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Abstract

Purpose The classification of three-dimensional (3D)

spinal deformities remains an open question in adolescent

idiopathic scoliosis. Recent studies have investigated pat-

tern classification based on explicit clinical parameters. An

emerging trend however seeks to simplify complex spine

geometries and capture the predominant modes of vari-

ability of the deformation. The objective of this study is to

perform a 3D characterization and morphology analysis of

the thoracic and thoraco/lumbar scoliotic spines (cross-

sectional study). The presence of subgroups within all

Lenke types will be investigated by analyzing a simplified

representation of the geometric 3D reconstruction of a

patient’s spine, and to establish the basis for a new clas-

sification approach based on a machine learning algorithm.

Methods Three-dimensional reconstructions of coronal

and sagittal standing radiographs of 663 patients, for a total

of 915 visits, covering all types of deformities in adoles-

cent idiopathic scoliosis (single, double and triple curves)

and reviewed by the 3D Classification Committee of the

Scoliosis Research Society, were analyzed using a machine

learning algorithm based on stacked auto-encoders. The

codes produced for each 3D reconstruction would be then

grouped together using an unsupervised clustering method.

For each identified cluster, Cobb angle and orientation of

the plane of maximum curvature in the thoracic and lumbar

curves, axial rotation of the apical vertebrae, kyphosis (T4–

T12), lordosis (L1–S1) and pelvic incidence were obtained.

No assumptions were made regarding grouping tendencies

in the data nor were the number of clusters predefined.

Results Eleven groups were revealed from the 915 visits,

wherein the location of the main curve, kyphosis and lor-

dosis were the three major discriminating factors with

slight overlap between groups. Two main groups emerge

among the eleven different clusters of patients: a first with

small thoracic deformities and large lumbar deformities,

while the other with large thoracic deformities and small

lumbar curvature. The main factor that allowed identifying

eleven distinct subgroups within the surgical patients

(major curves) from Lenke type-1 to type-6 curves, was the

location of the apical vertebra as identified by the planes of

maximum curvature obtained in both thoracic and thoraco/

lumbar segments. Both hypokyphotic and hyperkypothic

clusters were primarily composed of Lenke 1–4 curve type

patients, while a hyperlordotic cluster was composed of

Lenke 5 and 6 curve type patients.

Conclusion The stacked auto-encoder analysis technique

helped to simplify the complex nature of 3D spine models,

while preserving the intrinsic properties that are typically

measured with explicit parameters derived from the 3D

reconstruction.

Keywords Adolescent idiopathic scoliosis � Spine �
Machine learning � Morphology � Cluster analysis

Introduction

Adolescent idiopathic scoliosis (AIS) refers to a complex

deformation of the spine in three-dimensional (3D) Carte-

sian space with unknown aetiopathogenesis. Standardized

comparisons between treatment strategies or long-term
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management plans involve a classification system of spinal

deformities in order to establish the optimal surgical

strategy for example. Ponseti et al. [1] made a first

endeavor by categorizing spinal curves according to the

location and visual patterns of the curve. King et al. [2]

proposed to consider the configuration (as observed in the

coronal plane), magnitude and degree of flexibility of the

scoliosis deformity. Five different curve types were

described for spinal arthrodesis recommendations. Their

classification system excludes the lumbar segment and the

sagittal profile and yields poor validity, reliability and

reproducibility. Currently, AIS characterization and treat-

ment recommendations rely mostly on the more compre-

hensive Lenke classification system [3]. A specific curve

type, a lumbar spine modifier and a sagittal thoracic

modifier define distinctive spine curves. Nevertheless,

Lenke classification is based on the conventional mea-

surement of two-dimensional (2D) geometric indices such

as Cobb angle or central sacral vertebral line. Describing

spine deformities with only 2D parameters is insufficient to

capture the intricate 3D variability of scoliosis [4].

Classification systems need to improve upon the 2D

assessment of scoliosis, which is tied to radiographs in the

coronal and sagittal planes. Similar 2D profiles on both

coronal and sagittal planes may actually come from dif-

ferent 3D spine geometries [4], where vertebral anatomical

landmarks are expressed in Cartesian coordinates (x, y, z).

A better understanding and characterization of deformation

mechanisms should lead to more appropriate treatments

and accurate evaluations. The Scoliosis Research Society

agreed on a rationalized 3D terminology to describe spinal

deformity [5] and a task force was instructed to assess the

clinical relevance and impact of 3D analysis for AIS.

