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Abstract
Objective  To quantify muscle characteristics (volumes and fat infiltration) and identify their relationship to sagittal mala-
lignment and compensatory mechanism recruitment.
Methods  Female adult spinal deformity patients underwent T1-weighted MRI with a 2-point Dixon protocol from the 
proximal tibia up to the T12 vertebra. 3D reconstructions of 17 muscles, including extensors and flexors of spine, hip and 
knee, were obtained. Muscle volume standardized by bone volume and percentage of fat infiltration (Pfat) were calculated. 
Correlations and regressions were performed.
Results  A total of 22 patients were included. Significant correlations were observed between sagittal alignment and mus-
cle parameters. Fat infiltration of the hip and knee flexors and extensors correlated with larger C7-S1 SVA. Smaller spinal 
flexor/extensor volumes correlated with greater PI-LL mismatch (r =  − 0.45 and − 0.51). Linear regression identified volume 
of biceps femoris as only predictor for PT (R2 = 0.34, p = 0.005) and Pfat of gluteus minimus as only predictor for SVA 
(R2 = 0.45, p = 0.001). Sagittally malaligned patients with larger PT (26.8° vs. 17.2°) had significantly smaller volume and 
larger Pfat of gluteus medius, gluteus minimus and biceps femoris, but similar values for gluteus maximus, the hip extensor.
Conclusion  This study is the first to quantify the relationship between degeneration of spino-femoral muscles and sagittal 
malalignment. This pathoanatomical study identifies the close relationship between gluteal, hamstring muscles and PT, SVA, 
which deepens our understanding of the underlying etiology that contributes to adult spinal deformity.
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Introduction

Abnormal pelvic anatomical shape has been implicated in 
the development of sagittal malalignment in adult spinal 
deformity (ASD), as does the lack of compensatory mech-
anism recruitment [1]. However, muscles have been an 
under-appreciated component that cannot be overlooked in 
the investigation of ASD. Prior studies on lumbar degenera-
tive kyphosis reveal that kyphotic patients have significantly 
smaller lumbar muscle and higher proportion of fat deposits 
in multifidus and erector spinae muscles [2]. Indeed, mus-
cle degeneration requires more attention due to the close 
relationship with sagittal malalignment. Previous studies 
demonstrated that musculoskeletal fragility associated with 
sarcopenia can contribute to falls in patients since muscle 
performance might be altered by the loss of muscle mass and 
strength [3, 4]. In addition to muscles located in the lumbar 
spine region, other parts of musculoskeletal system may 
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also contribute to sagittal alignment regulation and postural 
control. On a higher-level point of view, postural control is 
a continuous process during which the neuro-central system 
analyzed input from the vestibular, visual and proprioceptive 
systems and then responds through muscular efforts.

The alteration of muscle architecture and activation in 
lower limbs may contribute to the maintenance of upright 
stance in ASD patients. The compensatory mechanisms for 
malalignment have been well addressed, including the role 
of lower limbs, with increased understanding of the contri-
bution in the recruitment chain [5, 6]. However, the role of 
various muscles in this compensatory cascade remains to 
be investigated. A better understanding of lower limb com-
pensation and how the muscular system affects compensa-
tion would benefit clinical evaluation and targeted therapy. 
Therefore, the current study aims to investigate the contribu-
tion or correlation between muscle degeneration and sagittal 
malalignment as well as compensatory mechanism recruit-
ment with a novel MRI 3D reconstruction technique.

Methods

Subjects

This is a prospective pilot study on muscle profiles of ASD 
patients with institutional review board approval and written 
informed consent. Inclusion criteria were as follows: female 
patients older than 35 years old, meeting at least one of the 
following ASD radiographic criteria: coronal curve larger 
than 30°, sagittal pelvic tilt (PT) larger than 20°, pelvic 
incidence (PI) and lumbar lordosis (LL) mismatch (PI-LL) 
larger than 10°, or C7-S1 sagittal vertical axis (SVA) larger 
than 4 cm [7]. Patients with previous spinal surgery history, 
existing hip/thigh/knee instrumentation or presenting con-
traindication for MRI, were excluded from this study. Only 
women were recruited due to higher prevalence of ASD in 
women. The quality of life of the patients was evaluated 
by SRS-22 questionnaires and Oswestry Disability Index 
(ODI).

