ORIGINAL ARTICLE

Minimally invasive versus open transforaminal lumbar interbody fusion: a meta-analysis based on the current evidence

Nai-Feng Tian · Yao-Sen Wu · Xiao-Lei Zhang · Hua-Zi Xu · Yong-Long Chi · Fang-Min Mao

Received: 26 August 2012/Revised: 19 February 2013/Accepted: 15 March 2013/Published online: 10 April 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract

Purpose This is a meta-analysis of randomized and nonrandomized studies comparing the clinical and radiological efficacy of minimally invasive (MI) and conventional open transforaminal lumbar interbody fusion (open-TLIF) for degenerative lumbar diseases.

Methods A literature search of the MEDLINE database identified 11 studies that met our inclusion criteria. A total of 785 patients were examined. Pooled estimates of clinical and radiological outcomes, and corresponding 95 % confidence intervals were calculated.

Results The pooled data revealed that MI-TLIF was associated with less blood loss, shorter hospital stay, and a trend of better functional outcomes when compared with open-TLIF. However, MI-TLIF significantly increased the intraoperative X-ray exposure. Both techniques had similar operative time, complication rate, and re-operation rate.

Conclusions Based on the available evidence, MI-TLIF for degenerative lumbar diseases might lead to better patient-based outcomes. MI-TLIF would be a promising procedure, but extra efforts are needed to reduce its

F.-M. Mao (🖂)

From Zhejiang Spine Research Center, Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical College, 109 Xueyuanxi Road, Wenzhou, Zhejiang 325000, China e-mail: spinechi@163.com

F.-M. Mao e-mail: spinemao@163.com

Y.-S. Wu

intraoperative radiation exposure. More randomized controlled trials are needed to compare these two surgical options.

Keywords Transforaminal lumbar interbody fusion · Minimally invasive · Outcome · Meta-analysis

Introduction

For over three decades, transforaminal lumbar interbody fusion (TLIF) has been used for a variety of degenerative lumbar disorders. With a posterolateral approach, sufficient disc space exposure could be achieved through the resection of a single facet joint. This approach reduces the retraction of the thecal sac and nerve roots, and preserves the contralateral structures [1–3]. In revision cases, such as recurrent lumbar disc herniation, TLIF can be an effective procedure for those patients whose midline scar adheres to neural structures [1, 4]. Moreover, high fusion rate has been reported using this technique [2].

Although clinical studies have proved the efficacy of conventional open-TLIF, there are concerns regarding lengthy hospital stays, excessive blood loss, and postoperative complications. These concerns are often associated with the stripping of paravertebral muscles [1, 2]. To address these problems, Foley et al. [5] described an alternative technique: minimally invasive TLIF (MI-TLIF). MI-TLIF was developed with the advancement of modern surgical instrumentation and optical systems [1]. Through a tubular retraction system, MI-TLIF might reduce muscular dissection. However, several disadvantages have also been reported. First, with limited visibility and working space, MI-TLIF requires good familiarity of anatomy. Some surgeons have suggested that MI-TLIF could increase surgical

N.-F. Tian \cdot X.-L. Zhang \cdot H.-Z. Xu \cdot Y.-L. Chi (\boxtimes) \cdot

Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China

time [6, 7]. Secondly, to facilitate a minimally invasive approach, more X-ray exposure was used [4, 7–9]. Thirdly, MI-TLIF has a steep learning curve and is a technically demanding procedure. High complication rates have been reported during the learning stage [10, 11].

In the recent years, an increasing number of studies have been conducted to compare the effectiveness between MI-TLIF and open-TLIF for degenerative lumbar diseases. However, only limited Class I evidence is available [4, 6– 19]. The objective of the present study was to provide cumulative effect estimates of the clinical and radiological outcomes using meta-analysis and to determine which surgical technique was more beneficial.

Materials and methods

Search strategy and inclusion criteria

Because only a small number of randomized controlled trials is available in the literature, non-randomized comparative studies (prospective and retrospective) were also included. A literature search was conducted up to July 2012 using MEDLINE database. We screened all fields by combining the term "transforaminal lumbar interbody fusion" or "TLIF" with "MIS", "minimally invasive", or "minimally invasive spine surgery". Articles were limited to those published in English. In addition, the references of the retrieved articles were also searched. The following eligibility criteria were applied: (1) the study included a comparative design (MI-TLIF versus open-TLIF). (2) The study population consisted of adult patients suffering from degenerative lumbar diseases (disc herniation, spinal stenosis, or spondylolisthesis). Isthmic spondylolisthesis was not excluded. (3) At least one of the following outcomes should be reported: perioperative results (operative time, blood loss, or hospital stay), X-ray exposure time, pain or disability improvement, complications, or reoperations. (4) A minimum sample size of ten was required for both groups. Articles were excluded if they had any of following characteristics. (1) Patients suffering from spinal deformities, trauma, or spinal tumors. (2) Postoperative medicine use, such as steroids or chemotherapy agents, which might affect the fusion rate. (3) Biomechanical study, cadaveric study, comment, and case report. (4) Repeated studies. Two reviewers of this paper independently extracted data using a standardized form. Inconsistencies between reviewers' data were resolved through discussion until a consensus was reached.