Recent efforts have been made to use 3D reconstructions of

scoliotic deformities in order to propose accurate and

reproducible classification systems, which take into

account the 3D nature of the deformity. Numerical methods

create new alternatives to current classification systems.

First, advanced 3D indices of scoliosis were investigated to

discriminate between different types of deformation. Pon-

cet et al. [6] introduced a 3D classification method of

scoliotic deformities, based on the geometric torsion of the

vertebral body line categorized several curve patterns.

Kadoury et al. [7] extended the local geometric torsion

measure to regional curves with a parametric curve fitting

that was less prone to inaccuracies in the 3D reconstruc-

tion. A fuzzy c-means classifier further created subgroups

based on the regional geometric torsion indices. Secondly,

regional measures were also explored to provide discrim-

inant indices. Sangole et al. [8] included the axial rotation

of the apical vertebrae and the orientation of the plane of

maximum curvature (PMC) in the main thoracic (MT)

region. Thoracic curve types (Lenke 1) were further

subdivided in three different groups with the ISOData

algorithm. Duong et al. [9] also considered the orientation

of the best-fit plane in the set of 3D parameters. Two dif-

ferent subgroups were found in their small dataset of Lenke

1 curve types. Overall, these studies [7–9] share a similar

framework. Their classification systems are derived from

the clustering of hand-engineered parameters, which were

calculated from 3D spine reconstructions. However, rely-

ing on geometric indices sets out on a quest in search of the

best characteristics to describe the 3D nature of scoliotic

spines.

Numerical methods should be able to capture within a

simplified space, the high resolution and complex nature of

a fully geometric 3D reconstruction of the spine, both on a

regional (spinal) and local (vertebra) levels. This implies

directly analyzing the 3D spine models instead of expert-

based features as it has been experimented previously.

Duong et al. [10] proposed a wavelet-based compression

technique of the spinal curves. Kadoury and Labelle [11]

investigated a manifold learning algorithm based on locally

linear embedding for dimensionality reduction of 3D spine

models of the Lenke 1 curve types. However, these local

techniques for dimensionality reduction tend to suffer from

the curse of dimensionality and to be sensitive to data

models which tend further away from the general trend of

the normal distribution [12]. Hence, increasing the number

of landmarks to describe the 3D spine models or including

other Lenke types will lead to miss-classification of an

important number of samples. Global nonlinear techniques

for dimensionality reduction could overcome these draw-

backs [12] by preserving the global properties of the 3D

spine models.

In this study, we propose to use recent advances in

artificial intelligence to simplify the high-resolution (238

vertebral anatomical landmarks expressed in Cartesian

coordinates) and complex nature of geometric 3D spine

reconstructions for classification purposes. This highly

non-linear transformation discriminates between AIS sco-

liotic curves by learning the intrinsic properties of 3D spine

reconstructions by preserving the global properties. Once a

low-resolution representation has been learned from a

cohort of 3D spine models, new classes can be derived

from their simplified description.

Materials and methods

We evaluate the relevance of a machine learning algorithm,

namely the stacked auto-encoders, on a large database that

comprises 915 reconstructions of all Lenke types (i.e. from

Lenke 1 to Lenke 6). The proposed framework is illustrated

in Fig. 1 and consists of four main steps: (1) reconstruction

of a 3D spine model from biplanar X-rays for each patient;
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(2) encoding each 3D spine in a low-resolution space; (3)

clustering of the encoded spines models; (4) validation of

the sub-groups with clinical data.

Patient data

In this retrospective study, data of 663 preoperative AIS

patients from nine scoliosis centers (New York City, Bal-

timore, Philadelphia, CHOP, Miami, San Diego, Wilm-

ington, Montreal, Vancouver) during an 18-year period

(1994–2012) were selected. From this group, 151 patients

had repeat measurements from multiple clinic visits

(mean = 2.7 visits), yielding a total of 915 visits. All

patients were diagnosed with an adolescent idiopathic

scoliosis in the thoracic and/or lumbar spine. The mean of

the major Cobb angle was 58.8� ± 15.2� (range = 21.3�–
113.6�). Note that a major Cobb angle corresponds to the

maximum value between the main thoracic (MT) Cobb

angle and the thoracolumbar/lumbar (TLL) Cobb angle,

both measured in the plane of maximum curvature (PMC).

