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Abstract
Purpose  Artificial intelligence based on deep learning (DL) approaches enables the automatic recognition of anatomic 
landmarks and subsequent estimation of various spinopelvic parameters. The locations of inflection points (IPs) and apices 
(APs) in whole-spine lateral radiographs could be mathematically determined by a fully automatic spinal sagittal curvature 
analysis system.
Methods  We developed a DL model for automatic spinal curvature analysis of whole-spine lateral plain radiographs by 
using 1800 annotated images of various spinal disease etiologies. The DL model comprised a landmark localizer to detect 
25 vertebral landmarks and a numerical algorithm for the generation of an individualized spinal sagittal curvature. The char-
acteristics of the spinal curvature, including the IPs, APs, and curvature angle, could thus be analyzed using mathematical 
definitions. The localization error of each landmark was calculated from the predictions of 300 test images to evaluate the 
performance of the landmark localizer. The interrater reliability among a senior orthopedic surgeon, a radiologist, and the 
DL model was assessed using the intraclass correlation coefficient (ICC).
Results  The accuracy of the landmark localizer was within an acceptable range (median error: 1.7–4.1 mm), and the interrater 
reliabilities between the proposed DL model and each expert were good to excellent (all ICCs > 0.85) for the measurement 
of spinal curvature characteristics.
Conclusion  The interrater reliability between the proposed DL model and human experts was good to excellent in predicting 
the locations of IPs, APs, and curvature angles. Future applications should be explored to validate this system and improve 
its clinical efficiency.

Keywords  Artificial intelligence · Deep learning · Sagittal alignment · Inflection points · Apices

Introduction

Understanding the spinal alignment and morphology is 
critical for spinal surgeons to evaluate the pathophysiology 
of spinal diseases. Various angular or linear radiographic 
parameters had been introduced to describe the spinopelvic 
morphology in the sagittal plane [1]. On the other hand, 
direct categorization of sagittal spinal alignment, rather 
than measuring the parameters, was also described in both 
healthy and adolescent idiopathic scoliosis populations 
[2–4].

Artificial intelligence based on deep learning (DL) 
approaches enabled the automatic recognition of anatomic 
landmarks and the subsequent estimation of various spin-
opelvic parameters [5–8]. Galbusera et al. [5] incorporated 
the DL approaches and reported a fully automatic system 
able to locate anatomic landmarks and calculate sagittal 
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spinopelvic parameters with good performances. Korez 
et al. [7] also developed a two-stage DL model achieving 
clinically equivalent measurement of sagittal spinopelvic 
parameters. In addition, Cina et al. [8] trained a 2-step DL 
model with 10,193 lumbar spine images capable of calculat-
ing lumbar radiographic parameters with minimal errors.

Quantitative evaluation of spinal curvature had been 
widely investigated in both coronal and sagittal planes [9]. 
Using computerized models, the characteristics of spinal 
curvatures, such as inflection points (IPs) and apices (APs), 
could be mathematically defined [10–12]. However, these 
semi-automatic methods still required manual annotation of 
vertebral landmarks, which was time-consuming and could 
result in inter- or intra-observer variability. Recent advances 
of the DL approach have demonstrated a fully automatic 
annotation of vertebral landmarks with high accuracy and 
reduced inter- or intra-observer variability [13]. By com-
bining techniques based on DL and numerical methods, 
this study aimed to develop a fully automatic spinal sagittal 
curvature analysis system and build a novel formalism to 
determine the location of IPs and APs in whole-spine lateral 
radiographs.

Methods

Dataset

From January 2018 to December 2019, 2361 consecutive 
whole-spine lateral plain radiographs were retrospectively 
collected under the approval of the institutional review 
board of our hospital (IRB no. 202100821B0); a waiver 
for informed consent was granted for this study. A senior 
radiologist screened the entire image dataset and excluded 
(1) 149 images of inadequate length that did not include 
the C2 dens or the bilateral femoral heads, (2) 232 images 
with anatomic variance in which the vertebral column con-
tained fewer or more than 25 vertebrae, and (3) 180 images 
with poor contrast that prevented the identification of pelvic 
anatomic structures. After the exclusion of these images, 
1800 images were annotated and randomly divided into (1) 
a training dataset of 1500 images and (2) a testing dataset 
of 300 images.

