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Abstract
Purpose  The purpose of the study is to describe the biomechanical theory explaining junctional breakdowns in thoraco-
lumbar fusions, by taking the example of vertebral compression fractures. Also, a new angle, the cervical inclination angle 
(CIA), describing the relative position of the head at each vertebral level, is presented.
Methods  For the CIA, the data were collected from 137 asymptomatic subjects of a prospective database, containing clinical 
and radiologic informations. All the 137 subjects have an Oswestry score less than 15% and a pain score less than 2/10 and 
were part of a previously published study describing the Odontoïd-hip axis angle (ODHA). For each vertebral level from 
T1 to T12, the CIA as well as the vertical and horizontal distances was measured in reference to the sella turcica (ST), and 
a vertical line drawn from the ST. Average values and correlation coefficients were calculated.
Results  The CIA is an angle whose average value varies very little between T1 and T5 (74.9°–76.85°), and then increases 
progressively from T6 to T12. T1–T5 vertebra are always in line within the thoracic spine for each subject and can be con-
sidered as a straight T1–T5 segment. In addition, it was found that the vertical inclination of T1–T5 segment is correlated 
with the C7 slope (R2 = 0.6383).
Conclusion  The T1–T5 segment inclination is correlated with the C7 slope, and because the latter defines the cervical curve 
as previously shown, the T1–T5 segment can be considered as the base from which the cervical spine originates. Its role 
is, thus, similar to the pelvis and its sacral slope, which is the base from which the lumbar spine originates. The CIA along 
with the ODHA, which describes the adequacy of the global balance in young and elderly asymptomatic populations, are 
two important parameters that could help us to better understand junctional breakdowns in thoraco-lumbar fusion surgeries.

Keywords  Proximal junctional kyphosis · Proximal junctional failure · Bending moment · Vertebral fracture · Sagittal 
balance

 *	 Antonio A. Faundez 
	 dr.faundez@icloud.com

	 Jean‑Charles Le Huec 
	 j‑c.lehuec@u‑bordeaux2.fr

	 Jonathon Richards 
	 jonathon.richards79@gmail.com

	 Andreas Tsoupras 
	 andreas.tsoupras@etu.unige.ch

	 Rachel Price 
	 rachelsarahmarie@gmail.com

	 Amélie Léglise 
	 amelie.leglise@orange.fr

1	 Spine Unit 2, University Victor Segalen, 33079 Bordeaux, 
France

2	 Orthopaedic Surgery and Traumatology Division, Geneva 
University Hospitals and Hôpital La Tour, 3 Avenue JD 
Maillard, 1217 Meyrin, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00586-017-5425-8&domain=pdf


S130	 European Spine Journal (2018) 27 (Suppl 1):S129–S138

1 3

Introduction

Junctional kyphosis (JK) or failure (JF) can be defined as 
an abnormal change in the degree of kyphosis, or angu-
lation, than that seen in the early post-operative period, 
from either failure of the vertebrae, the soft tissues or the 
bone–implant interface in thoraco-lumbar fusion surgery. 
The complication can take place at the proximal or distal 
end of the construct [1]. In most cases, it is the proximal 
form, which is observed (PJK: proximal junctional kypho-
sis, or PJF: proximal junctional failure).

PJK is a radiographic finding and is defined as a proxi-
mal junctional sagittal Cobb angle (PJA) between upper 
instrumented vertebra (UIV) and two levels above the UIV, 
greater than 10° or at least 10° greater than the corre-
sponding preoperative measurement [1–3].

PJK or PJF can occur early, during the postoperative 
period (up to 12 weeks post-op) or more progressively 
during months or even years [4]. Incidence of PJK/PJF 
varies widely in the literature with authors reporting rates 
ranging from 17 to 61%, due to different definitions and 
study designs [2].

PJF has been defined as a symptomatic form of PJK 
surgery and with an increased PJA greater than 15°, pos-
sibly needing revision [5].