Using coronal, sagittal and bending radiographs, members

of the 3D Classification of the SRS assigned a Lenke type

to all visits, which are divided in: 312 Lenke 1, 118 Lenke

2, 152 Lenke 3, 122 Lenke 4, 113 Lenke 5, and 98 Lenke 6

curve types.

3D reconstruction of the spine

The spine was reconstructed in 3D from calibrated coronal

and sagittal radiographs of the patient in a standing position

[13, 14]. A statistical model from a database of scoliotic

patients was used to reconstruct an initial spine model in

3D. Anatomical landmarks on each vertebra were further

refined with an iterative process based on several features

extracted from the radiographs. Finally, an experienced

user at our institution corrected and validated the

anatomical landmark positions on each vertebra to generate

a personalized 3D reconstruction of the spine for each

patient. This reconstruction process from biplanar radio-

graphs produced high shape accuracy and high vertebral

position precision for asymptomatic subjects and idiopathic

scoliosis patients when compared with a reconstruction

performed from CT scans [14]. Concretely, a 3D recon-

struction of the spine consists of fourteen anatomical

landmarks per vertebra (12 thoracic, five lumbar): center,

left, right, anterior and posterior of both superior and

inferior vertebral endplates (ten landmarks); and tips of

both pedicles (four landmarks). All 3D spine models were

normalized with regards to their height and rigidly trans-

lated to a common referential at the L5 vertebra. Hence,

each 3D spine model consists of a vector of 714, which

Fig. 1 Flowchart of the method. The system sequentially: 1 recon-

structs a 3D spine model, x of D dimensions, from biplanar X-rays for

each patient; 2 maps the high-resolution spine reconstruction to a low-

resolution space, called a code, with stacked auto-encoders of

symmetric layer sizes which continuously compresses to a d dimension,

called a code; 3 clusters the low-resolution spines into k sub-groups; 4

validates the cluster relevancewith the clinical data. In our experiments,

each 3D spine models consisted of a vector of size 714 (i.e. the high-

resolution space) that are compressed to a code vector of size 25 (i.e. the

low-resolution space) by using stacked auto-encoders
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corresponds to the concatenation of the 14 landmarks with

3D coordinates in the x, y and z axis, identified on each of

the 17 vertebrae. Radiographs were acquired from both the

low-dose EOS low dose imaging device (EOS imaging,

Paris, France), which simultaneously acquires biplanar

radiographs, and conventional radiographic imaging sys-

tems. 437 reconstructions of the spine (from 290 patients)

came from radiographs acquired with the EOS imaging

system while 478 reconstructions of the spine (from 373

patients) came from conventional radiography. Both

methods showed to yield similar levels of accuracy for the

3D reconstruction of the spine, in comparison to CT

models and expert annotations [13, 14].

Encoding of 3D spine models

The geometric 3D spine models were then simplified into a

low-resolution encoding in order to capture the main fac-

tors of variation in the shape of the spine from the given

cohort. In other words, the purpose is to compress geo-

metric 3D spine models that are represented in a high-

resolution vector (size of 714), into a low-resolution vector

(compressed code). Encoding 3D spine models will help

discover patterns relevant for adolescent idiopathic scol-

iosis. To perform this step, a stacked auto-encoder (SAE)

was used to simplify the representation of the 3D spine

models. A SAE consists of a specific artificial neural net-

work architecture. Artificial neural networks can be

thought of as complex and highly non-linear mathematical

functions which parameters are learnt to transfer the input

observed variables to the output variables.

A SAE is composed of two stages. First, an encoding

stage learns the parameters to map the input vector to a

latent representation. Second, a decoding stage regenerates

the input vector from the latent representation. More

specifically, the algorithm for encoding 3D spine models is

performed as follows. Each spine is represented as an input

vector that consists of the 3D coordinates of all the

anatomical landmarks (denoted as x in Fig. 1). The SAE

first attempts to compress each spine into a low-resolution

latent representation using an encoder function. The lower-

resolution representation is considered as a compressed

version of the input, called a code. Once a code is obtained,

the algorithm then attempts to regenerate an output vector

that consists of a 3D spine model (denoted as z in Fig. 1)

from the code using a decoder function. However, this

reconstruction process is not flawless and will generate

some errors (denoted as e in Fig. 1). The objective would

then be to learn parameters that yield a low reconstruction

error. Hence, the encoding–decoding procedure is opti-

mized by minimizing in an iterative fashion the difference

between the inputs x and outputs z. Stacking several auto-

encoders helps the artificial neural network to become

invariant to most local changes and disentangle the main

factors of variation in the dataset [15, 16].