For the annotated 1800 images, the mean age was 
37.9 ± 24.9 years (range: 11–96) at the time of radiographic 
examination. Furthermore, spinal implants were observed 
in 602 annotated images (33%), with an instrumentation 
level ranging from C4 to the ilium (average length: 7.9 ± 3.8 
levels).

Study design

For each image of the training and testing dataset (1800 
images), 25 coordinates of vertebral landmarks (the ver-
tebral centers of C2–C7, T1–T12, L1–L5, anterosuperior 
corner of S1, and anteroposterior corner of S1) were anno-
tated by four orthopedic residents and verified by an ortho-
pedic surgeon using a customized graphical user interface 
written in MATLAB.

A detailed illustration of the workflow for data prepara-
tion and model evaluation is shown in Fig. 1. The anno-
tated training dataset (1500 images) was used to train a 
previously developed automatic landmark localizer [13]. 
During the model testing phase, the trained landmark 
localizer predicted 25 landmark coordinates in each image 
of the testing dataset (300 images) (Fig. 2). These 25 coor-
dinates were then fed into a numerical algorithm to gener-
ate the whole spinal curvature (Fig. 3), the locations of IPs 
and APs, and the curvature angles (Fig. 4a) in each image 
of the testing dataset.

The landmark localization error, defined as the Euclid-
ean distance between the predicted and human-annotated 
landmark coordinates, was used to evaluate the perfor-
mance of the trained landmark localizer. In addition, a 
senior orthopedic surgeon and a radiologist manually 
determined the IPs, APs, and Cobb angles (Fig. 4b) in a 
subset of 50 images (randomly selected from the testing 
dataset) by using the tools provided by the picture archiv-
ing and communication system (PACS) of our hospital. 
The interrater reliability between the human experts and 
the DL model was calculated using the intraclass correla-
tion coefficient (ICC).

Automatic localization of vertebral landmarks

A variant of the Cascaded Pyramid Network [13], which is 
referred to as the landmark localizer throughout this paper, 
was applied for the automatic localization of 25 vertebral 
landmarks of a given radiograph (Fig. 2a, b). The coordi-
nates of vertebral landmarks were predicted by estimating 
the expected values of 25 landmark heatmaps (probability 
maps). To illustrate this process, three heatmaps and their 
expected values are presented in Fig. 2c. The heatmaps 
of the C7 and L3 centers were confined to a small region, 
indicating that the landmark localizer was certain about 
the locations of C7 and L3. By contrast, the heatmap of 
the T9 center was confined within a wide region (from T7 
to T11), indicating that the determination of T9 was dif-
ficult, and our landmark localizer was less certain about 
its decision.
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Fig. 1   Workflow for data preparation and model evaluation

Fig. 2   a Whole-spine lateral 
radiograph. b Twenty-five 
predicted landmark coordinates 
(red crosses). c Three predicted 
landmark coordinates (red 
crosses) and their corresponding 
heatmaps

a b c
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Regression of the spinal curves

The predicted ver tebral coordinates were used 
to regress the spinal curve (Fig.  3). In this study, 
we used a l inear  combination of  one-dimen-
sional functions to model a spinal curve; that is, 
f (x) = �0 + �1B1(x) + �2B2(x) +⋯ + �NBN(x)   , 
where x is on the vertical axis of the radiograph, 
{B1(x),B2(x),… ,BN(x) } is a set of N  functions, and 
�0, �1,… , �N are parameters for curve fitting.

Polynomials (in the form of Bk(x) = xk ) are commonly 
used to construct a set of functions for curve fitting. How-
ever, instead of polynomials, we used B-spline functions 
[14] in this study. B-spline functions have high flexibility 
in that they allow the piecewise modeling of the spinal 
curve. However, this flexibility means that we might use 
too many B-spline functions for curve fitting, resulting in an 

unrealistic oscillating spinal curve. In this study, the density 
of knots (joints of piecewise functions) was configured to 
be proportional to the density of vertebral landmarks, and 
the adjusted R2 was used to select the optimal number of 
B-spline functions. The optimal number of spline functions 
was defined as the point at which the adjusted R2 did not 
improve (or the adjusted R2 > 0.9 ) as the number of spline 
functions increased.

