–Rivlin hyperelastic model  (C1 = 0.18, 
 C2 = 0.045, D = 0.2). Annulus collagen fibers are repre-
sented with 14 distinct membrane layers reinforced with 
rebar elements distributed throughout the annulus matrix 
[10] (at ± 30° with nonlinear properties [25]). Facet joints 
are modeled via surface-to-surface contacts (frictionless) 
having a gap limit of 1.25 mm [10]. Ligaments are consid-
ered as uniaxial tension elements having nonlinear prop-
erties [25]. Each nucleus is modeled as an incompress-
ible fluid-filled cavity [10]. The trunk weight of ~ 344 N 
(corresponding to a body mass of ~ 68 kg) is partitioned 
among upper arms (~ 36 N), forearms/hands (~ 29 N), head 
(46 N), and T1–L5 segments (~ 233 N) that are applied 
via rigid elements at their centers of mass [10]. For each 
activity in neutral upright standing and flexion postures 
(“Simulated tasks” section), the measured sagittal rota-
tions of thorax and pelvis [26, 27] as well as the estimated 
individual lumbar rotations [27–29] are prescribed into 
the model. Sum of cubed muscle stresses was minimized 
through an optimization approach to determine muscle 
forces using an in-house code [21].

Preoperative degenerated model

A severely degenerated and narrowed L4–L5 disc is con-
sidered in the preoperative state. Fat infiltration in muscles 
is represented by reducing physiological cross-sectional 
areas (PCSAs) of paraspinal muscles; 14 and 11% for, 
respectively, multifidus and erector spinae at all fascicles 
crossing over the L4–L5 [5, 30]. The L4–L5 disc degen-
eration is modeled by reducing the disc height by ~ 60%, 
eliminating the nucleus incompressibility by setting its 
bulk modulus to 10 MPa, and offsetting the force–defor-
mation curves of ligaments and fibers to account for their 
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slackness while preserving annulus ground material prop-
erties unchanged [31–35]. In vivo imaging data indicate 
that, compared to healthy individuals, LPR decreases (i.e., 
the contribution of the pelvis to the forward trunk flexion 
increases) in these patients [36, 37]. Furthermore, MR 
images [38] show that the loss of motion at the degener-
ated (i.e., stiffened) L4–L5 segment is compensated by 
the hypermobility of motion segments at the thoracolum-
bar junction. Therefore, LPR is reduced by 20% and the 

reduced motion at the degenerated L4–L5 segment is com-
pensated by larger motion at the T12–L2 segments.

Postoperative fused models

Simulations of fusion are considered only for the preop-
erative intact model (“Preoperative intact model” section) 
since nearly similar postoperative models are expected for 
the preoperative degenerated state [12]. The fused model 

Fig. 1  The intact 3D musculo-
skeletal finite element (MS-FE) 
spine model and its musculature 
in the sagittal (left view) and 
coronal (front view) planes. 
Local muscles: ICPL: iliocosta-
lis lumborum pars lumborum, 
LGPL: longissimus thoracis 
pars lumborum, MF: multifidus, 
QL: quadratus lumborum, and 
IP: iliopsoas. Global muscles: 
ICPT: iliocostalis lumborum 
pars thoracic and LGPT: 
longissimus thoracis pars 
thoracic. Abdominal muscles 
include: IO: internal oblique, 
EO: external oblique, and RA: 
rectus abdominis. Ligaments: 
the anterior longitudinal (ALL), 
posterior longitudinal (PLL), 
capsular (CL), intertransverse 
(ITL), ligamentum flavum (LF), 
supraspinous (SSL), inters-
pinous (ISL), fascia (L4 and L5 
to ilium), and iliolumbar (IL, L5 
to ilium) ligaments. Vertebrae 
are not shown in the coronal 
view
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has a rigidly connected L4 and L5 vertebrae. Prescribed 
kinematics at vertebrae and pelvis as well as injured mus-
cle PCSAs are also as follows:

Postoperative alterations in kinematics

When the L4–L5 vertebrae are rigidly fused, the remain-
ing segments postoperatively undergo greater rotations in 
order to accommodate the same posture and upper trunk 
flexion angle as in the preoperative condition. Based on 
in vivo imaging data, two approaches are adapted. First, 
the postoperative LPR is kept unchanged and therefore 
the lost L4–L5 motion is produced by the T12–L4 and 
L5–S1 segments. To simulate this condition, the indi-
vidual lumbar rotations are recalculated based on pre- 
and postoperative upright X-ray measurements [22]. Sec-
ond, and according to another in vivo study [23], the lost 
motion at the L4–L5 segment after fusion is compensated 
by the pelvis alone.

Alterations in muscle areas

Intraoperative injuries to paraspinal muscles are modeled 
based on our MR image measurements [5, 30]; the PCSAs 
of multifidus and erector spinae fascicles crossing over 
the L4–L5 segment are reduced in postoperative models 
by 26% and 11%, respectively.

Simulated tasks

Three regular static sagittal-symmetric daily activities in the 
standing are considered: one in the upright posture and two 
in forward trunk flexions of 40° (mid-flexion) and 80° (deep-
flexion) [22, 27, 38].