Clustering

Once a large database of 3D reconstructed spine models

were encoded into low-resolution codes, the k-means??

clustering algorithm [17] partitioned the spine dataset into

k separate sub-groups. This clustering algorithm is a variant

of the traditional k-means clustering algorithm that inte-

grates a probabilistic seeding initialization method. The

selection of the right number of clusters k is based on the

validity ratio [18], which minimizes the intra-cluster dis-

tance and maximizes the inter-cluster distance.

Statistical analysis

We validated the clustered data points with standard geo-

metrical indices in the main thoracic (MT) and thora-

columbar/lumbar (TLL) regions. For each spine, the Cobb

angles and the orientations of the PMC were computed in

both regional curves. The kyphotic angle was measured

between T2 and T12 on the sagittal plane. The lumbar

lordosis angle was defined between L1 and S1 on the

sagittal plane. The axial rotation of the apical vertebra in

the MT region was computed by the Stokes method [19].

Finally, the pelvic incidence (PI) was measured between

the line perpendicular to the sacral plate at its midpoint and

the line connecting this point to the axis of the femoral

heads [20]. One-way ANOVA tested differences between

the cluster groups with a significance level a = 0.05. The

p values were adjusted with the Bonferroni correction.

Moreover, an experienced surgeon at our institution per-

formed a clinical assessment of the ten closest 3D spine

reconstructions near the centroid of each cluster.

Results

The cohort of 915 visits from 663 patients was randomly

divided into a training set (645 visits), a validation set (135

visits) and a testing set (135 visits) for unbiased evaluation.

In order to determine the hyper-parameters of the neural

network, an exhaustive grid search was performed on the

validation set by minimizing the mean squared error. The

architecture yielding the lowest error is presented in Fig. 1.

We used an encoder with four latent layers of size (layer 1:

1000 nodes; layer 2: 500 nodes; layer 3: 250 nodes; code:

25 nodes) and a symmetric decoder with tied weights to

map the high-resolution patient’s spine models into low-

resolution codes. Weight parameters were initialized by a

denoising auto-encoder to capture the statistical depen-

dencies between the inputs. The final model was trained by
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using the entire dataset of 915 visits. Note that five visits

were further excluded because the pelvis radiograph was

not available.

The k-mean?? clustering detected eleven different

groups from the low-resolution encoding of 3D geomet-

rical models based on the validity ratio. Table 1 presents

the clinical statistical data analysis for these eleven

groups. The mean values of all geometric parameters are

listed for all eleven groups and the differences between

all groups were found to be statistically significant

(a = 0.05) for each parameter. Table 2 presents the

Lenke curve type distribution across the eleven clusters,

while Table 3 offers a summary description of each

cluster based on the observed parameters. Figure 2a, b

presents samples for all these eleven clusters detected by

the analysis framework. In order to visualize the distri-

bution of samples in this low- resolution space, a prin-

cipal component analysis was performed on the encoded

samples of size 25, in order to project the encoded spine

reconstructions to 3D and 2D views. Figure 3 depicts the

visualization of the first three principal components (PC)

from this analysis. The first PC explains 46 % of the

variance in the encoded geometric spines, representing the

location of the major curve. High values in the first PC

tend to increase angulation of TLL plane and the axial

rotation angle of the apical vertebra while decreasing the

Cobb angle and the angulation of MT plane. The second

PC explains 26 % of the variance and is related to the

lordotic angle. The third PC explains 11 % of the vari-

ance and is related to the kyphotic angle.

Discussion

In this 3D analysis of spinal deformities, a novel method

simplifying the representation of the geometric 3D recon-

struction of a patient’s spine was presented to study 3D

morphology as a stepping stone for a new classification

system based on a machine learning algorithm. Previous

systems based on 2D radiographic images covered all types

of curve patterns and provided a reliable set of measures

which take under account the deformity in the sagittal

plane, along with specific modifiers [2, 3]. Still, relying on

2D projections of a complex 3D curve as encountered in

AIS represents a considerable limitation to these standard

approaches. On the other hand, evaluating the deformity

based on discrete local 3D measurements, such as axial

rotation or geometric torsion [7], is inevitably linked to the

quality of the 3D reconstruction and to the inter-rater

variability of these pre-defined measurements. In this

paper, we attempt to analyze 3D patterns based on the

global representation of the spine without using explicit

parameters derived from the 3D reconstruction of the

spinal shape. The approach was able to detect eleven sub-

groups based on their low-resolution representation. The

differences in clinical measurements (Cobb angles and

orientation of PMC, kyphosis, lordosis, pelvic incidence)

between all these new 3D sub-groups were found to be

statistically significant.

