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Cervical intervertebral disc injury during
simulated frontal impact

Abstract Cervical disc injury due to
frontal impact has been observed in
both clinical and biomechanical
investigations; however, there is a
lack of data that elucidate the
mechanisms of disc injury during
these collisions. The goals of the
current study were to determine the
peak dynamic disc annular tissue
strain and disc shear strain during
simulated frontal impact of the
whole human cervical spine model
with muscle force replication at 4 g,
6 g, 8 g and 10 g horizontal accel-
erations of the T1 vertebra. These
data were compared with those ob-
tained during physiological loading,
and with previously reported rear
impact data. Peak disc shear strain
and peak annular tissue strain dur-
ing frontal impact exceeded

(» <0.05) corresponding physiologi-
cal limits at the C2—C3 intervertebral

level, beginning at 4 g and 6 g,
respectively. These subsequently
spread throughout the entire cervical
spine at 10 g, with the exception of
C4-CS5. The C5-C6 intervertebral
level was at high risk for injury
during both frontal and rear im-
pacts, while during frontal impact, in
addition to C5-C6, subfailure inju-
ries were likely at superior interver-
tebral levels, including C2—-C3. The
disc injuries occurred at lower
impact accelerations during rear
impact as compared with frontal
impact. The subfailure injuries of the
cervical intervertebral disc that oc-
cur during frontal impact may lead
to the chronic symptoms reported by
patients, such as head and neck pain.

Keywords Spine biomechanics -
Cervical disc - Frontal impact -
Injury mechanism - Whiplash

Introduction

Soft-tissue injuries have been reported in 23-70% of
individuals involved in frontal impacts [1, 28, 34, 35, 54].
Despite this high injury prevalence, the underlying soft-
tissue injury mechanisms are not fully understood [55].
The majority of previous frontal impact studies have
investigated the response of volunteers [13, 17-20, 27,
36, 40, 57, 59, 60] and cadavers [9, 31, 39, 61] to simu-
lated frontal impacts at accelerations up to 16 g. Among
soft-tissue injuries, intervertebral disc injury is often
cited as a source of chronic pain [29], via mechanisms of
delayed healing or altered loading patterns causing
accelerated facet-joint degeneration [8, 25, 37, 56]. Pre-

vious autopsy studies have documented disc herniation
[28], annulus fiber ruptures [12, 28], and cartilage end-
plate separations [56] due to frontal impacts. Frontal
impacts may cause subfailure injuries to the soft tissues
of the cervical spine, leading to clinical instability and
chronic pain [22].

In addition to clinical investigations, biomechanical
studies have demonstrated injuries to the disc due to
simulated frontal impact. Using a human cervicotho-
racic model at accelerations up to 15.6 g, Clemens et al.
[9] observed fissures and avulsions of the intervertebral
disc in 80% of the trials, most commonly at C5-Co.
Crowell et al. [11] applied flexion-compression loading
to three-vertebra human cervical spine segments and
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reported macroscopic annular tears and disc hernia-
tions; the disc was the most commonly injured soft-tis-
sue component. Nonetheless, the disc strains were not
calculated in either of the previous studies.

Despite previous evidence that has demonstrated disc
injury due to actual and simulated frontal impacts, and
various studies investigating injury mechanisms due to
rear impact [46—48], the injury mechanisms of frontal
impact remain poorly understood [55]. Continued bio-
mechanical research may aid in the development of
methods to detect, treat and prevent intervertebral disc
injuries. Therefore, the goals of this study were to use
the whole human cervical spine model with muscle force
replication to: (1) determine the dynamic disc annular
tissue strain and disc shear strain during simulated
frontal impacts, (2) compare these values with limits
measured during physiological loading, and (3) compare
the present frontal impact data with disc strain data
from a previously reported rear impact study.

Materials and methods
Specimen preparation

Six fresh-frozen human osteoligamentous whole cervical
spine specimens were mounted in resin (Fibre Glass-
Evercoat, Cincinnati, OH) at the occiput and TI,
according to a predefined neutral posture, such that a
line from the top of the dens to the lowest point on the
posterior occiput was parallel to the occipital mount,
while the T1 vertebra was tilted anteriorly by 24° [6].
The average specimen age was 71.3 years (range:

Fig. 1 The biofidelic whole cer-
vical spine model (occiput-T1
vertebra) with muscle force
replication (WCS+ MFR). The
surrogate head was attached to
the occiput. Anterior, posterior
and bilateral MFR cables sta-
bilized the head. The extension
head stop is not shown. For
more details, please see text

54-87 years), and there were three male and three female
donors. The donors did not suffer from any disease that
could have affected the osteoligamentous structures. To
attach lightweight motion-tracking flags, a headless
wood screw was drilled into the anterior aspects of C1
and C2 and into the lamina of C3 through C7. The flags
consisted of 3 mm-diameter, hollow brass tubes, with
two white, spherical, radio-opaque markers. A flag was
fitted rigidly onto each wood screw, and additional flags
were attached to the occipital and T1 mounts. This
constituted the whole cervical spine (WCS) model pre-
pared for intact flexibility testing.