As reported by Hostin et al., fracture is the most com-
mon PJF mode (47%), followed by soft-tissue failure 
(44%), screw pullout and trauma [6]. However, there is 
evidence that the mode of failure depends on the location 
of UIV. More fractures are seen in thoracolumbar failures 
in contrast with upper thoracic failures, which are more 
frequently seen as soft-tissue failure and compression frac-
tures of various degrees [6].

Clinically, PJF manifests with pain, neurological deficit, 
gait difficulties, sagittal imbalance and social isolation [7].

In general, PJF requires revision surgery. Treatment 
depends on the flexibility of the spine. For a flexible and 
harmonious kyphotic spine, extension of the instrumenta-
tion to the next stable level, alone or associated with a 
Smith Peterson osteotomy (SPO) can be recommended. 
For a rigid spine containing ankylosing lesions, flat back 
sequelae, or with localized angular kyphosis, extension 
of instrumentation may have to be combined with a three-
column osteotomy such as Pedicle Subtraction osteotomy 
(PSO) to correct spinal deformity, pain and neurological 
deficit [1, 4, 8].

Reports on the prevalence, outcomes, possible risk fac-
tors, and prevention of PJK in adult spinal deformity sur-
gery have already been attempted. However, available data 
remain controversial and pathogenesis of the complication 
not fully understood [7]. For this reason, it is difficult to 
anticipate this complication.

From this background analysis, we conclude that current 
status of the literature reflects the misunderstanding of the 
exact patho-mechanism of junctional failure.

As mentioned above, junctional kyphosis can present 
as two major modes [6]: vertebral fractures and soft-tissue 
failure. When it manifests mainly as soft tissue failure, the 
etiology is certainly to be found in the deleterious effect of 
surgical approaches on adjacent levels such as facet joint 
injury, inter- and supra-spinous ligaments tears, muscle 
detachment and other anatomical damage [1, 2, 4–7, 9–27]. 
This is clearly understandable and supports the fact that 
extensive surgical approaches should be avoided, although 
in some cases, there can also be genuine failure through 
uninjured soft tissue. In some cases, the aging-related mus-
cular degeneration or the neuromuscular dysfunction seen in 
Parkinson’s disease or camptocormia (bent spine syndrome) 
can explain the progressive weakening of the posterior ten-
sion band, generating overload of the anterior column. In 
this case, there is a risk of vertebral fracture. When pre-
senting as a fracture, the mechanism of failure is similar to 
compression fractures. This is further explained here below.

Biomechanics of vertebral compression 
fractures

Junctional failures are clearly the result of an imbalance 
between anterior column compression forces and poste-
rior column tension band strength. In other words, there is 
an excessive bending moment, a mechanism very similar 
to what is seen in vertebral compression fracture (VCF), 
a common pathology of the elderly population. VCF can 
occur after minor trauma or even fortuitously discovered on 
systematic X-rays. It has been shown that kyphotic patients 
have higher risk of VCF than the normal population [28].

Alf Nachemson and other authors previously reported that 
a lumbar functional spinal unit (SFU) can support a maxi-
mum axial weight of 500 kg, but a bending moment of only 
20 Nm in flexion [29, 30]. Consequently, if the lever arm 
length is increased by only 10 cm, the maximal weight sup-
ported by the SFU will be reduced to 20 kg [30]. It is, thus, 
important to restore the anterior wall height of a fractured 
vertebra, to prevent the risk of additional adjacent fractures 
or domino effect (DE) [31] (Fig. 1). Disc height loss due 
to degeneration at several levels increases thoracic kypho-
sis and results in a similar biomechanical condition for the 
upper adjacent vertebra than a VCF.

The biomechanical consequence of an increased thoracic 
kyphosis is an anterior trunk shift (TS), anteriorly shifting 
the center of gravity, leading to a domino effect (DE), further 
increasing the kyphosis [31]. This has been observed in the 
older study group of asymptomatic patients describing the 
ODHA angle [32].
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The DE and the TS are directly related to the bending 
moment (BM), which is the product of the weight force 
(constant) and the arm length (variable) (Fig. 1). The arm 
length is the horizontal distance between the weight and the 
gravitational axis, and depends on the degree of kyphosis 
(greater kyphosis = greater lever arm).