Two clinically relevant groups emerge among the eleven

different clusters of patients. In the first, clusters VII, XI,

and III (illustrated as shades of blue in Fig. 3) represent the

Table 1 Mean and standard deviation values of the geometric parameters in the MT and TLL regions, within all eleven clusters detected by the

proposed framework

Parameters (all in degrees)

MT Cobb MT Rot. TLL Cobb TLL Rot. Kyphosis Lordosis Axial Rot. Pelvic inc.

Cluster I (n = 114) 58 ± 11 80 ± 8 43 ± 12 56 ± 15 20 ± 11 -60 ± 9 -22 ± 9 57 ± 10

Cluster II (n = 118) 56 ± 13 72 ± 10 43 ± 13 58 ± 18 38 ± 12 -67 ± 10 -19 ± 9 52 ± 10

Cluster III (n = 77) 39 ± 16 58 ± 16 54 ± 15 81 ± 17 40 ± 11 -69 ± 10 -5 ± 12 51 ± 9

Cluster IV (n = 33) 47 ± 12 74 ± 17 54 ± 14 74 ± 19 17 ± 14 -65 ± 10 -11 ± 8 68 ± 14

Cluster V (n = 106) 53 ± 9 77 ± 8 38 ± 11 49 ± 16 29 ± 10 -62 ± 13 -20 ± 10 51 ± 11

Cluster VI (n = 93) 77 ± 13 83 ± 8 53 ± 15 61 ± 15 19 ± 19 -57 ± 14 -29 ± 10 54 ± 10

Cluster VII (n = 111) 42 ± 13 70 ± 13 50 ± 13 77 ± 14 26 ± 10 -61 ± 11 -8 ± 9 54 ± 12

Cluster VIII (n = 55) 72 ± 11 71 ± 8 57 ± 14 73 ± 15 40 ± 11 -65 ± 10 -25 ± 11 51 ± 9

Cluster IX (n = 68) 45 ± 11 80 ± 10 39 ± 13 67 ± 18 20 ± 9 -57 ± 10 -13 ± 9 55 ± 9

Cluster X (n = 62) 68 ± 12 81 ± 9 40 ± 11 44 ± 14 33 ± 12 -62 ± 13 -25 ± 9 50 ± 8

Cluster XI (n = 73) 38 ± 14 62 ± 17 52 ± 14 93 ± 14 35 ± 11 -61 ± 16 -6 ± 10 48 ± 11

p value \0.001 \0.001 \0.001 \0.001 \0.001 \0.001 \0.001 \0.001

One-way ANOVA tested differences between the cluster groups with a significance level a = 0.05

The p values were adjusted with the Bonferroni correction
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clusters with small thoracic deformities and large lumbar

deformities. An increase of the TLL Cobb angle in the

PMC and a decrease of the axial rotation in the MT region

from cluster VII to cluster III are clearly apparent from

Table 1. On the other hand, the MT Cobb angles in the

PMC remain low. A high distribution of Lenke 5 and 6

curve types in these three clusters confirm these patterns. In

the second group, clusters II, V, I and X (illustrated in

shades of red/orange in Fig. 3) represent the clusters with

large thoracic deformities and small lumbar deformities.

An increase of the MT Cobb angle and the MT orientation

in the PMC, from cluster II to cluster X, is observable. A

similar behavior for the axial rotation of the apical vertebra

in the MT region is observed. The geometrical parameters

obtained in the lumbar segment remain low. An absence—

or a very small presence—of Lenke 5 and 6 curve types in

these five clusters confirms these patterns. These

observations reveal the fact that the location of the major

curve (thoracic, lumbar, thoraco-lumbar/lumbar) is the

most discriminant clinical factor in distinguishing different

classes of deformity. Within these two groups, there exists

an important range of kyphotic and lordotic profiles, as

well as a spectrum of varying curve severity that is

observable, thus suggesting that there exists variability

with single or double major curves, either in the thoracic

and lumbar regions.

Clusters can also be stratified based on their kyphotic

and lordotic profiles. Clusters II, III and VIII represent the

clusters with hyper-kyphotic and hyper-lordotic profiles.