Radiographic analysis

All patients underwent standing full spine films. Radio-
graphs were measured using validated software (SpineView, 
Laboratory of Biomechanics ENSAM ParisTech, France) 
[8], and the following sagittal radiographic parameters were 
obtained: PI, PI-LL, PT, SVA. After calculating the PI-LL/
PT ratio, patients were stratified based on PI-LL/PT as two 
groups using 40% and 60% percentile as threshold to distin-
guish different pelvic compensation recruitment. The PI-LL/
PT ratio stands for the level of pelvic compensation involve-
ment in the setting of lumbosacral malalignment.

MRI acquisition

MRI was performed on a 3 T whole-body scanner (Mag-
netom Verio, Siemens Healthcare, Erlangen, Germany) 
using a 24-channel spine matrix coil and three 4-chan-
nel flex coils from the same vendor. The imaging proto-
col included a T1-weighted turbo spin echo (T1w TSE) 
sequence for applying the two points Dixon method (TR/
TE = 829/15.7 ms, acquisition matrix = 512 × 384, in plane 
resolution = 0.98 × 0.98 mm2, slice thickness = 5 mm, slice 
gap = 5 mm, iPat = 2, 40 slices, flip angle = 150°, band-
width = 315 Hz/pixel, turbo factor = 3, echo spacing = 15.7, 
acquisition time = 4:38 min). Water and fat images were 
automatically generated by the scanner. Image volume cov-
ered the proximal tibia to the lumbar spine (until inferior 
endplate of T12 vertebra) and was acquired in four stages. 
Total acquisition time was 25 min.

3D Muscle Reconstruction

The 3D reconstruction of individual muscles, listed in 
Table 1, was performed using Muscl’X software (ENSAM, 
Laboratory of Biomechanics, Paris, France), a validated 
software [9] already employed in previous literature [10]. 
Some muscles were combined, since the low contrast made 
an accurate separation of the individual muscles difficult. 
The lumbar part of the psoas was reconstructed separately, 
but at a point where the distinction with the iliacus was not 
possible, it was then integrated into the iliacus. The external 
obturator, adductor longus, brevis and magnus and pectineus 
were reconstructed into a single group named “Adductor.” 
The vastus lateralis and intermedius were reconstructed 
together. The muscle reconstructions were done on the fat 
images. Figure 1 (reprinted with permission from the authors 
of previous literature [10]) presents the 3D reconstruction 
of the left muscles for one patient. The femurs were also 
reconstructed on the water images; the contrast between the 
cortical and cancellous bones was greater on water images.

Right and left muscles were grouped according to the 
joint (spine, hip and knee) and by mechanical action 
(

Flexor

Extensor
of spine, hip and knee

)

 (Table 1). The function of 
muscles is summarized in Table 1, while the function of 
gluteus medius and minimus was left empty due to their 
complexity.

Quantification of fat and contractile components 
and muscle’s parameters

The fat–water ratio by voxel was calculated as previously 
reported [10]. From the 3D reconstructions, muscular vol-
umes were calculated (Vmuscle) for each muscle, and the 



3000	 European Spine Journal (2020) 29:2998–3005

1 3

model of repartition was used to calculate the volumes of 
fat components (Vfat) and contractile components (Vcont) 
(Vmuscle = Vfat + Vcont). The volumes were then normal-
ized between individuals based upon the volume of the 
right femur (Pmuscle = Vmuscle/Vfemur). The fat infil-
tration was evaluated via the percentage of fat component 
(Pfat = 100*Vfat/Vmuscle). Lower volume (smaller Vmus-
cle and Pmuscle) and more fat infiltration (larger Pfat) 
indicated a greater muscle degeneration.

Statistical analysis

Muscle volume and fat infiltration were characterized by 
mean and standard deviation. Correlations between each 
muscle/muscle group and radiographic parameters were per-
formed. Stepwise linear regressions of PT and SVA using all 
muscle parameters were performed with stepwise at the first, 
and then, linear regression of PT and SVA using volume 
and fat infiltration of significantly related muscle was again 
performed. In addition, muscle parameters were compared 
between patients with well alignment and malalignment 
using nonparametric t test. For each statistical analysis, the 
level of significance was set at 0.05.