In patients without sagittal imbalance, minor muscu-
lar efforts are sufficient to maintain the upright position 

(head and trunk weigh 35 kg in average, at 1 cm lever arm 
= 3.5 Nm as shown in example of Fig. 2): the balance 
is ‘‘ergonomic’’. In case of increased kyphosis (Fig. 2), 
with a 10-cm lever arm distance increase from the gravity 
line (GL), the bending moment becomes theoretically high 
enough to damage the vertebra (35 Nm). VCF can occur 
in this configuration and with a higher risk if the subject 
is osteoporotic.

Fig. 1   Admissible physiological 
load on intact young functional 
spine. As shown by Nachemson 
et al., the maximal compres-
sion load supported by a spinal 
functional unit is 500 kg, but it 
decreases to 20 kg if a 10 cm 
lever arm is applied

Fig. 2   Thoraco-lumbar bending 
moment increases with aging. 
With aging, disc degeneration 
induces loss of lumbar lordosis 
and increase of thoracic kypho-
sis, resulting in a forward shift 
of the center of gravity and a 
consequent increase of bend-
ing moments. Under adequate 
conditions (loss of muscular 
function and osteoporosis for 
example), bending moments can 
reach critical values and create 
vertebral fractures
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In the static standing position, the weight of the overlying 
body segment, the compression and shear forces acting on 
the intervertebral discs are counterbalanced by the abdomi-
nal and paravertebral muscle efforts (posterior tension band, 
Fig. 3).

Paravertebral muscles are more solicited (up to 60%) 
in an imbalanced spine compared to the ergonomic spinal 
posture, to counterbalance the increased bending moment 
(Fig. 4). This muscular effort of counterbalancing induces 
an increase in compressive and shear forces by 20% on the 
lumbar discs due to small lever arms. When this becomes 
permanent, muscle fatigue sets in, leading to a reduction of 
the muscular compensatory capacity and potential additional 
degradation of the spinal functional unit.

Mechanically, decreasing the excessive thoracic kyphosis 
is surely a key factor in creating backward bending moments, 
resulting in reduced local stresses. As an example (Fig. 5), 
if the trunk is rocked forward, tilting the thoracic spine 
by 15°, then the bending moment in the T11 vertebra is 
about 22 Nm, which is excessive and may lead to a fracture. 
Restoring vertebral height in the case of a VCF cannot alone 
eliminate the risk of DE. However, an angular re-balancing 
of 1° creates a biomechanically more favorable bending 
moment by about 1.5 Nm.

Thus, compared with the mean critical fracture threshold 
(20 Nm), 1 mm anterior height correction reduces by 13% 
the risk of subsequent vertebral compression fracture; 2 mm 
by 25%, etc. This biomechanical reasoning provides much 
information to understand the mechanisms of PJK/PJF above 
a fusion. The segment of the spine and body located on top 
of the UIV has a mass and a center of gravity that can be 
determined with a barycentremeter as described by Duval-
Beaupere et al. [33]. Therefore, it is possible to evaluate the 
moment of forces applied on the first vertebra above the UIV 
knowing its distance from the center of gravity of the body 
part above it (Fig. 6).

Cervical inclination angle (CIA): a new 
sagittal parameter of economical balance 
assessment in the asymptomatic population

In static position, there is a balance between the weight of 
the overlying body segment, the compression and shear 
loads on the intervertebral discs, and the muscle counter-
balancing efforts (tension of the spinal muscles and posterior 
ligaments). We analyzed the full spine EOS X-rays of an 
asymptomatic population in the upright standardized posture 
to find an anatomical parameter that could help to predict 
overstress at each segment of the thoraco-lumbar area.