However, cluster II and cluster III have completely dif-

ferent deformities in their respective MT and TLL regions.

Cluster VIII denotes the cluster with high deformities in

both MT and TLL regions. This is confirmed by the highest

percentage of Lenke type-4 from all clusters (29 %).

Table 2 Composition of Lenke sub-types in percentages (%) for each detected cluster

Lenke I (%) Lenke II (%) Lenke III (%) Lenke IV (%) Lenke V (%) Lenke VI (%)

Cluster I (n = 114) 52.6 18.4 20.2 8.8 0.0 0.0

Cluster II (n = 118) 33.1 21.2 26.3 16.1 1.7 1.7

Cluster III (n = 77) 7.8 2.6 6.5 10.4 44.2 28.6

Cluster IV (n = 33) 6.1 3.0 33.3 3.0 24.2 30.3

Cluster V (n = 106) 67.9 13.2 8.5 9.4 0.0 0.9

Cluster VI (n = 93) 46.2 12.9 17.2 23.7 0.0 0.0

Cluster VII (n = 111) 14.4 4.5 11.7 9.0 31.5 28.8

Cluster VIII (n = 55) 30.9 9.1 23.6 29.1 0.0 7.3

Cluster IX (n = 68) 38.2 8.8 25.0 13.2 4.4 10.3

Cluster X (n = 62) 37.1 41.9 6.5 12.9 1.6 0.0

Cluster XI (n = 73) 9.6 0.0 12.3 11.0 39.7 27.4

Table 3 Cluster descriptions

for the eleven clusters detected

by the stacked auto-encoder

framework

Cluster Cluster description

I High MT PMC orientation, hypokyphotic, hypolordotic, high PI

II Medium–high MT PMC orientation, hyperkyphotic, hyperlordotic

III High TLL PMC Cobb, high TLL PMC orientation, hyperkyphotic, hyperlordotic

IV High TLL PMC Cobb, hypokyphotic, hyperlordotic, high PI

V High MT PMC orientation, low TLL PMC orientation

VI High MT PMC Cobb, high MT PMC orientation, high TLL PMC Cobb, hypokyphotic,

hypolordotic, high axial rotation of apical vertebra

VII High TLL PMC Cobb, high TLL PMC orientation

VIII High MT PMC Cobb, high TLL PMC Cobb, hyperkyphotic, hyperlordotic, high axial rotation of

apical vertebra, Low PI

IX High MT PMC orientation, hypokyphotic, hyperlordotic

X High MT PMC Cobb, High MT PMC orientation, hyperlordotic, high axial rotation of apical

vertebra

XI High TLL PMC Cobb, very high TLL PMC orientation, low PI
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Fig. 2 a Samples for clusters I–VI found by the clustering algorithm.

For each cluster sample, coronal/sagittal radiographs, Da Vinci views

[4], coronal and top views of the 3D reconstruction model are

presented. b Samples for clusters VII–XI found by the clustering

algorithm. For each cluster sample, coronal/sagittal radiographs, Da

Vinci views [4], coronal and top views of the 3D reconstruction

model are presented
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Clusters I, VI and IX represent the clusters with hypo-

kyphotic and hypo-lordosis profiles. Cluster VI has the

highest thoracic deformities and relatively high lumbar

deformities. This behavior is similar to the spine recon-

structions included in cluster VIII. Cluster IX differs from

cluster VI with lower Cobb angles in both MT and TLL

regions in the PMC. Finally, cluster IV represents the

cluster with hypo-kyphotic and hyper-lordotic profiles with

large thoracic deformities. These findings confirm also the

existence of hypo-kyphotic profiles (clusters IV and VI)

within groups exhibiting high thoracic deformities. The

difference between these two clusters is the major differ-

ence in angulation and Cobb angle of the plane of maximal

deformity in the thoracic region, thereby suggesting that

regional angulation is still an important factor in assessing

the deformation.

The ultimate application of the method proposed in this

study is the classification of spinal deformities from per-

sonalized 3D models of the patient’s spine geometry. In

AIS, classification is not only useful for understanding the

progression of the disease, but more importantly, for

selecting the optimal surgical strategy before the patient

goes for surgery based on specific curvature profiles. Hence

by better assessing the type of deformation and risk of

progression for a specific pattern, this increases the sur-

geon’s chance of choosing the proper instrumentation tools

and surgical plan, and ultimately the patient’s outcome.