Data extraction

We extracted data based on the following categories. (1) Study year, country, and study design. (2) Basic study

characteristics including patients' inclusion/exclusion criteria, enrolled number, age, and sex proportion. (3) Baseline comparison information of confounding factors, such as sex, age, height, weight, BMI, diagnosis, surgical level, insurance, education, smoking status, alcohol use, workers' compensation, and concomitant diseases. (4) Surgical information, including detailed spinal level and level numbers, instrumentation, and bone graft. (5) Perioperative outcomes such as operative time, intraoperative and postoperative blood loss, intraoperative X-ray exposure time, and hospital stay. (6) Functional outcome improvement at last follow up including visual analogue scores (VAS), Oswestry disability index (ODI), and short-form-36 (SF-36). (7) Fusion assessment method, fusion success criteria, and fusion rate at last follow-up. (8) Complication types and complication rates. Both total and specified complication rates were extracted. We referred to the previous published reviews to categorized specified complication types [2, 20].

Study quality

Because both randomized and non-randomized studies were included in current analysis, we applied two assessing tools. For non-randomized studies, the validated instrument called MINORS score was used [21]. A maximum score of 24 points can be generated for each included comparative study. For prospective randomized controlled trials, the Detsky quality index was applied [22]. The total score is 20 for positive trials and 21 for negative trials. Based on the previous published papers, studies scoring >75 % of the maximum MINORS or Detsky score were designated high quality. Each eligible study was independently reviewed by two raters for methodological quality (F.M.M. and X.L.Z). All discrepancies were resolved by consensus.

Meta-analysis

Binary outcome data (total complication rate, specified complication rate, and reoperation rate) were summarized using relative risk (RR) and 95 % confidence intervals (CIs). Continuous outcomes (functional outcome, operative time, blood loss, hospital stay, X-ray exposure time) were summarized by the weighted mean difference (WMD) and 95 % CIs. Standard errors and interquartile ranges were transformed into standard deviations (SD), where necessary, according to the method described by Cochrane handbook for systematic reviews of interventions. The level of significance was set at P < 0.05.

Heterogeneity was evaluated using the χ^2 test and I^2 statistics. Fixed-effect models were applied unless statistical heterogeneity was significant, in which case a random-effect model was used. Funnel plots were employed to

assess the possibility of publication bias. These plots showed the intervention effect from each study against the respective standard error. A symmetrical plot reveals no bias and any asymmetry of the plot would suggest publication bias. The sensitivity analysis was performed to test the strength and robustness of pooled results by sequential omission of individual studies. The analysis was carried out using the statistical software Review Manager Version 5.0 (Cochrane Collaboration, Oxford, UK).

Results

The search strategy (Fig. 1) identified eleven comparative studies that met the inclusion criteria, including one randomized controlled trial, five prospective comparative studies, and five retrospective comparative studies. Four studies were removed because they included the same, or a subset of the patient population of their previous studies [16–19]. One study analyzed three groups of patients (divided by the number of operative levels) [12]. We only included the single level group because the patient's number of multilevel fusion procedures was not large enough to meet our inclusion criteria. The search of the references in the retrieved articles did not yield any other eligible studies. The outcomes of 785 patients were examined. The basic information of included studies was presented in Table 1.

Study characteristics

According to the quality assessment criteria, there were six high quality and five low quality studies. The patients' diagnoses included degenerative lumbar disease in ten studies. Two of the ten studies also enrolled patients with isthmic spondylolisthesis. One study was focused on revision surgery. Eight studies involved only single level procedures. Seven studies reported the use of intervertebral cages. Bone graft (iliac crest bone graft, local bone, or allograft) was used in eight studies. Moreover, rhBMP-2 was applied in two papers. Graft information was not available in three papers.

Baseline comparisons were performed in the ten included studies. However, the comparisons varied in these papers. Two articles analyzed three factors, four articles analyzed four factors, and three articles analyzed five factors. One paper compared seven factors between the open and MI groups. The reported baseline characteristics were statistically similar between the two groups in all studies (Table 2).

Clinical function improvement

The most frequently reported clinical outcomes were mean back and/or leg pain VAS improvement and mean ODI

Fig. 1 Selection of relevant publications, reasons for exclusion

improvement. Although the mean score improvement could be extracted from the majority of these studies, none provided the corresponding SD. As a result, we used a descriptive method for these indexes. Three studies showed that the mean back pain VAS improvement was better in the MI group. Two papers indicated that the open group had better improvement. Improvement was similar for both groups in one study. The data for mean leg pain VAS improvement was available in only two studies. Out of the six studies that reported mean ODI improvement, five studies showed that the score improvement was better in the MI group (Table 3).

Operative time and X-ray exposure time

Ten studies reported operative time. Seven of them provided adequate data about the mean and SD. Two studies reported the mean and *P* value. One study reported median and interquartile ranges. The weighted mean difference was equivalent for both groups (WMD = 1.63, *P* = 0.83 95 % CI -13.73 to 17.00). There was obvious evidence for statistically significant heterogeneity ($I^2 = 87$ %, *P* < 0.0001) (Fig. 2).

Details regarding intraoperative X-ray exposure time were available in four studies. All four studies reported significantly reduced exposure time in the open group.