Fig. 3   Muscle work under ergonomic conditions. Under normal con-
ditions, bending moments in the spine are counterbalanced by muscu-
lar action and vector force resultants equal zero

Fig. 4   Muscle work under abnormal balance conditions. Under 
abnormal conditions like sagittal imbalance due to disc degeneration 
or iatrogenic flatback, resultant bending moment increases and mus-
cular work also has to increase. In this example, a 1 cm forward dis-
placement of a 400 N weight induces a 60% increase of muscle work
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The position of the center of gravity of the head was stud-
ied in several papers and has been located just behind the 
sella turcica, close to Center of the Acoustic Meati (CAM) 
and on top of the dens of C2 [34]. The sella turcica is a 
very easily identifiable anatomical landmark on lateral full 

spine standing X-rays and located on the midline in the 
coronal view. Knowing that the odontoid-hip axis angle 
(ODHA) reliably reflects a globally balanced spine [32, 35], 
we decided to measure an anatomical angle at each level 
of the thoracic spine vertebra from T1 to T12, using a 3D 

Fig. 5   Effect of angular correction on bending moments. In this 
example, a 15° post-traumatic kyphotic deformity is simulated at 
T11. The bending moment is about 22  Nm. Restoration of height 

only, does not change the bending moment, where as correcting 
the kyphotic deformity by 9.5° results in a 14Nm bending moment 
decrease (1.5 Nm per degree of correction)

Fig. 6   Estimation of bending 
moments based on vertebral 
size. Knowing the antero-poste-
rior (AP) diameter of a vertebra, 
it is possible to estimate the 
anterior wall height restora-
tion necessary to produce a 1° 
kyphosis correction, which in 
turn represents a 1.5 Nm bend-
ing moment reduction
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reconstruction of the spine with EOS technology. This angle 
is the cervical inclination angle or CIA, and is described 
below.

Materials and methods

The EOS data of 137 asymptomatic voluntary subjects were 
extracted from a prospective database, after ethics commit-
tee approval (ID-RCB 2010-A01248-31). All X-rays were 
obtained in the standardized standing position as defined by 
Faro [36, 37]. The usual sagittal parameters such as pelvic 

parameters, lumbar lordosis, thoracic kyphosis, and cervi-
cal angles were measured. Those results have already been 
reported in a previous article [38].

The CIA was measured and is described as follows: for 
each thoracic vertebra from T1 to T12, we measured the 
angle between the mid-point of the sella turcica (ST), the 
mid-point of the thoracic vertebra and the horizontal line 
to each thoracic vertebral endplate mid-point (Fig. 7). The 
distance between the vertical line from the ST and the center 
of the endplate of each thoracic vertebra was also measured, 
as well as the vertical distance. The vertical and horizontal 
distances allowed us to spatially localize each vertebra. Two 
orthopaedic fellows did all the measurements twice inde-
pendently. We also used values of the C7 slope, previously 
described, to calculate correlations [39].

Statistical analysis

Average values and standard deviations of CIA were calcu-
lated for each vertebral level from T1 to T12.

Correlations were calculated for T1–T5 alignment and 
T1–T5 segment inclination versus C7 slope, using linear 
regression and Pearson coefficient.

Results

The CIA average values for each thoracic vertebra of the 
137 study subjects are reported in Table 1. The CIA average 
value progressively increases from T1 to T12, ranging from 
74.83° for the lowest value to 83.82° for the highest. How-
ever, it appeared that the average values of the T1–T5 seg-
ment varied very little, between 74.9° and 76.85°, compared 
to the rest of the thoracic spine where there was a constant 
increase (Table 1 and Fig. 8).

Further analysis of the vertical and horizontal distances 
of each thoracic vertebra in reference to the ST vertical line 
showed that the vertebrae from T1 to T5 were in a straight 
line within the thoracic spine, as shown in Fig. 9.

Figure  10 describes the correlation between the C7 
slope and the vertical inclination of the T1–T5 segment 
(R2 = 0.6383).