We propose in this paper to use artificial intelligence to

simplify high-resolution and complex 3D spine recon-

structions for classification purposes. An automated clas-

sification method, called stacked auto-encoders, discovers

sub-groups within a large pool of patients with both tho-

racic and lumbar deformations. The code layer of the auto-

encoder learns a distributed low-resolution representation

that aims to capture the main factors of variation in the

clinical dataset. However, different examples from the

distribution of the training dataset may potentially yield to

high reconstruction errors. Therefore, having a large and

representative training dataset of AIS is critical. This will

also prevent the model from overfitting.

Clinically relevant clusters can then be discovered to

explain the variation within AIS patients. This

Fig. 3 Visualization of the eleven clusters found by the k-Means??

algorithm from the low-resolution encoding of 3D geometrical

models. Each colored point represents a single 3D spine reconstruc-

tion in a low-resolution space. a 3D scatter plot of all 915 visits in the

low-resolution space using principal component analysis. The 3D

view is projected onto 2D views with (b) first and second principal

components, and (c) second and third principal components
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demonstrates the feasibility of an optimization approach to

increase an orthopaedic surgeon’s ability to personalize a

treatment plan of idiopathic scoliosis based on the indi-

vidual 3D spinal and rib cage geometry. Experts very well

know the various appearances of scoliotic deformities.

Indeed, two markedly different curves can have the same

coronal angle but have dramatically different sagittal pro-

files as well as axial deformities. Therefore, a classification

system is needed; it should be able to group subjects, by

summing up this huge number of parameters. The tradi-

tional classification systems are based on arbitrary choices

made by experts in the field of interest who decide to focus

on specific clinical aspects. To make the best choices,

physicians will need clinically validated parameters and

comparisons between different classification systems. This

is where the work proposed here can help clinicians to

better appreciate subtleties not easily detected with current

imaging protocols. Some top view parameters seem to

represents the optimal parameter able to always define the

characteristics of different scoliosis pattern. Moving from a

2D to a 3D classification will help mainly for two crucial

aspects: first of all, it will help to perform a more precise

prognosis for each patient. Secondly, it will help clinicians

in applying a more personalized surgical treatment based

on the specific changes observed in 3D.

A number clinical parameters such has the spinous

process angle and apical vertebral rotation, which have

both shown to strongly correlate with the Cobb angle and

improve the prediction of the main curve’s deformation

[21], are important in determining the appropriate defor-

mation class aimed for surgery planning. In fact, apical

vertebral rotation was shown to strongly correlate with

surgical outcomes [4] and a few alternatives for assessing

vertebral rotation in non-invasive methods have also been

proposed to reduce the need of X-ray images [22]. In an

attempt to propose a new classification based on three-

dimensional modeling of the spine, quantifying the struc-

tural nature of a curve is pivotal to integrate flexibility

characteristics within the classification paradigm, such as

in the Lenke classification. Cobb angle deviations or

methods estimating fulcrum flexibility can be considered a

potential alternative measure of spinal flexibility [23]. A

limitation of the present study is that curve flexibility was

not integrated into the auto-encoding process. Future work

will attempt to include 3D geometrical models obtained

from supine or bending radiographs in order to estimate

spine flexibly. Finally, methods based on the concept of

reflection and a process termed rotoinversion, which is a

combination of reflection and rotation, were proposed to

assess asymmetry in adolescent idiopathic scoliosis with

geometric models of the torso [24]. In this study, spine

asymmetry is intrinsically incorporated into the morphol-

ogy descriptors found by the encoded models, which help

to differentiate different patterns of symmetry within the

study population.

The current study evaluated the 3D sub-groups of all

Lenke types for thoracic and lumbar scoliotic curves,

suggesting that shape variability is present within an

existing 2D group used in clinical practice. However, these

types of approaches include complex synthetization tasks,

which require sizeable datasets to improve the data repre-

sentation within the code layer. Therefore, a larger multi-

centric dataset may help to significantly increase the

number of patients from various sites and obtain a more

reproducible and robust model. Furthermore, the develop-

ment of computational methods will ultimately lead to

more reliable classification paradigms, helping to identify

possible patients who might progress with time. Future

work will use longitudinal data for surgical treatment

planning, whereas each case is considered independently in

the current framework. Finally, a reliability study will be

undertaken to evaluate the relevance of classification sys-

tems in terms of surgical strategy.
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