Table 1 Characteristics of included studies

Study	Years	Country	Study design	Quality scale ^a	No. of patients (MI: Open)	Mean follow up (mo)	Mean age (y) (MI: Open)	Gender (% male) (MI: Open)
Scheufler et al. [12]	2007	Germany	RCS	14/24	94 (43:51)	16	56.8:53.3	46.5:47.1
Dhall et al. [13]	2008	USA	RCS	15/24	42 (21:21)	≥24	53.0:53.0	NA
Schizas et al. [10]	2009	Switzerland	PCS	19/24	36 (18:18)	22	45.5:48.1	NA
Shunwu et al. [6]	2010	China	PCS	20/24	62 (32:30)	≥24	51.4:52.0	56.3:46.7
Villavicencio et al. [14]	2010	USA	RCS	17/24	139 (76:63)	37.5	50.5:58.9	38.0:45.0
Wang et al. [8]	2010	China	PCS	19/24	85 (42:43)	26.3	47.9:53.2	30.1:37.2
Adogwa et al. [15]	2011	USA	RCS	18/24	30 (15:15)	24	50.8:49.7	46.7:33.3
Lau et al. [11]	2011	USA	RCS	17/24	22 (10:12)	>12	46.9:56.9	40.0:42.0
Wang et al. [7]	2011	China	RCT	14/20	79 (41:38)	32.7	51.4:57.3	58.5:60.5
Wang et al. [4]	2011	China	PCS	19/24	52 (25:27)	≥12	54.8:56.2	52.0:55.6
Lee et al. [9]	2012	Singapore	PCS	21/24	144 (72:72)	<u>≥</u> 24	52.2:56.6	27.8:30.6

RCS retrospective comparative study, PCS prospective comparative study, RCT randomized controlled trial, NA not available

^a RCT was assessed using Detsky score and non-RCT was assessed using MINORS score

Study	Age	Gender	Height	Weight	BMI	Diagnosis	Level	Insurance	Comorbidity
Scheufler et al. [12]	*	*	NA	NA	NA	*	*	NA	*
Dhall et al. [13]	*	*	NA	NA	NA	*	NA	NA	NA
Schizas et al. [10]	NA	NA	NA	NA	NA	NA	NA	NA	NA
Shunwu et al. [6]	*	*	*	*	NA	*	*	*	NA
Villavicencio et al. [14]	*	*	NA	NA	NA	NA	*	NA	NA
Wang et al. [8]	*	*	NA	NA	NA	*	*	NA	NA
Adogwa et al. [15]	*	*	NA	NA	NA	*	*	NA	NA
Lau et al. [11]	*	*	NA	*	NA	*	*	NA	NA
Wang et al. [7]	*	*	NA	*	NA	*	*	NA	NA
Wang et al. [4]	*	*	NA	NA	NA	*	*	NA	NA
Lee et al. [9]	*	*	NA	NA	*	NA	*	NA	NA

Table 2 Comparison of baseline characteristics

NA not available

* statistically insignificant

Table 3 Improvement of functional outcomes

Study	Mean back p	ain VAS improvement	Mean leg pai	in VAS improvement	Mean ODI improvement	
	MI	Open	MI	Open	MI	Open
Schizas et al. [10]	-4.2	-2.2	NA	NA	-22	-27
Shunwu et al. [6]	-4.5	-3.6	NA	NA	-25.0	-24.8
Villavicencio et al. [14]	-4.0	-4.8	NA	NA	NA	NA
Wang et al. [8]	-6.3	-6.3	NA	NA	-30.4	-26.3
Adogwa et al. [15]	-2.9	-4.7	-3.0	-4.7	-21.2	-17.2
Wang et al. [4]	-5.8	-5.3	NA	NA	-27.3	-26.4
Lee et al. [9]	-4.0	-3.9	-4.2	-4.2	-26.7	-23.7