Results

Demographic

A total of 22 ASD patients were enrolled in this study with 
a mean age of 61.05 ± 12.55 years old and mean BMI of 
23.38 (Range: 20.08–32.45). All radiographic parameters 
are summarized in Table 2, as well as the mean fat infiltra-
tion. The spine extensor possessed the largest fat infiltration 
(31.73%), followed by spine flexor (25.80%), hip extensor 
(15.27%) and knee flexor (13.14%).

In all patients, age was positively correlated with Pfat 
of almost all muscle groups (p < 0.05, Online Appendix 1), 
indicating larger muscle degeneration as age increased. 
Meanwhile, BMI was barely correlated with volume and fat 

Table 1   Muscles reconstructed in this study and then grouped by function and joints for further analysis

Abbreviations in 
this article

Spine 
extensor

Spine flexor Hip extensor Hip flexor Knee 
extensor

Knee flexor

Quadratus lumborum Q.L x – – – – –
Erectus spinae E.S x – – – – –
Iliopsoas – – x – x – –
Biceps femoris short B.F.S – – X – – x
Biceps femoris long B.F.L – – X – – x
Semi-membranosus S.M – – X – – x
Semi-tendinosus S.T – – X – – x
Gluteus maximus G.max – – X – – –
Rectus femoris R.F – – – x x –
Gracilis G – – – x – x
Sartorius S – – – x – x
Adductor A – – – x – –
Tensor fascia lata T.F.L – – – x – –
Vastus lateralis and intermedius V.L – – – – x –
Vastus medialis V.M – – – – x –
Gluteus medius G.med – – – – – –
Gluteus minimus G.min – – – – – –

Fig. 1   Medial and frontal view of all the left muscles reconstructed 
for one patient. (Reprint with permission from [10])
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infiltration of muscle groups except for the correlation with 
Pfat of hip extensor (r = 0.456, Online Appendix 1).

Correlation between radiographic parameters 
and muscle parameters

Significant correlations were observed between sagittal 
alignment radiographic parameters and those describing the 
muscle groups (Table 3). 

For regional alignment, PI-LL mismatch correlated with 
a decrease in spine flexor and extensors volumes (r =  − 0.445 
and − 0.508, p = 0.038 and 0.016, respectively); no correla-
tions were observed between PI-LL and the fat infiltration 
of the different muscle groups (all p > 0.05). Lumbar lordosis 
negatively correlated with the volume and fat infiltration 
ratios of Spine Flexor

Spine Extensor
 (r =  − 0.481 and − 0.443, p = 0.024 and 

0.039, respectively).
For global alignment, SVA correlated with all muscle 

groups except spine flexors (Table 3). In terms of each spe-
cific muscle, SVA moderately to strongly correlated with an 
increase in fat infiltration of Hamstrings, G.Med and G.Min 
(r = 0.46–0.63, all p < 0.05, Online Appendix 2). However, 
volume and fat infiltration of specific spinal muscles showed 
no correlation with SVA; also SVA showed no correlation to 
standardized muscle volumes.

Table 2   Summary of radiographic characteristics and muscle of the 
cohort

N Mean SD

PI-LL (°) 22 1.38 19.24
C7-S1 SVA (mm) 22 16.06 56.60
T1PA (°) 22 17.12 12.55
SS (°) 22 31.18 10.56
PT (°) 22 22.69 11.54
PI (°) 22 53.87 13.41
T4-T12 kyphosis (°) 22 45.04 18.84
Thoracic Cobb angle (°) 14 36.77 20.32
Thoracolumbar/lumbar Cobb 

angle (°)
19 29.95 16.78

Fat infiltration of muscles
Spine flexor (%) 22 25.80 11.54
Spine extensor (%) 22 31.73 13.23
Hip flexor (%) 22 11.60 4.26
Hip extensor (%) 22 15.27 6.87
Knee flexor (%) 22 13.14 4.39
Knee extensor (%) 22 8.82 3.98

Table 3   Correlations between 
radiographic parameters and 
muscle parameters

Bold values indicate significant correlations

PT PI C7-S1 SVA PI-LL LL TPA PT/PI

Pmuscle
Spine flexor − 0.531 − 0.479 − 0.237 − 0.445 0.126 − 0.483 − 0.378
Spine extensor − 0.509 − 0.084 − 0.11 − 0.508 0.509 − 0.41 − 0.623
Hip flexor  − 0.402  − 0.324  − 0.362  − 0.367 0.159  − 0.424  − 0.292
Hip extensor − 0.465 − 0.278 − 0.154 − 0.296 0.115 − 0.379 − 0.434
Knee flexor − 0.433 − 0.249 -0.329 − 0.39 0.244 − 0.424 − 0.416
Knee extensor − 0.483 − 0.483 − 0.447 − 0.477 0.157 − 0.524 − 0.346
Spine flexor