Determination of APs, IPs, and curvature angles

The mathematical formulas for APs and IPs can be deter-
mined according to prior illustrations of APs and IPs [12]. 
Because an apex or inflection point lies on the place where 
the slope or curvature of the spine is zero, we defined APs 
and IPs as the roots (locations of zeros) of the first- and 
second-order derivatives of the spinal curve (as depicted 
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Fig. 3   a Fitted spinal curve and the determined apices. b First-order 
derivative of the fitted spinal curve. The four zeros of this curve are 
the locations of the apices. c Second-order derivative of the fitted spi-
nal curve. The five zeros of this curve are the locations of the inflec-

tion points. d Fitted spinal curve and determined inflection points. We 
highlighted the curve segments as lordosis (green), kyphosis (blue), 
or a nearly straight line (orange)
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in Fig. 3), respectively. In this work, the derivatives were 
obtained from the B-spline-represented spinal curve, and 
the roots were identified iteratively by using the bisection 
method [15]. After the IPs were determined, the curvature 
angles between the normal lines of any two adjacent IPs 
could be measured (Fig. 4a).

Statistical analysis

The landmark localization error was used to evaluate the 
performance of the trained landmark localizer. Because of 
the nonnormal distribution characteristics of the localiza-
tion errors, we illustrated the localization errors of the 25 
landmarks using boxenplots (also known as letter-value plots 

[16]). We used boxenplots to illustrate more detailed infor-
mation on the tails of error distributions.

Interrater reliability was used to determine the level of 
agreement between the following three raters:

•	 Rater 1 (R1): a senior orthopedic surgeon
•	 Rater 2 (R2): a radiologist
•	 The proposed DL model (landmark localizer + numerical 

algorithm)

In this study, the ICC was used to assess inter-rater reli-
ability. We aimed to investigate the extent to which the three 
raters agreed on certain characteristics of the spinal curve 
(e.g., the locations of IPs and APs). The ICC estimates 
and their 95% confidence intervals were calculated using a 

a b 

θLL 

θTK 

θLL 

θTK 

Fig. 4   Angles of thoracic kyphosis ( �TK ) and lumbar lordosis ( �LL ) 
were measured by a the deep learning model and b a human expert. 
In a, three lines were determined to measure �TK and �LL : two normal 
lines (solid yellow), which are normal to the spinal curve and pass 
through the predicted inflection points (T3 center and L1 center), and 

one line of the sacral endplate (solid cyan), which was determined 
by connecting the predicted locations of two sacral landmarks. In b, 
Cobb angles were measured using lines (solid yellow and solid cyan) 
that align with the vertebral endplates



2097European Spine Journal (2022) 31:2092–2103	

1 3

two-way-random model with absolute agreement. In addi-
tion, the ICC scores were evaluated as described by Cicchetti 
[17].

In addition, the differences in measurements between the 
proposed DL model and the human experts were evaluated. 
The measurements of two human experts (R1 and R2) were 
averaged and compared with the measurements of the DL 
model using the Wilcoxon signed-rank test. Differences were 
considered significant if the p-value was less than 0.05.

In this work, all statistical tests and procedures were con-
ducted using SPSS version 25.0 (SPSS Inc, Chicago, IL, 
USA).

Results

Testing dataset demographic

The testing dataset contained images from 209 females 
and 91 male patients with a mean age of 39.5 ± 25.7 years 
(range: 11–90). Spinal implants were observed in 92 (31%) 

images, with the instrumentation level ranging from T2 to 
the ilium (average length: 7.8 ± 3.9 levels).

Performance of the landmark localizer

The localization errors of 25 landmarks are visualized using 
boxenplots in Fig. 5. The landmark localizer performed the 
best for the cervical landmarks (median error: 1.7–2.0 mm), 
followed by the lumbosacral landmarks (median error: 
1.9–2.8  mm). The thoracic landmarks (median error: 
2.7–4.1 mm) had larger localization errors than the cervical 
and lumbosacral landmarks.