NA not available

	N	11-TLIF		Op	en-TLIF	2		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Tota	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI	
Operative time (min)										
Adogwa 2011	300	177.8	15	210	66.7	15	2.1%	90.00 [-6.10, 186.10]		→
Dhall 2008	199	59	21	237	59	21	7.8%	-38.00 [-73.69, -2.31]		
Fan 2010	159.2	21.7	32	142.8	22.5	30	12.6%	16.40 [5.38, 27.42]		
Lau 2011	389.7	57	10	365.3	57	12	5.8%	24.40 [-23.43, 72.23]		
Lee 2012	166.4	52.1	72	181.8	45.4	72	11.8%	-15.40 [-31.36, 0.56]		
Scheufler 2007	104	26	43	132	18	51	12.9%	-28.00 [-37.21, -18.79]		
Villavicencio 2010	222.5	67.5	76	214.9	60	63	10.7%	7.60 [-13.61, 28.81]		
Wang H 2011	168.7	36.4	41	145	26.8	38	12.1%	23.70 [9.67, 37.73]	_ _	
Wang J 2010	156	32	42	145	27	43	12.4%	11.00 [-1.60, 23.60]		
Wang J 2011	139	27	25	143	35	27	11.6%	-4.00 [-20.92, 12.92]	-+	
Total (95% CI)			377			372	100.0%	1.63 [-13.73, 17.00]	-	
Heterogeneity: Tau ² =	454 92	$Ch\vec{r} =$	70 46 0	1f = 9 (F	< 0.000	001)· IP	= 87%			
Test for overall effect:	7 = 0.21	(P = 0	83)		0.000		- 01 70			
V		4 - 0	.00,							
A-ray exposure (5)	22.0	70	17 0	20	70	24 004	31 40 (22 21 40 40)		
Lee 2012	49	33.9	12	17.0	10.2	20	24.0%	AQ Q0 [A2 A7 64 40]		
Wang H 2011	92.7	13.8	41	43.9	10.2	30	20.770	40.00 [43.47, 34.13]		_
wang J 2010	84	21	42	3/	19	43	24.0%	47.00[36.46, 33.52]		- 12 - 12
wang J 2011	73	21	25	39	10	21	22.5%	34.00 [23.79, 44.21]		
Total (95% CI)			180			180	100.0%	40.85 [31.97, 49.73]	•	•
Heterogeneity: Tau ² =	64.03; 0	chi² = 1	4.58, df	= 3 (P =	= 0.002)	; l² = 79	3%			
Intra-operative b	lood la	oss(m	m)							
Adogwa 2011	200	92.6	15	295	51.9	15	10.4%	-95.00 [-148.72, -41.28]		
Dhall 2008	194	354.2	21	505	354.2	21	6.6%	-311.00 [-525.24, -96.76]		
Fan 2010	399.8	125.8	32	517	147.8	30	10.2%	-117.20 [-185.73, -48.67]		
Lau 2011	466.7	199.4	10	565.6	199.4	12	7.8%	-98.90 [-266.24, 68.44]		
Lee 2012	50.6	161	72	447.4	519.2	72	8.9%	-396.80 [-522.36, -271.24]		
Scheufler 2007	55	12	43	125	31	51	10.8%	-70.00 [-79.2360.77]	-	
Schizas 2009	456	532.4	18	961	532.4	18	4.1%	-505.00 (-852.83, -157, 17)	←	
Villavicencio 2010	163	131 2	76	366.8	298.2	63	10.0%	-203 80 (-283 12 -124 48)		
Wang H 2011	207.7	57.6	41	258.9	122.2	38	10.6%	-51 20 [-93 87 -8 53]		
Wang J 2010	264	89	42	673	145	43	10.5%	-409.00 [-460.02 -357.98]	-	
Wang J 2011	291	86	25	652	150	27	10.2%	-361.00 [-426.86, -295.14]	-	
Tatal (05%) CD			205			200	100.00	240.04.5.207.02.420.001		
Total (95% CI)			395			390	100.0%	-218.91 [-307.63, -130.20]	-	
Heterogeneity: Tau ² =	18925.9	7; Chi*	= 277.3	9, df = 1	10 (P < (0.0000	i); i*= 96'	%		
Test for overall effect:	Z = 4.84	(P < 0.	00001)							
Post-operative b	lood	oss(m	m)							
Fan 2010	178.2	75.2	32	194.4	79.3	30	22.4%	-16.20 [-54.72, 22.32]		
Lee 2012	0	0	72	528.9	241.6	72		Not estimable		
Schizas 2009	95	402.8	18	477	402.8	18	2.5%	-382.00 [-645.16, -118.84]	•	
Wang H 2011	114.6	53.1	41	266.6	80	38	24.0%	-152.00 [-182.19, -121.81]		
Wang J 2010	39	12	42	158	65	43	25.7%	-119.00 [-138.76, -99.24]	-	
Wang J 2011	25	10	25	147	58	27	25.3%	-122.00 [-144.23, -99.77]	-	
Total (95% CI)			230			228	100.0%	-111.27 [-155.1567.39]	•	
Heterogeneity: Tau ² =	1849.49	: Chi ² =	35.53	df = 4	P < 0.00	0001): F	= 89%			
Test for overall effect	7 = 4 97	(P < 0	00001		0.00		00 /0			
Hospital stav/A	- 4.57									
Dholl 2000	~	2.0	24		20	21	11 10	-2 50 64 10 -0 911		
Dhall 2008	3	2.8	21	0.5	2.6	21	16.00	-2.00 [-4.10, -0.01]		
Fall 2010	9.3	2.0	32	12.5	1.0	30	16.6%	-3.60 [.4.62 -2.67]		
Lee 2012	3.2	2.9	12	0.8	3.4	10	0.5%	-2.10 [-4.05, -2.57]		
Schizas 2009	6.1	3	18	8.2	3	18	9.5%	-2.10 [-4.00, -0.14]		
villavicencio 2010	3	2.3	10	4.2	3.0	03	16.70	-7.20 [-2.21, -0.19]		
Wang H 2011	6.4	2.5	41	8.7	2.1	38	12 60	-2.30 [-3.32, -1.28]		
wang J 2010	10.6	2.5	42	14.0	3.6	43	13.0%	-4.00 [-0.00, -2.04]		
Total (95% CI)			302			285	100.0%	-2.71 [-3.49, -1.92]	•	
Heterogeneity: Tau ² =	0.69; Ch	i ² = 16.	71, df=	6 (P =	0.01); l²	= 64%			Ó	10000
rest for overall effect:	∠ = 0.18	(F < U.	00001)						Favours MI-TLIF Favours ope	en-TLIF

Fig. 2 Forest plot illustrating operative time, X-ray exposure, blood loss, and hospital stay of meta-analysis comparing MI-TLIF with open-TLIF

Overall, the weighted mean difference is 40.85 (95 % CI 31.97–49.73, P < 0.0001) in favor of the open group. Significant heterogeneity was detected among the studies ($I^2 = 79$ %, P = 0.002) (Fig. 2).