Spine extensor
0.041 − 0.376 − 0.04 0.162 − 0.481 0.007 0.333

Hip flexor

Hip extensor
0.048 − 0.031 − 0.28 − 0.132 0.125 − 0.086 0.129

Knee flexor

Knee extensor
0.199 0.362 0.299 0.214 0.044 0.278 0.049

Pfat
Spine flexor 0.124 − 0.104 0.285 0.349 − 0.476 0.191 0.36
Spine extensor 0.307 0.447 0.426 0.278 0.039 0.382 0.197
Hip flexor 0.147 0.01 0.443 0.316 − 0.349 0.27 0.308
Hip extensor 0.153 0.117 0.492 0.267 − 0.209 0.306 0.202
Knee flexor 0.217 0.17 0.545 0.348 − 0.259 0.371 0.263
Knee extensor 0.283 0.205 0.551 0.347 − 0.231 0.424 0.286
Spine flexor

Spine extensor
− 0.145 − 0.413 − 0.147 0.104 − 0.443 − 0.164 0.105

Hip flexor

Hip extensor
− 0.233 − 0.273 − 0.281 − 0.181 − 0.01 − 0.302 − 0.102

Knee flexor

Knee extensor
− 0.319 − 0.317 − 0.265 − 0.278 0.064 − 0.341 − 0.187
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For compensation recruitment, PT showed moderate to 
strong negative correlations with the volume of spinal flexor 
and extensor (r =  − 0.531 and − 0.509, both p < 0.05), knee 
flexor and extensor (r =  − 0.433, − 0.483, both p < 0.05) and 
hip extensor (r =  − 0.465, p = 0.029). In terms of each spe-
cific muscle, volume of muscles was significantly correlated 
with PT including volume of G.Med, vastus lateralis and 
intermedius, vastus medialis, biceps femoris long, semi-
membranosus, iliopsoas and erectus spinae (r = 0.42–0.58, 
all p < 0.05, Online Appendix 3).

The PT/PI ratio, evaluating percentage of pelvic compen-
sation recruitment, demonstrated strong correlation with the 
volume of spine extensor (r =  − 0.62, p = 0.003), suggesting 
that larger PT recruitment was correlated with smaller mus-
cle volume of spine extensors.

Regression to predict SVA and PT

Stepwise linear regression for both SVA and PT was first 
performed based on muscle parameters. Results revealed 
that muscle volume of biceps femoris long was only predic-
tor for PT (R2 = 0.34, p = 0.005) and fat infiltration of G.Min 
as only predictor for SVA (R2 = 0.45, p = 0.001, Table 4). 
Considering strong correlation between fat infiltration of B.F 
Long and of G.Med as well as between fat infiltration of B.F 
Long and of G.Min, both volume and fat infiltration param-
eters for G.Med, G.Min, and BF Long were forced to be 

included in the second model, increasing predictive power 
for PT (R2 = 0.44) and SVA (R2 = 0.61, Table 4).

Comparison between patients with different 
compensation recruitments

As summarized in Table 5, 2 subgroups were described 
based on PI-LL/PT to distinguish patients with pelvic com-
pensation recruitment. Patients with larger PT recruitment 
were found with statistically significant smaller volume of 
G.med, more fat infiltration of G.min and B.F.L. Also, this 
subgroup was also found with a trend of smaller volume 
of G. min, B.F.L and a trend of increased fat infiltration of 
G.med.

Correlation between muscle parameters and HRQOL

In the 19 patients with HRQOL measurement, only SRS-
22 self-image domain was significantly correlated with the 
volume of spinal extensor (r = 0.514, p = 0.035). SRS-22 
function domain showed trend of correlation to (Pfat of hip 
flexor)/(Pfat of hip extensor) (p = 0.070), while SRS-22 men-
tal, pain domain and total score showed no correlation to 
muscle parameters. Regarding ODI score, the fat infiltration 
of knee extensor showed trend of correlation to ODI without 
statistical significance (p = 0.056, Online Appendix 4).