Results

Changes in adjacent segment kinetics after the fusion sur-
gery were computed that depended on the postoperative lum-
bopelvic kinematics and preoperative L4-L5 disc condition 
(Figs. 2, 3, 4, 5, 6, 7 and 8, Table 1). A substantial change 
(assumed here to be > 25%), as compared to the preoperative 
intact or degenerated states, in model outputs highlights an 
increase in the risk to initiate/accelerate postoperative ASDs 
[12]. The predicted postoperative alterations in adjacent seg-
ment gross compression and shear forces as well as global/
local/total muscle forces (Figs. 2 and 3) were found, under 
the same load-kinematics, in overall agreement with our ear-
lier modeling results using a MS model with segments ideal-
ized by nonlinear beams. Novel results on adjacent segment 
IDPs (Fig. 4), intervertebral disc compression/shear loads 
(Fig. 5), vector sum of all ligament/facet forces (Fig. 6), and 
stresses/strains in the disc (Figs. 7 and 8) that could not be 
predicted by the earlier MS model are therefore the focus of 
the present study. Postoperative alterations in adjacent level 
disc shear forces (Fig. 5b), facet/ligament forces (Fig. 6), 

Table 1  Changes (%) in adjacent segment IDP, disc compression 
and shear loads, maximal annulus principal stress, posterior collagen 
fiber strain as well as vector sum of ligament forces and facet con-
tact forces in fused/degenerated states relative to intact state (left sec-
tion) and in fused states relative to degenerated state (right section) in 
upright and flexed postures. Magnitude of changes is depicted by five 
color-coded levels (see the legend below). Ligament forces for intact 

and degenerated states were ~ 0 in upright standing at both upper and 
lower levels and in flexion 40° at upper level. Therefore, their relative 
changes are depicted with (−). Note that large relative changes (%) at 
upper level facet forces can be seen in fused models in flexion 80° as 
compared to preoperative degenerated state despite the fact that their 
absolute changes are < 80 N (Fig. 6b)
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and annulus stresses/strains (Figs. 7 and 8) were relatively 
greater than those found in disc IDPs (Fig. 4) and compres-
sion forces (Fig. 5a). Adjacent segment kinetics at the lower 
(L5–S1) and upper (L3–L4) segments altered to different 
degrees following the surgery.

Degenerated versus intact models (pre‑operation)

In the upright standing, predictions of the degenerated and 
intact models were close with changes generally negligible 
and < 10% (Figs. 2, 3, 4, 5, 6 and 7, Table 1). In flexion 
tasks, however, the degenerated model predicted over-
all substantially smaller global (Fig. 2a) and larger local 
(Fig. 2b) muscle forces, smaller disc shear forces (Fig. 5b, 
Table 1), smaller ligament forces (Fig. 6a, Table 1), smaller 
upper adjacent segment facet forces and larger lower seg-
ment facet forces (Fig. 6b, Table 1) specially at the greater 
flexion angle. Changes in total muscle forces (Fig. 2c), 

adjacent level IDPs (Fig. 4, Table 1), and disc compression 
forces (Fig. 5a, Table 1) were less pronounced (< 25%) in 
the degenerated model. Maximum principal stresses in the 
annulus ground substance (Figs. 7a and 8) and collagen fiber 
strains (Fig. 7b) remained almost unchanged with alteration 
generally < 10% (Table 1).

Fused model (post‑operation)

In the upright standing, predictions of the fused model were 
generally close to those of both preoperative intact and 
degenerated models (Figs. 2, 3, 4, 5, 6 and 7 and Table 1). 
In flexion tasks with a fixed LPR, ligament forces and disc 
annulus stress/fiber strain substantially increased (Figs. 6, 7 
and 8, Table 1). In contrast, and as a result of these increases 
in passive tissue load-bearing contribution, sum of total 
muscle forces (Fig. 2c) and, hence, segmental compression 
(Fig. 3a) decreased. However, alterations in adjacent disc 
IDPs and compression forces (Figs. 4 and 5a, Table 1) were 
overall less pronounced (< 25% almost everywhere). Adja-
cent level disc shear forces generally substantially increased 
especially when compared to the degenerated model (Fig. 5b 
and Table 1). Adjacent level facet forces were much larger at 
the lower level where they increased at the smaller flexion 
angle, whereas decreased at the larger flexion angle (Fig. 6b 
and Table 1).

In altered LPR models, alterations generally disappeared 
(Figs. 2, 3, 4, 5, 6, 7 and 8, Table 1) except for global muscle 
forces (Fig. 2a) and facet forces compared to both preopera-
tive states (Fig. 6b, Table 1), disc shear forces at upper level 
compared to the preoperative degenerated state (Fig. 5b, 
Table 1), and ligament forces at large flexions as compared 
to preoperative degenerated state (Fig. 6a, Table 1).