Blood loss

Intraoperative blood loss was assessed in eleven eligible studies. All studies reported lower intraoperative blood loss

	MI-TLIF		Open-TLIF		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Tota	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Complication							
Adogwa 2011	0	15	1	15	2.5%	0.33 [0.01, 7.58]	· · · · · · · · · · · · · · · · · · ·
Dhall 2008	3	21	2	21	3.4%	1.50 [0.28, 8.08]	
Fan 2010	6	32	5	30	8.7%	1.13 [0.38, 3.30]	
Lau 2011	4	10	1	12	1.5%	4.80 [0.63, 36.34]	
Lee 2012	7	72	9	72	15.2%	0.78 [0.31, 1.98]	
Schizas 2009	6	18	2	18	3.4%	3.00 [0.70, 12.93]	· · · · · · · · · · · · · · · · · · ·
Villavicencio 2010	24	76	20	63	36.9%	0.99 [0.61, 1.62]	
Wang H 2011	3	41	5	38	8.8%	0.56 [0.14, 2.17]	
Wang J 2010	5	42	4	43	6.7%	1.28 [0.37, 4.44]	
Wang J 2011	4	25	8	27	13.0%	0.54 [0.19, 1.57]	
12 1973 27 MIN		1000000		1272-22	10000000		1
Total (95% CI)		352		339	100.0%	1.02 [0.74, 1.40]	•
Total events	62		57				
Heterogeneity: Chi ² = 7	.65, df =	9 (P = 0).57); l² =	0%			
Test for overall effect: 2	Z = 0.13 (P = 0.9	0)				
Reoperation							
Adogwa 2011	0	15	1	15	16.0%	0.33 [0.01, 7.58]	
Dhall 2008	3	21	1	21	10.7%	3.00 [0.34, 26.56]	
Fan 2010	0	32	0	30		Not estimable	
Lee 2012	1	72	1	72	10.7%	1.00 [0.06, 15.68]	
Schizas 2009	1	18	0	18	5.3%	3.00 [0.13, 69.09]	
Villavicencio 2010	7	76	4	63	46.7%	1.45 [0.44, 4.73]	
Wang J 2010	2	42	1	43	10.6%	2.05 [0.19, 21.74]	
Wang J 2011	0	25	0	27		Not estimable	
Total (95% CI)		301		289	100.0%	1.53 [0.69, 3.42]	
Total events	14		8				
Heterogeneity: Chi ² = 1	.61, df =		0.02 0.1 1 10 50				
Test for overall effect: 2	2 = 1.05 (P = 0.3	0)				Favours MI-TLIF Favours open-TLIF

Fig. 3 Forest plot illustrating total complication rate and re-operation rate of meta-analysis comparing MI-TLIF with open-TLIF

in the MI group, with ten of them indicating statistical significance. Overall, the weighted mean difference was statistically significant (WMD = -218.91, 95 % CI -307.63 to -130.20, P < 0.0001) in favor of the MI group. Six studies reported postoperative blood loss. Pooled estimate also revealed that the MI group achieved significantly reduced postoperative blood loss (WMD = -112.7, 95 % CI -155.15 to -67.39, P < 0.0001). Strong evidence for statistically significant heterogeneity was detected when we pooled both intraoperative and postoperative blood loss (Fig. 2).

Hospital stay

Seven studies reported the mean length of hospital stay. All of them reported statistically significant difference. Overall, the weighted mean difference was 2.7 days shorter in the MI-TLIF group (95 % CI -3.49 to -1.92, P < 0.0001) than that in the open group. Moderate heterogeneity existed among the studies ($l^2 = 64$ %, P = 0.01) (Fig. 2).

Complication and re-operation

Data regarding complications were available in ten studies. The overall complication rate was similar between the MI and open groups (RR = 1.02, 95 % CI 0.74–1.4, P = 0.9). Statistical heterogeneity was not detected among the studies ($I^2 = 0$ %, P = 0.57) (Fig. 3).

Five main complication types including graft (pedicle screw, cage, bone graft) malposition, cage migration, fusion failure, dural tear, and infection were observed in the eligible studies. Pooled data indicated a higher rate of graft malposition and fusion failure in the MI-TLIF group, a higher rate of dural tear and infection in the open-TLIF group, and a similar cage migration rate in both groups. However, none of these differences were statistically significant. χ^2 tests indicated no statistical evidence of heterogeneity ($l^2 = 0 \%$, P > 0.1) (Fig. 4).

Eight studies reported re-operation rate. The pooled estimate showed that the MI group was associated with a higher, but statistically insignificant reoperation rate when compared with the open group (RR = 1.53, 95 % CI 0.69–3.42, P = 0.3). There is no evidence for significant heterogeneity ($I^2 = 0$ %, P = 0.9) (Fig. 3).