Manual measurement versus DL model predictions

The interrater reliability of spinal curvature characteristics 
between the two human experts and the proposed DL model 
is presented in Table 1. The reliability between the senior 
orthopedic surgeon and the radiologist was excellent in all 
spinal curvature characteristics (all ICCs > 0.9). Compared 
with the measurements by human experts, the proposed DL 
model demonstrated inferior reliability in predicting the 

Fig. 5   Localization error of 25 vertebral coordinates. The error is represented using quantile boxes. The values of median error are represented 
by the numbers in the boxes
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cervicothoracic IP, thoracic AP, and thoracic kyphosis but 
similar reliability in predicting the thoracolumbar IP, cervi-
cal and lumbar APs, and lumbar lordosis. Overall, the reli-
ability between the proposed DL model and any of the two 
experts was good to excellent (all ICCs > 0.85).

As shown in Table 2, no significant differences were 
observed between the measurements of spinal curvature 

characteristics by the proposed DL model and human 
experts (all p > 0.05).

Predicted spinal curvature characteristics

The predicted spinal curvature characteristics of the test-
ing dataset are presented in Table 3. Of the 300 images, 
the mean cervicothoracic IP was located at C7/T1, and the 
mean thoracolumbar IP was located at T12. The mean APs 
were located at C4/C5 for the cervical spine, T7 for the tho-
racic spine, and L3/L4 for the lumbar spine. In addition, 
the predicted thoracic kyphosis and lumbar lordosis were 
50.9° ± 15.3° and 47.4° ± 18.6°, respectively.

Figures 6, 7, and 8 demonstrate three cases of DL model 
predictions of the postoperative changes in spinal curvature 
characteristics.

Discussion

Several previous studies have characterized lateral spine 
plain radiographs automatically by using DL techniques. For 
example, Weng et al. [6] developed a DL model based on 
ResUNet for automatic SVA measurement, which achieved 
excellent reliability compared with human experts. The 
automatic measurement of spinopelvic parameters in whole-
spine lateral X-rays was expanded to various parameters, 
such as PI, sacral slope (SS), and PT, with acceptable error 
and strong correlations with ground truth values [5, 7]. Yeh 
et al. [13] reported that the automatic predictions of spin-
opelvic parameters using a two-stage DL model could match 
the reliability of human experts in complex spinal diseases.

One of the major advantages of DL applications in medi-
cal images is achieving fast, objective, and consistent inter-
pretations. Even with the help of the PACS and other dedi-
cated commercial software such as Surgimap (Nemaris, MA, 
USA), the manual labeling of IPs and APs still requires a 
substantial professional workforce and extensive time. Few 
studies have reported automatic curvature feature analysis in 
different spine imaging modalities [18, 19]. With annotated 
vertebral centers, spline-based curve angle measurement 
achieved higher intrarater and interrater reliability than the 
traditional manual Cobb angle measurement for anteropos-
terior spinal X-ray images did [20]. However, these studies 
have primarily focused on the frontal plane curvature analy-
sis rather than the sagittal plane.

The locations of IPs and APs in the spinal sagittal 
curvatures have been widely investigated in healthy and 
diseased individuals [2, 21–23]. From a biomechanical 
standpoint, the IP locations represent reciprocal changes 
between different sagittal curves, and the AP locations 
affect lumbar lordotic distributions [24–26]. Therefore, 
proper AP and IP relocation and ideal sagittal profile 

Table 1   Interrater reliability between human experts and the deep 
learning model

* ICC data are presented with 95% confidence intervals (CIs)
IPCT cervicothoracic inflection point, IPTL thoracolumbar inflection 
point, APC cervical apex, APT thoracic apex, APL lumbar apex, TK 
thoracic kyphosis, LL lumbar lordosis, DL proposed deep learning 
model, R1 senior orthopedic surgeon, R2 radiologist

Curvature 
characteristics*

R1 versus R2 DL versus R1 DL versus R2

IPCT 0.969
(0.943–0.983)

0.895
(0.797–0.943)

0.896
(0.822–0.941)

IPTL 0.984
(0.973–0.991)

0.952
(0.917–0.972)

0.942
(0.901–0.966)

APC 0.970
(0.929–0.988)

0.959
(0.907–0.982)

0.927
(0.828–0.969)

APT 0.982
(0.966–0.990)

0.890
(0.810–0.938)

0.869
(0.776–0.925)

APL 0.936
(0.888–0.964)

0.975
(0.956–0.986)