Table 4   Linear regression 
for SVA and PT with muscle 
parameters

Dependent variable Independent variables Regression method R2

C7-S1 SVA Pfat of gluteus minimus Stepwise 0.45
Volume and Pfat of biceps femoris 

long, gluteus medius and minimus
Enter 0.61

PT Volume of biceps femoris long Stepwise 0.34
Volume and Pfat of biceps femoris 

long, gluteus medius and minimus
Enter 0.44

Table 5   Comparison between 
patients with different pelvic 
compensation

Bold values indicate significant correlations

Less PT recruitment More PT recruitment p
Number 9 9

PI-LL −11.34 ± 9.84 16.65 ± 26.12 0.008
PT 17.18 ± 8.03 26.83 ± 14.14 0.090
Standardized volume of G.max 2.66 ± 0.31 2.71 ± 0.69 0.848
Standardized volume of G.med 1.24 ± 0.16 1.08 ± 0.15 0.040
Standardized volume of G.min 0.40 ± 0.05 0.35 ± 0.05 0.056
Standardized volume of B.F.L 0.65 ± 0.11 0.53 ± 0.14 0.056
Pfat of G.max 12.89 ± 4.07 20.22 ± 10.97 0.078
Pfat of G.med 9.12 ± 3.88 13.67 ± 6.89 0.104
Pfat of G.min 14.92 ± 5.53 23.77 ± 9.28 0.026
Pfat of B.F.L 8.74 ± 2.57 13.28 ± 5.53 0.040
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Discussion

In sagittal malalignment scenario, in order to maintain a 
erect posture, the compensatory mechanism is recruited 
through the involvement of muscles and the corresponding 
radiographic presentations such as pelvic retroversion and 
knee flexion are the consequences [11]. A better understand-
ing of the role of muscles in sagittal malalignment and com-
pensation may lead to a more thorough understanding of the 
underlying pathoanatomical cascade that leads to ASD and 
would thus represent a potential therapeutic target upstream 
of bony pathology that may only represent the symptoms of 
the underlying etiology [12]. With the use of a MRI based 
3D reconstruction of the muscles [9, 10], the current study 
has the possibility to quantitatively evaluate the volume and 
fat infiltration of muscles and brings more accurate descrip-
tion of how the muscle impacts or correlates with sagittal 
malalignment.

Several previously reported studies have examined the 
relationship between spinal curvature and the spinal exten-
sors with cross-sectional area (CSA), which has the limita-
tions of the position-related change of muscle CSA and the 
inaccuracy to represent the volume of entire muscle [2, 13]. 
The result of the current study, demonstrating that larger 
volume of spinal extensor and smaller fat infiltration of spi-
nal flexor both correlated with lumbar lordosis, provided 
more solid evidence with 3D muscle reconstruction. Spinal 
muscle strength could dictate the degree of lordotic curve 
from a biomechanical perspective. Recent modeling suggests 
that a spine with large lordosis requires a greater follower 
load (concept proposed by Patwardhan, [14] defined as inter-
nal compressive load passing through the centers of rotation 
of the spinal segments) in the standing position than one 
with minimal lordosis [15]. Thus, increased lumbar lordosis 
requires larger extensor musculature and more extension 
strength over flexion to provide sufficient follower loads, as 
shown in the results that both volume and fat infiltration of 
Spine Flexor

Spine Extensor
 correlated with LL.

The current study demonstrated that pelvic retroversion 
was associated with and could be predicted from gluteus 
medius, gluteus minimus and hamstring muscle degenera-
tion. This is the first description regarding G. Med/Min and 
an interesting one since previously stronger gluteus maxi-
mus, the hip extensor, was regarded as the responsible mus-
cle for pelvic retroversion [16]. The function of G.Med and 
G.Min is both difficult to determine. Anatomically, G.Med 
and G.Min are both primary hip abductors with rotation and 
flexion being possible. Instead of treating G.Med as a whole 
muscle, Soderberg et al. divided G.Med into 3 parts [17]. 
Gottschalk et al. further described that anterior and middle 
parts act as abductor and hip flexor [18]. Beck et al. reported 
that G.Min acts as a flexor and an abductor of the hip and 

also as either an internal or external rotator [19]. Due to 
the complex and ever-changing function of both G.Med and 
G.Min, two speculations are proposed here to serve as possi-
ble explanations for how the G.Med and G.Min affect pelvic 
retroversion.