To prepare a specimen for frontal impact simula-
tion, a surrogate head (mass 3.3 kg and sagittal plane
moment of inertia 0.016 kg m?) was attached to the
occipital mount. The head and spine were stabilized
using the compressive muscle force replication (MFR)
system (Fig. 1). The MFR system was symmetric about
the mid-sagittal plane and consisted of anterior,
posterior and lateral cables attached to preloaded
springs anchored to the base. The stiffness coefficients
of the anterior, lateral and posterior tension springs
were 4.0 N/mm, 4.0 N/mm and 8.0 N/mm, respec-
tively. Two anterior cables, each consisting of two
strands, originated at the occipital mount, ran through
separate guideposts at C4, through pulleys within the
T1 mount and were each connected to a separate
spring. The preload in each anterior spring was 15 N.
To apply the posterior MFR, small holes were drilled
bilaterally into each lamina (C3 through C7) and wire
loops were inserted into the spinal canal through the
laminae and tightly secured above each vertebral
spinous process. The two posterior MFR cables

Posterior MFR cables
Lateral MFR cables
Anterior MFR cables
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originated from the occipital mount, ran through the
wire loops, through a pulley at the T1 mount and each
were connected to a spring, preloaded to 15 N. The
lateral cables originated from CO0, C2, C4, and C6,
passed alternately along lateral guide rods, and were
each connected to a preloaded 30 N spring. The lateral
guide rods were inserted in the frontal plane into the
vertebral bodies of C2 through C7, such that the guide
rods at C3 through C7 were positioned at the
approximate centers of rotation of C2—C3 through C6—
C7, respectively. With this MFR arrangement the
compressive preloads at each intervertebral level were:
120 N (C0-C1, C1-C2); 180 N (C2-C3, C3-C4); 240 N
(C4-C5, C5-C6) and 300 N (C6—C7, C7-T1). A C0-C2
flexion limiter was secured to the occipital mount and
to the C2 spinous process that allowed approximately
30° of sagittal rotation, consistent with the in vivo
rotation of the normal cervical spine [16, 41]. This
constituted the WCS+ MFR model, ready for simu-
lated frontal impact (Fig. 1). A lateral X-ray of the
WCS+MFR model in the neutral posture, together
with radio-opaque calibration markers positioned in
the midsagittal plane, was taken and digitally scanned
(Adobe Photoshop version 6.01, San Jose, CA).

Intact flexibility testing

The intact WCS model underwent standard flexibility
testing to determine the static physiological disc defor-
mations [44]. Pure non-constraining flexion and exten-
sion moments up to a maximum of 1.5 Nm were

Fig. 2 Functional spinal unit
with motion tracking flags and
the points on the endplates used
to calculate intervertebral disc
deformation. Two coordinate
systems are also shown. The
endplate coordinate system y-z
was fixed to the lower vertebral
body. The anterior (2—A4) and
middle (3-B) annular tissues are

applied to the occipital mount in four equal steps.
Kinematic data were recorded on the third loading cy-
cle, following two preconditioning cycles using a high-
speed digital camera (MotionPro, Redlake, MASD, San
Diego, CA).

Frontal impact simulation and monitoring

Frontal impact simulation was performed using a pre-
viously developed bench-top sled apparatus [45]. The
incremental trauma protocol was used to apply frontal
impact loading to the WCS+ MFR model at nominal
T1 maximum horizontal accelerations of 4 g, 6 g, 8 g
and 10 g (1 g = 9.81 m/s?). A head stop was used to
restrict head extension during the rebound phase to
within physiologic limits and to prevent extension inju-
ries. The high-speed digital camera recorded the spinal
motions at 500 frames/s.