0.963
(0.932–0.980)

TK 0.964
(0.933–0.980)

0.859
(0.704–0.928)

0.907
(0.822–0.950)

LL 0.972
(0.949–0.985)

0.927
(0.759–0.969)

0.960
(0.892–0.982)

Table 2   Spinal curvature characteristic measurements compared 
between the deep learning model and human experts

*Data are expressed as means ± standard deviations.
† To facilitate data collection and analysis, the vertebrae from C2 to 
S1 were assigned numbers ranging from 2 to 25.
‡ Average measurements by a senior orthopedic surgeon and a radiolo-
gist.
IPCT cervicothoracic inflection point, IPTL thoracolumbar inflection 
point, APC cervical apex, APT thoracic apex, APL lumbar apex, TK 
thoracic kyphosis, LL lumbar lordosis, DL proposed deep learning 
model

Curvature 
characteristics*

DL prediction Human experts‡ p-value

IPCT
† 6.9 ± 2.6 (C7) 7.0 ± 2.4 (C7) 0.59

IPTL
† 19.4 ± 1.4 (T12) 19.2 ± 1.5 (T12) 0.88

APC
† 4.3 ± 1.5 (C4) 4.2 ± 1.4 (C4) 0.33

APT
† 14.0 ± 2.3 (T7) 13.9 ± 2.5 (T7) 0.44

APL
† 22.4 ± 1.1 (L3/L4) 22.5 ± 1.0 (L3/L4) 0.53

TK 44.3° ± 15.2° 42.9° ± 14.5° 0.16
LL 52.6° ± 16.3° 53.8° ± 16.9° 0.31
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Table 3   Predicted spinal curvature characteristics of the testing dataset

*Data are expressed as means ± standard deviations
† To facilitate data collection and analysis, the vertebrae from C2 to S1 were assigned numbers ranging from 2 to 25
IPCT cervicothoracic inflection point, IPTL thoracolumbar inflection point, APC cervical apex, APT thoracic apex, APL lumbar apex, TK thoracic 
kyphosis, LL lumbar lordosis, DL proposed deep learning model

Demographics* Testing dataset 
(N = 300)

Age 39.5 ± 25.7
Gender (M/F) 91/209
Instrumentation length 7.8 ± 3.9

Curvature characteristics* DL prediction

IPCT
† 7.5 ± 2.4 (C7/T1)

IPTL
† 19.2 ± 1.6 (T12)

APC
† 4.4 ± 1.2 (C4/C5)

APT
† 14.1 ± 2.2 (T7)

APL
† 22.6 ± 1.0 (L3/L4)

TK 50.9° ± 15.3°
LL 47.4° ± 18.6°

Fig. 6   a A 70-year-old female 
patient with an osteoporotic 
compression fracture at L2 and 
L3. b The patient underwent 
percutaneous vertebroplasty of 
L2 and L3. The cervicothoracic 
inflection point, thoracic apex, 
and lumbar apex shifted as 
the sagittal balance improved 
from + 9.7 cm to + 1.7 cm

a b 

Curvature angle between:
T1 and L3 = 71.14°
L3 and Sacrum = 59.4°

Curvature angle between:
C7 and L3 = 63.55°
L3 and Sacrum = 56.77°



2100	 European Spine Journal (2022) 31:2092–2103

1 3

restoration remain crucial in spinal surgeries. Previous 
computerized algorithms required manually identified 
vertebral borders to simulate spinal curvatures [9–12]. 
Semi-automatic methods of Cobb angle measurement 
improved the inter- and intra-rater reliabilities as com-
pared to traditional manual measurement [27, 28]. In 
the present study, the proposed DL model localized the 
vertebral centers accurately through the landmark local-
izer (Fig. 2) and estimated the characteristics of the spi-
nal curve (such as the IPs, APs, and curvature angles) by 
using the developed numerical algorithm. The numerical 
algorithm identified the IPs and APs by using a proposed 
mathematical formula that used the roots of the first- and 
second-order derivatives of the spinal curve to represent 
the IPs and APs, respectively (Fig. 3). The accuracy of 
the landmark localizer was within an acceptable range 
(median error: 1.7–4.1 mm), and the interrater reliability 
was good to excellent (all ICCs > 0.85) between the pro-
posed DL model and human experts when measuring the 
characteristics of spinal curves.