Fig. 7   Study measurements. CIA: angle between a line joining the 
center of ST to the center of the superior endplate of each thoracic 
vertebra, and a line drawn horizontally from the endplate center. For 
each level, the vertical distance was measured between the center of 
ST and the crossing point with the horizontal line drawn from the 
center of the superior endplate. Similarly, the horizontal distance was 
measured from the endplate center to the crossing point with the ver-
tical ST line

Table 1   CIA average values per vertebral level (T1–T12)

Each average value, based on 137 subjects, is presented per level with standard deviation. It was noticed that the average value varies very little 
between T1 and T5, and then it increases progressively from T6 to T12

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

Average (°) (n = 137) 76.85 76.00 75.21 74.83 74.9 75.38 76.24 77.42 78.82 80.35 82.02 83.82
Standard deviation (°) 5.3 5.1 5.02 5.02 4.92 4.86 4.79 4.65 4.49 4.33 4.15 3.99
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Fig. 8   CIA average value versus 
vertebral level (T1–T12). This 
graph shows the values for each 
of the 137 subjects. The line 
in red represents the average 
values calculated from the 137 
subjects. It clearly stands out 
that the T1–T5 segment has an 
average CIA value that varies 
very little, as shown also in 
Table 1. It was thus hypoth-
esized that T1–T5 vertebrae 
follow a straight line in all the 
subjects (see Fig. 9)

Fig. 9   T1–T5 alignment in a 
sample of study subjects. Using 
the vertical and horizontal 
distance measurements for 
each vertebra from T1 to T5, it 
was possible to localize them 
in reference to the ST vertical 
line. This graph clearly shows 
that T1–T5 vertebrae follow a 
straight line, with an average 
correlation coefficient, above 
0.8 in the worst case (Pearson 
R2 > 0.8)
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Discussion

Sagittal vertical axis (SVA) is commonly used and consid-
ered as an important predictive factor for junctional con-
struct failure [20, 21]. However, it does not take into con-
sideration capital parameters, which are the head and neck 
and their weight. SVA is an adequate parameter to compare 
a patient balance over time but is not adequate to analyze the 
balance between patients. In some circumstances, the shoul-
ders and upper limbs might also play a role. The CIA reflects 
the necessary harmony of the spinal curves and its impor-
tance for a balanced upright posture, as already supported by 
the concept of the conus of economy of Jean Dubousset [40].

The terms PJK (less deformity, non or less symptomatic) 
and PJF (more deformity, more symptomatic) do not reflect 
the biomechanical understanding we expose above. The 
main mechanism in both conditions is an excessive biome-
chanical stress as exposed at the beginning of this article 
(bending moment). However, the magnitude of the stress can 
be more or less important, which explains why some patients 
develop acute forms of junctional breakdowns (JBD) like 
fractures (thus a PJF) or a more progressive disease like 
adjacent segment degeneration (thus a PJK). This theory is 
further developed in part II of this article.

The analysis of the CIA shows that the T1–T5 segment 
is particular in the thoracic spine. The average value varies 
very little, between 74.9° and 76.85°, depending on the ver-
tebral level (Table 1 and Fig. 8). In addition, Figs. 9 and 10 
show us that T1–T5 vertebrae are very well aligned, and that 
there is a correlation between the T1–T5 segment inclina-
tion and the C7 slope (R2 = 0.6383): if C7 slope increases, 

the T1–T5 segment is more horizontal and vice versa. This 
means that the T1–T5 segment can be considered as the base 
on which the cervical spine lies, just like the pelvis is the 
base of the lumbar spine. The T1–T5 segment defines the C7 
slope, which in turn defines the cervical curve as shown in a 
previous publication [39]. This information is of paramount 
importance for the comprehension of junctional failures in 
the proximal and mid-thoracic spine.

Conclusion

This study shows that the T1–T5 segment can be consid-
ered as the base of the cervical spine. Its inclination defines 
the C7 slope and thus the type of cervical spine curve. The 
adequacy of the global balance in young and elderly asymp-
tomatic populations can be determined with the ODHA [32]. 
Combining those two angles could allow us predict the risk 
of JBD in a population of patients with long lumbo-sacral 
fusions. A detailed analysis of 12 patients with thoraco-
lumbar JBD is presented in part II of this article.
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