Intervertebral disc geometry and deformation

Endplate coordinate system The anterosuperior (point 1)
and posterosuperior (point 4) corners of the lower ver-
tebral body of each functional spinal unit from C2-C3
to C6—C7 were selected on the lateral X-ray (Fig. 2).
Two additional points (points 2 and 3) were selected,
such that the point 2 was midway between points 1 and
4, and point 3 was midway between points 2 and 4. The
endplate coordinate system y-z had its origin at point 4,

shown by dashed lines, while the 0 (M)

posterior annular tissue (4-C) is -—

shown by a solid line. The .
points (1, 2" and 4') were Flags with
selected on the inferior surface two markers
of the upper vertebral body that

were directly above points /1, 2 [ ()

Vertebra

and 4, respectively, and were -
used to calculate the disc shear

strain at the anterior, middle

and posterior disc regions. The

ground coordinate system /A-v Flexion
defined flexion as positive
rotation @O Anterior and middle disc annular tissues h

®—0O Posterior disc annular tissue
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its positive z-axis was oriented anteriorly through point
1, and its positive y-axis was orthogonal to the z-axis
and oriented superiorly.

Disc annular tissue strain The superficial anterior
annular tissue of the cervical disc and the deepest alar
tissues of the anterior longitudinal ligament have been
described in three dimensions as running posteroinferi-
orly and laterally from the upper to the lower vertebral
body [38], at approximately 30° to the z-axis. The thin,
superficial posterior annular tissue has been described as
having a longitudinal orientation [38]. These tissues were
most likely to be loaded due to flexion during frontal
impact simulations, and thus were mathematically con-
structed to develop a sagittal plane disc model based on
the lateral X-ray. The anterior and middle annular tis-
sues had origins at points 2 and 3, respectively, and
insertions at the inferior surface of the upper vertebral
body (points A and B, respectively), and were oriented
at 30° to the z-axis (Fig. 2). The posterior annular tissue
was oriented vertically and had its origin at point 4 and
insertion at the posteroinferior corner of the upper
vertebral body (point C).

Geometrical rigid body relationships between the flag
markers and the annular tissue origins and insertions
were digitized for each specimen from the scanned X-
rays and were superimposed onto the first frame of the
high-speed movie. Custom Matlab motion-tracking
software, written with sub-pixel accuracy, computed the
vertebral body rotations and flag marker translations at
each subsequent frame in the ground coordinate system
h-v (Fig. 2). These data, together with the geometrical
rigid body relationships, were used to track the selected
points and to calculate the translation of the annular
tissue origins and insertions in the ground coordinate
system /-v throughout frontal impact simulation. To
compute the dynamic annular tissue strains, the change
in tissue length was expressed as a percentage of the
original tissue length in neutral posture. The physio-
logical tissue strain was defined as the peak value ob-
tained during the flexibility testing. The average error in
the system used to calculate disc deformations was
0.3 mm (SD 0.2 mm), and, consequently, the average
strain error was approximately 3.0% (SD 2.0%) [51].

Disc shear strain Three additional points (1°, 2" and 4)
were selected on the inferior surface of the upper ver-
tebral body such that 1’, 2" and 4’ were directly superior
(positive y-coordinate) to points 1, 2 and 4, respectively
(Fig. 2). These points, representative of the anterior,
middle and posterior disc regions, were tracked
throughout simulated frontal impact using the custom
motion-tracking software and the rigid body relation-
ships between the flag markers and the points. The
points were used to calculate the disc shear strain (y) at
each of the three locations:

7 = arctan (°%) 1)

where Az represented the z-axis translation of 17, 2’
and 4’ relative to 1, 2 and 4, respectively. The original
disc heights (y,) were obtained as the y-axis differences
between 1°, 2 and 4’ and 1, 2 and 4, on the neutral
posture lateral X-ray. Corresponding physiological
limits were defined as the maximum values obtained
during the flexibility testing.

Data analyses

Disc strain data were low-pass digitally filtered at a
30 Hz cut-off frequency. For each frontal impact simu-
lation, the peak anterior, middle and posterior disc
annular tissue strains and disc shear strains were deter-
mined for each intervertebral level (C2-C3 to C6-C7)
during the total intervertebral flexion time period (i.e.,
from the T1 horizontal acceleration onset to return to
the neutral posture, after maximum intervertebral flex-
ion). Single factor, repeated measures analysis of vari-
ance (ANOVA) (p<0.05) and Bonferroni post hoc tests
(Minitab Release 13, State College, PA, USA) were used
to compare peak annular tissue strain and disc shear
strain during simulated frontal impact, with the corre-
sponding physiological limits determined from the flex-
ibility testing.