The contribution of this study is twofold. First, we showed 
that APs and IPs could be determined by the proposed 
numerical algorithm. Second, by using techniques based on 
deep learning and numerical methods, we demonstrated that 
the whole estimation process of APs and IPs could be auto-
matic, accurate, and without human bias. It was shown that 
the CPN model can be used in the process of spine parameter 
estimation and can achieve good to excellent consistency as 
compared with human experts [13]. However, in this study, 
we observed that high localization errors (> 40 mm) are still 
possible in some rare cases, as shown in the boxenplot in 
Fig. 5. The potential causes of the observed error outliers 
are skip-level and duplicate landmark recognition in the 
adjacent level. However, the performance improvement in 
DL-based landmark localizers is beyond the scope of this 
study. We believe the DL-based landmark localizer could be 
improved by increasing the size and diversity of the training 
data or by finetuning the DL model architecture. Although 
the proposed DL model may save tremendous works of man-
ual labeling, a human review process can be added in the real 

Fig. 7   a A 60-year-old male 
patient with spondylolisthesis 
with spinal stenosis. b The 
patient underwent posterior 
instrumentation and interbody 
fusion from L2 to S1. The 
thoracolumbar inflection point, 
thoracic apex, and lumbar apex 
shifted as the lumbar lordosis 
improved from 30.9° to 41.4°

a b 

Curvature angle between:
T1 and T9 = 45.38°
L9 and Sacrum = 30.93°

Curvature angle between:
    T1 and T10 = 47.81°
    T10 and Sacrum = 41.38°
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clinical setting. After adjustment of the deviated vertebral 
centers, the spinal curve, APs, and IPs can still be predicted 
accurately by the proposed numerical algorithm.

The present study has several limitations. First, it lacked 
an external validation dataset. The current dataset contained 
images from only one medical center. Different image qual-
ity and radiographic examination protocols may hinder 
the performance of the DL model when its application is 
expanded to a multicenter database. Second, images with 
anomalous vertebral numbering (greater or fewer than 25 
vertebrae) were excluded from the dataset. Therefore, the 
proposed DL model may not produce accurate predictions 
for individuals with conditions that lead to anomalous ver-
tebral numbering, such as lumbosacral transitional vertebrae 
or other congenital vertebral anomalies. Third, the predic-
tions were only based on lateral X-rays. A biplanar scanner, 
such as an EOS imaging system with possible three-dimen-
sional reconstruction, could be an ideal radiographic modal-
ity for assessing patients with spinal deformities. Fourth, the 
whole spine lateral radiographs were taken due to different 

spinal conditions, including fractures, deformities, spinal 
implants, and cement assessment. The performances and 
accuracy of the DL model may vary in different spinal con-
ditions. Despite these limitations, the proposed DL model 
was able to characterize and interpret the sagittal spinal 
curve automatically and consistently. Future applications of 
the proposed DL model will focus on aiding postoperative 
follow-up radiographic evaluations, large-scale spinal cur-
vature analysis of a preexisting database, and incorporating 
advanced imaging modalities, such as biplanar EOS imag-
ing, with DL techniques.

Conclusions

A DL model for automatic spinal curve analysis of whole-
spine lateral plain radiographs is developed. The estimated 
locations of IPs, APs, and curvature angles demonstrated 
good to excellent reliability compared with human experts 
(all ICCs > 0.85). Future applications for surgical planning, 

Fig. 8   a A 70-year-old female 
patient with an L1 compres-
sion fracture nonunion with 
thoracolumbar kyphosis. b The 
patient underwent posterior 
instrumentation and L1 cement 
augmentation to correct the 
kyphosis. The thoracic apex, 
cervicothoracic inflection point, 
and thoracolumbar inflection 
point shifted after redistribution 
of the thoracic kyphosis and the 
lumbar lordosis

a b 

Curvature angle between:
T2 and L3 = 83.2°
L3 and Sacrum = 91.88°

Curvature angle between:
C7 and L2 = 69.79°
L2 and Sacrum = 73.69°
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database analysis, postoperative follow-up, and population-
based screening should be explored to validate the system 
and improve its clinical efficiency.
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