Publication bias and sensitivity analysis

The funnel plot showed a fairly symmetrical distribution of the studies that reported complication rate. All studies lied within the 95 % CI and were distributed evenly about the

Wang J 2011

Total (95% CI)

Total events

	MI-TL	F	Open-1	LIF		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Graft malposition							
Adogwa 2011	0	15	0	15		Not estimable	
Dhall 2008	1	21	1	21	9.5%	1.00 [0.07, 14.95]	
Fan 2010	2	32	0	30	4.9%	4.70 [0.23, 94.01]	
Lau 2011	1	10	0	12	4.4%	3.55 [0.16, 78.56]	
Lee 2012	1	72	0	72	4.8%	3.00 [0.12, 72.44]	
Schizas 2009	0	18	0	18		Not estimable	
Villavicencio 2010	10	76	6	63	62.4%	1.38 [0.53, 3.59]	
Wang H 2011	0	41	0	38	12.22	Not estimable	
Wang J 2010	0	42	1	43	14.1%	0.34 [0.01, 8.14]	•
Wang J 2011	0	25	0	27		Not estimable	
Total (95% CI)		352		339	100.0%	1.53 [0.72, 3.24]	•
Total events	15	002	8	000	100.0 %	1.00 [0.12, 0.24]	
Heterogeneity: Chi ² = 1	99 df = f	i (P = 1	185) 17=	0%			
Test for overall effect: 7	= 1 12 (F	r = 0.2	ภ.00), 1 – ศา	0.0			
Cade migration	. = 1.12 V	0.2					
Deall 2000		21	0	21	7 0%	2 15 10 12 01 7/1	
Dhall 2008	1	72	6	72	06 7%	0.65 (0.12, 01.74)	_
Lee 2012	4	12	0	12	7 2%	2 14 (0 12 70 20)	
vvang J 2010	1	42	0	43	7.270	3.14 [0.12, 79.39]	
Total (95% CI)		135		136	100.0%	1.00 [0.34, 2.95]	+
Total overte	6		6				
Hotorogonoity: Chi2 - 1	29 df - 1	(P - 1	1 601 IZ-	0%			
Tect for everall effect: 7	.30, 01 = 2	2(r = 0)	0	0.96			
Test for overall effect. 2	. = 0.01 (P	r = 0.9	9)				
Non-union		24		04	40.00	0.00 10 40, 00 70	
Dhall 2008	1	21	U	21	10.3%	3.00 [0.13, 69.70]	
Fan 2010	U	32	0	30	10 70	Not estimable	
Lau 2011	1	10	1	12	18.7%	1.20 [0.09, 16.84]	
Lee 2012	2	72	1	72	20.6%	2.00 [0.19, 21.57]	
Schizas 2009	3	18	0	18	10.3%	7.00 [0.39, 126.48]	
Villavicencio 2010	0	76	0	63		Not estimable	
Wang J 2010	1	42	1	43	20.3%	1.02 [0.07, 15.84]	
Wang J 2011	1	25	1	27	19.8%	1.08 [0.07, 16.36]	
Total (95% CD		296		286	100.0%	2 09 [0 72 6 01]	-
Total evente	٥	200	4	200	100.070	2.05 [0.12, 0.01]	
Heterogeneity: Chi ² = 1	38 df = 4	(P = 0	1 03). Iz =	0%			
Test for overall effect: 7	= 1 36 (F	P = 0.1	7)	0,0			
Dural toar	1.50 (- 0.1	.,				
Adomuo 2011	0	15		15		blat actimable	
Auugwa 2011	0	15	1	15	0.00/		
Drail 2008	0	21	1	21	8.9%	0.33 (0.01, 7.74)	
Fan 2010	0	32	0	30		Not estimable	
Lau 2011	0	10	0	12	2.00	NOT estimable	
Lee 2012	1	12	0	12	3.0%	3.00 [0.12, 72.44]	
Schizas 2009	1	18	0 7	18	3.0%	3.00 [0.13, 69.09]	
Villavicencio 2010	1	10	'	63	45.2%	0.12 (0.01, 0.94)	0
Wang H 2011	0	41	0	38	44 70	Not estimable	· · · · · · · · · · · · · · · · · · ·
vvang J 2010	2	42	2	43	11.7%	1.02 [0.15, 6.94]	
wang J 2011	3	25	5	21	28.4%	0.65 [0.17, 2.44]	•
Total (95% CI)		352		339	100.0%	0.56 [0.26, 1.20]	•
Total events	0	002	15	000	100.0 /0	0.00 [0.20, 1.20]	-
Hotorogonoity: Chiz - A	96 df - 4		1431-12-	0%			
Test for overall effect: 7	- 1 48 /	- 0.1	1.43),1 =	0.0			
	1.40 (r	- 0.1	4)				
Infection	~	45		45		blat actionality	
Adogwa 2011	U	15	0	15		Not estimable	
Dhall 2008	U	21	U	21	01 ····	Not estimable	
Fan 2010	3	32	2	30	21.4%	1.41 (U.25, 7.84)	
Lau 2011	1	10	0	12	4.7%	3.55 [0.16, 78.56]	
Lee 2012	0	72	1	72	15.5%	0.33 (0.01, 8.05)	-
Schizas 2009	0	18	0	18		Not estimable	
Villavicencio 2010	1	76	1	63	11.3%	0.83 [0.05, 12.99]	
Wang H 2011	1	41	2	38	21.5%	0.46 [0.04, 4.91]	
Wang J 2010	0	42	2	43	25.6%	0.20 [0.01, 4.14]	