Discussion

A fully coupled MS–FE spine model was used to investigate, 
for the first time, the effects of alterations in spinal kinemat-
ics and muscle cross-sectional areas on adjacent segment 
biomechanics following a single-level L4–L5 solid fusion 
surgery. Unlike previous passive FE models [7–9, 39, 40], 
this model incorporated musculature and associated distinct 
pre- and postoperative role of muscle activations in spinal 
loads. Moreover, a preoperative high-grade L4–L5 degener-
ated segment with substantial loss of disc height and motions 
was considered. Different postoperative lumbopelvic (fixed 
or altered lumbopelvic rhythm) and preoperative (intact or 
degenerated) scenarios affected adjacent segment kinet-
ics to different degrees (hypothesis confirmed) (Table 1). 
Postoperative alterations in spine kinematics were found as 
the primary factor affecting spine biomechanics. The extent 
of changes is depended also on the segment (upper versus 
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lower) and preoperative condition (intact versus degener-
ated disc). Postoperative relative alterations in adjacent level 
disc shear forces (Table 1 and Fig. 5b), facet/ligament forces 
(Table 1 and Fig. 6), and annulus stresses/strains (Table 1, 

Figs. 7 and 8) were greater than those found in disc IDPs 
(Table 1 and Fig. 4) and disc compression forces (Table 1 
and Fig. 5a). Such large changes likely play a role in the 
biomechanical etiology of ASDs.

Previous in silico biomechanical studies frequently 
considered passive FE models under idealized constant 
moments and compressive follower loads that remained 
identical in both pre- and postoperative conditions [7–9, 
39, 40]. Foregoing loads actually resemble those in in vitro 
loading protocols rather than physiological in vivo tasks. 
Based on the loading protocol considered in these passive 
FE models (i.e., stiffness, flexibility, hybrid loading), adja-
cent segment IDPs and disc annulus stresses were found to 
either increase or remain unchanged. Segmental shear, disc 
shear, facet forces as well as their postoperative alterations 
could not accurately be predicted given the idealized nature 
of the compressive follower load applied [12]. In contrast, 
our current coupled MS-FE model simulations highlight the 
importance of postoperative alterations in adjacent segment 
shear forces that also affect facet contact loads. In accord-
ance, clinical studies have identified listhesis and facet 
hypertrophy as some of the main causes of ASDs [41, 42]. 
Postoperative alterations in the disc compression and IDP 
were found less pronounced in our MS-FE model (Table 1).

Due to larger rotations at adjacent segments, forces in 
deeper posterior ligaments (ISL and SSL) were predicted 
to be much larger in the simulated fused model with fixed 
LPR. Fusion surgery also increased the collagen fiber strains 
and annulus matrix stresses (Table 1). These changes could 
contribute to the degradation and failure of soft tissues that 
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may ultimately result in proximal junctional kyphosis (PJK) 
[43] and disc prolapse [44]. Moreover, there was an increase 
in disc shear forces especially when compared to the preop-
erative degenerated state. Animal and in vitro studies have 
indicated that shear loading [45, 46] and hyperflexion [47] 
can cause disc degeneration. It therefore appears that, by 
substantial increases in internal forces, stresses, and strains, 

alterations in spine kinematics after a fusion surgery expose 
adjacent level discs, facets, and posterior ligaments to fur-
ther risk of biomechanical damages and ASDs.

In the MS model with a detailed FE passive spine (i.e., 
the MS-FE model), some limitations are noteworthy. Sim-
ulations were not subject-specific; pre- and postoperative 
generic models were reconstructed based on the CT images 
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of a cadaver specimen [48] and driven by population-based 
data on the trunk musculature and passive material proper-
ties. As such and for more accurate estimations, the model 
should be personalized in both passive and active compo-
nents [49]. Prescribed input vertebral kinematics were also 
based on limited population-based mean data reported in 
the literature. Two extreme scenarios were considered in 
post-fusion simulations (e.g., patients with fixed or altered 
postoperative lumbopelvic rhythm with respect to preopera-
tive conditions) when compensating the eliminated motion 
at the fused segment while under identical trunk RoM preop-
erative and postoperative. Contradictory results on changes 
in the adjacent segment motions have been reported in the 

literature (e.g., increased/decreased/unchanged adjacent 
segment motion) [4]. However, in many of these studies, 
the overall trunk range of motion is not similar pre- and 
post-surgery. Besides, the severity of disc degeneration at 
the operated level could influence postoperative motions. 
Despite its effects on adjacent segment kinetics, available 
literature on changes in pelvis rotations after fusion remains 
limited [23]. The effects of changes in segmental lordosis or 
overall spinal configuration/anatomy were not considered 
in this study. Finally, our model employed an optimization 
method to estimate muscle forces; the central nervous sys-
tem may adapt a different control strategy that could also 
differ in pre- and postoperative conditions.
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Conclusion

Postoperative alterations in adjacent disc shear forces, 
facet/ligament forces, and annulus stresses/strains were 
much greater than those found in disc IDPs and compres-
sion forces. These changes that differed between the upper 
(L3–L4) and lower (L5-S1) adjacent segments were due pri-
marily to postoperative alterations in lumbosacral segmental 
rotations. Postoperative changes in these lumbosacral angles 
should hence be minimized.
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