One speculation is that the muscle imbalance between 
hip extensors and flexors leads to pelvic retroversion. In the 
current study, G.Max, the main hip extensor, was found to 
be similar between patients with and without pelvic retrover-
sion in terms of both volume and fat infiltration. Consider-
ing the weaker G.Med and G.Min which may potentially 
act as hip flexor, the similar G.Max would be relatively 
stronger due to the imbalance between flexor and exten-
sor in patients with more PT recruitment. The imbalance 
between flexor and extensors was also observed in cerebral 
palsy patients (significantly smaller PT) with overactivated 
G.Med/Min and weakened G.Max, just the opposite to the 
ASD patients studied here [20]. Another explanation could 
be the reverse pathologic cascade: pelvic retroversion would 
lead to possible degeneration of G.Med and G.Min. Ross 
et al. confirmed that more pelvic retroversion would result in 
acetabular anteversion and cranial version and thus result in 
more internal rotation [21, 22]. A recent study on hip range 
of motion also reported that increased pelvic retroversion 
may cause decreased femoral neck rotation and hip external 
rotation [23]. If the pelvis responded to spinal malalignment 
with pelvic retroversion, then femoral head tends to rotated 
medially spontaneously and muscles responsible for internal 
rotation, G.Med and G.Min, could be de-activated which in 
turn lead to their fatty degenerative atrophy.

In addition to gluteal muscles, the hamstring was also 
found to be associated with pelvic retroversion as well as 
sagittal global alignment. Also, it is the volume of biceps 
femoris long that showed negative correlation with PT. 
Previous studies have reported similar observations in the 
relationship between hamstring shortness and retroverted 
pelvis as well as higher trunk flexion [24]. In patients with 
low back pain, tight hamstring was correlated with limit 
hip motion [25]. Hamstring shortness was also extensively 
reported in spondylolisthesis patients with restricted hip 
flexion. The hamstring tightness in Scheuermann kyphosis 
was also reported and defined as a definite sign or etiologi-
cal factor. Hosman et al. found that tight hamstrings were 
linked to limit lumbar and pelvic range of motion and risk 
of postoperative sagittal negative imbalance indicating over-
retroverted pelvis [26]. In the current study, the volume of 
B.F.L was correlated with and could be used to predict PT, 
while larger SVA was correlated with more fat infiltration 
of B.F.L, which implied less contribution to compensatory 
mechanisms such as hip extension and knee flexion.

The current study also reported the feasibility to pre-
dict sagittal malalignment with only G.Med, G.Min and 
B.F.L. Actually, predicting sagittal alignment from muscle 
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parameters is challenging in common clinical settings that 
are typically not equipped to obtain the appropriate advanced 
imaging and subsequently analyze the data rapidly. Never-
theless, the strong influence of soft tissue alterations on 
sagittal alignment calls for future studies to develop tar-
geted treatments toward muscle degeneration in the setting 
of sagittal malalignment. The corresponding conservative 
treatments toward G.Med, G.Min and B.F.L may have the 
potential to help maintain sagittal alignment and relieve 
low back pain prior surgical intervention. In addition, the 
evaluation of patient’s soft tissue profile could also aid in the 
understanding of patient-specific compensatory mechanisms 
and thus a better surgical planning. For example, perhaps 
sagittal malalignment patients with tight hamstrings may 
require less aggressive osteotomy to prevent potential post-
operative negative SVA.

The limitations of the current study mainly lie in the 
small sample size. Full-body radiographic evaluation with 
femoral version, knee varus/valgus is not available at the 
time of patient recruitment and should be further analyzed 
in the future study.

Conclusion

Using novel MRI 3D reconstruction techniques, this study is 
the first to quantify the relationship between degeneration of 
spino-femoral muscle and sagittal malalignment. This patho-
anatomical study identifies the close relationship between 
gluteal, hamstring muscles and PT, SVA, which deepens 
our understanding of the underlying etiology that contrib-
utes to adult spinal deformity. It is hoped that the detailed 
insights gained could help to devise targeted strategies and 
incorporate patients’ soft tissue profiles for the prevention 
and treatment of adult spinal deformity.
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