Not estimable

0.002

0.1

Favours MI-TLIF

1

10

Favours open-TLIF

500

0.77 [0.30, 1.95]

Fig. 4 Forest plot illustrating specified complication rate of meta-analysis comparing MI-TLIF with open-TLIF

0 27

8

100.0%

339

0 25

6

Heterogeneity: Chi² = 2.60, df = 5 (P = 0.76); I² = 0%

Test for overall effect: Z = 0.56 (P = 0.58)

352

Fig. 5 Funnel plot of total complication rate

vertical, implying minimal publication bias (Fig. 5). Sensitivity analysis was conducted by reanalyzing our data after sequential omission of individual studies. Pooled results did not yield any significant difference by omitting any single study data.

Discussion

Our meta-analysis suggested that MI-TLIF had significantly lower intra- and postoperative blood loss, and shorter hospital stay than the open method. Although statistically significant heterogeneity was detected among these studies, nearly all the included articles reported consistent results. For clinical outcomes, more studies reported a favorable improvement trend towards MI-TLIF. However, a precise pooled mean difference could not be calculated because no study provided detailed SD for the mean function outcome improvement. The advantages associated with MI-TLIF might be attributed to less intraoperative dissection and retraction of paravertebral muscles [1, 2, 5]. Shunwu et al. [6] found the minimally invasive group was associated with a significantly lower creatine kinase (a marker of muscle injury) level on the third postoperative day. Wang et al. [7] observed no differences in postoperative serum creatine kinase levels between the MI and open groups. However, they found significantly reduced sacrospinalis muscle injury in the minimally invasive group through MRI scanning and electrophysiology examination.

MI-TLIF significantly increased the X-ray exposure time. All four studies reported consistent results. The open technique needed only half of the X-ray exposure required for the MI procedure. Increased fluoroscopic use was needed during the placement of both the tubular retractor system and pedicle screws. Therefore, more efforts should be made to reduce the radiation exposure in MI-TLIF procedures. Kim et al. [23] used navigation-assisted fluoroscopy when performing MI-TLIF. Their study revealed that navigated MI-TLIF significantly reduced intraoperative radiation exposure when compared with open-TLIF using standard fluoroscopy [23]. Moreover, it has been reported that navigation could also reduce fluoroscopic time during the placement of pedicle screws [24]. In the future, navigation may be one of the ways to solve the problems of excessive X-ray exposure of the surgeons.

Our meta-analysis revealed that there was no significant difference between the MI and open-TLIF with regard to operative time. However, several studies have reported a trend of longer operative time for the MI-TLIF group [6–8, 11, 15]). One reason might be that MI-TLIF, which was performed in limited space, is a more technically demanding procedure. A learning curve exists in the early stage of performing this surgery [10, 11, 13]. Lee et al. [25] found operative time could reach an asymptote after about 30 cases. Despite the learning curve, MI-TLIF is still very safe and effective for lumbar spinal diseases [25].

For re-operation rate and complication rate, all studies showed statistically insignificant difference. The re-operation rate for both MI and open techniques were very low (<5 %). Reasons for reoperation were similar among the studies, including pedicle screw or inter-vertebral graft malposition/loosing/migration, pseudarthrosis, and epidural hematoma. However, we found the definition of complication was different in each study. Thus, pooling of the complication data might lead to bias. The main complication types included graft malposition, cage migration, nonunion, dural tear, and infection. It should be noted that for a specific complication type, pooled results revealed no significant difference between MI and open method.

Our study has a number of weaknesses. First of all, both prospective and retrospective comparative studies were selected for analysis. Methodology defects have been found in some of these studies, including failure to collect data prospectively, non-consecutive enrollment of patients, inadequate baseline comparisons, and improper blinding or non-blinding evaluation. Thus, the level of evidence for this meta-analysis was not high. Secondly, statistical heterogeneity was detected among the studies particularly when we pooled the continuous outcomes. The heterogeneity might be explained by the study design, study quality, patients' characteristics, and the diverse technical specifications. Thirdly, multiple assessment tools and fusion criteria, used in the included studies might confounded the combined results. Lastly, incomplete data recording was observed when we extracted clinical outcomes. Pooling of such data might lead to bias. Despite these weaknesses, our meta-analysis can still provide some value for clinical reference due to the lack of high quality randomized controlled trials. In summary, this meta-analysis demonstrated that MI-TLIF resulted in less blood loss and shorter hospital stay, but was associated with more intraoperative X-ray exposure. Both MI and open-TLIF obtained similar operative time, complication rate, and re-operation rate. Our findings suggest that MI-TLIF is a promising procedure, but more effort should be conducted to reduce intraoperative radiation exposure in the future. Because patients selected for MI-TLIF or open-TLIF may have difference in symptoms and severity of diseases, high-quality randomized controlled trials are also needed to further compare these two techniques.

Conflict of interest The authors declare that they have no conflict of interest.

References

- Karikari IO, Isaacs RE (2010) Minimally invasive transforaminal lumbar interbody fusion: a review of techniques and outcomes. Spine 35:S294–S301
- Wu RH, Fraser JF, Hartl R (2010) Minimal access versus open transforaminal lumbar interbody fusion: meta-analysis of fusion rates. Spine 35:2273–2281
- Tsahtsarlis A, Wood M (2012) Minimally invasive transforaminal lumber interbody fusion and degenerative lumbar spine disease. Eur Spine J. doi:10.1007/s00586-012-2376-y
- 4. Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J (2011) Minimally invasive or open transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression of the lumbar spine. Eur Spine J 20:623–628
- Foley KT, Holly LT, Schwender JD (2003) Minimally invasive lumbar fusion. Spine 28:S26–S35
- Shunwu F, Xing Z, Fengdong Z, Xiangqian F (2010) Minimally invasive transforaminal lumbar interbody fusion for the treatment of degenerative lumbar diseases. Spine 35:1615–1620
- Wang HL, Lu FZ, Jiang JY, Ma X, Xia XL, Wang LX (2011) Minimally invasive lumbar interbody fusion via MAST Quadrant retractor versus open surgery: a prospective randomized clinical trial. Chin Med J (Engl) 124:3868–3874
- Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J (2010) Comparison of one-level minimally invasive and open transforaminal lumbar interbody fusion in degenerative and isthmic spondylolisthesis grades 1 and 2. Eur Spine J 19:1780–1784
- Lee KH, Yue WM, Yeo W, Soeharno H, Tan SB (2012) Clinical and radiological outcomes of open versus minimally invasive transforaminal lumbar interbody fusion. Eur Spine J. doi: 10.1007/s00586-012-2281-4
- Schizas C, Tzinieris N, Tsiridis E, Kosmopoulos V (2009) Minimally invasive versus open transforaminal lumbar interbody fusion: evaluating initial experience. Int Orthop 33:1683–1688
- 11. Lau D, Lee JG, Han SJ, Lu DC, Chou D (2011) Complications and perioperative factors associated with learning the technique

of minimally invasive transforaminal lumbar interbody fusion (TLIF). J Clin Neurosci 18:624-627

- Scheufler KM, Dohmen H, Vougioukas VI (2007) Percutaneous transforaminal lumbar interbody fusion for the treatment of degenerative lumbar instability. Neurosurgery 60:203–213
- Dhall SS, Wang MY, Mummaneni PV (2008) Clinical and radiographic comparison of mini-open transforaminal lumbar interbody fusion with open transforaminal lumbar interbody fusion in 42 patients with long-term follow-up. J Neurosurg Spine 9:560–565
- Villavicencio AT, Burneikiene S, Roeca CM, Nelson EL, Mason A (2010) Minimally invasive versus open transforaminal lumbar interbody fusion. Surg Neurol Int 1:12
- Adogwa O, Parker SL, Bydon A, Cheng J, McGirt MJ (2011) Comparative effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion: 2-year assessment of narcotic use, return to work, disability, and quality of life. J Spinal Disord Tech 24:479–484
- Villavicencio AT, Burneikiene S, Nelson EL, Bulsara KR, Favors M, Thramann J (2005) Safety of transforaminal lumbar interbody fusion and intervertebral recombinant human bone morphogenetic protein-2. J Neurosurg Spine 3:436–443
- Peng CW, Yue WM, Poh SY, Yeo W, Tan SB (2009) Clinical and radiological outcomes of minimally invasive versus open transforaminal lumbar interbody fusion. Spine 34:1385–1389
- Parker SL, Adogwa O, Bydon A, Cheng J, McGirt MJ (2011) Cost-effectiveness of minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis associated low-back and leg pain over two years. World Neurosurg. doi:10.1016/j.wneu.2011.09.013
- Wang J, Zhou Y, Feng Zhang Z, Qing Li C, Jie Zheng W, Liu J (2012) Comparison of clinical outcome in overweight or obese patients after minimally invasive versus open transforaminal lumbar interbody fusion. J Spinal Disord Tech. doi:10.1097/ BSD.0b013e31825d68ac
- Chrastil J, Patel AA (2012) Complications associated with posterior and transforaminal lumbar interbody fusion. J Am Acad Orthop Surg 20:283–291
- Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716
- Detsky AS, Naylor CD, O'Rourke K, McGeer AJ, L'Abbe KA (1992) Incorporating variations in the quality of individual randomized trials into meta-analysis. J Clin Epidemiol 45:255–265
- Kim CW, Lee YP, Taylor W, Oygar A, Kim WK (2008) Use of navigation-assisted fluoroscopy to decrease radiation exposure during minimally invasive spine surgery. Spine J 8:584–590
- 24. Tjardes T, Shafizadeh S, Rixen D, Paffrath T, Bouillon B, Steinhausen ES, Baethis H (2010) Image-guided spine surgery: state of the art and future directions. Eur Spine J 19:25–45
- Lee JC, Jang HD, Shin BJ (2012) Learning curve and clinical outcomes of minimally invasive transforaminal lumbar interbody fusion: our experience in 86 consecutive cases. Spine 37: 1548–1557