Results

The average measured peak T1 horizontal accelerations
during the frontal impact simulations were 3.9 g, 5.7 g,
8.5 g, and 10.0 g (AV: 8.4 kph, 11.4 kph, 13.4 kph, and
13.8 kph), corresponding to the nominal maximum
accelerations of 4 g, 6 g, 8 g, and 10 g, respectively. The
average T1 horizontal acceleration pulse duration was
107.3 ms, and this compared favorably with values
measured during real-life collisions, ranging between
approximately 70 ms and 100 ms [3].

An example of disc strains during frontal impact

The disc kinematics varied among intervertebral levels
and specimens. An example of disc strains as functions
of time is provided by the C2—C3 disc of specimen No. 1
during the 6 g frontal impact (Fig. 3). Two phases,
based on intervertebral rotation, were defined. Phase I
began with the onset of T1 horizontal acceleration (time
0 ms) and concluded with peak intervertebral flexion,
while phase II spanned from peak intervertebral flexion
to the return of neutral posture. The anterior annular
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tissue strain and posterior disc shear strain increased
and peaked in phase I, and returned towards zero in
phase II. The posterior annular tissue strain peaked in
phase II, following maximum intervertebral flexion.

Average behavior of six specimens

The dynamic disc annular tissue strains and disc shear
strains are presented in Tables 1 and 2, where exact
means of neutral tissue length, neutral disc height, and

Table 1 Peak disc annular tissue strains. Average (SD) neutral
tissue lengths (mm) and peak annular tissue strains (%) during
physiological flexion limits and simulated frontal impact at anterior
(Ant), middle (Mid) and posterior (Post) regions of the disc, at

strain values with corresponding standard deviations are
provided. The data are also presented as three-dimen-
sional graphs together with the corresponding physio-
logical limits. These provide an overview of their
variance by anatomical location, intervertebral level and
impact acceleration (Figs. 4 and 5).

The C2-C3 middle disc annular tissue strain first
exceeded physiological limits at 6 g and subsequently
spread to all intervertebral levels at 10 g, excluding C4-
C5 (Table 1, Fig. 4). At 10 g, anterior annular tissue
strain exceeded the physiological limits throughout the

intervertebral levels C2—C3 through C6—C7 (see Fig. 2). Significant
increases (p <0.05) in the frontal impact strains over the corre-
sponding physiological limits are indicated by *

Level C2-C3 C3-C4 C4-C5 C5-C6 C6-C7
Region Ant  Mid Post Ant Mid Post Ant  Mid Post Ant Mid Post Ant  Mid  Post
Neutral length 8.4 7.1 3.2 84 7.1 2.9 8.4 7.3 3.1 6.9 6.0 3.0 7.4 6.3 3.0
©09 (G2 (05 (13 @O0 (10 (10 @2 ©O7H 1.7 27 (08 (08 (2.8) (04
Physiological ~ 13.1 9.9 523 134 122 817 141 10.1 392 99 7.9 48.8 10.5 6.7 28.4
limits 84 (53 (30.8) (7.3) (6.8) (20.4) (13.00 (8.7) (32.3) (64) (56) (249 (12.8) (8.0) (24.8)
4 g impact 247 242 374 78 78 50.7 8.2 8.1 29.1 59 6.7 38.4 8.3 8.7 62.9
(18.1) (15.7) (20.7) (53) (54 (3500 (54) (4o6) (154 (6.5 (7.H) (181 (.00 (93 (214
6 g impact 341 328% 505 67 7.0 46.1 9.3 9.6 613 57 7.0 48.6 5.7 6.8 319
(23.6) (20.7) (22.7) (84) (7.8) (339 B2 (79 (277 (3.6) (43) (281 (8.7 (10.0) (9.6
8 g impact 39.7  384* 330 73 74 62.5 146 142 428 6.7 8.0 75.4 8.4 9.6 48.6
(30.7) (28.8) (18.3) (7.3) (7.5) (50.5) (16.8) (14.9) (144) (2.6) (3.6) (61.7) (12.00 (12.4) (10.8)
10 g impact 43.1*% 39.9* 44,6 237 232* 116.5* 244 228 549 29.6% 28.6% 105.6%* 19.7* 20.6* 46.0
(29.4) (25.6) (35.8) (9.8) (6.6) (36.1) (19.8) (17.6) (349) (12.8) (10.4) (49.5 (10.00 (9.2) (23.3)
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Table 2 Peak disc shear strains. Average (SD) neutral disc heights
(mm) and peak disc shear strains (radians) during physiological
flexion limits and simulated frontal impact at the anterior (Ant),
middle (Mid) and posterior (Post) regions of the disc (see Fig. 2), at

intervertebral levels C2—-C3 through C6-C7. Significant increases
(p<0.05) in the frontal impact strains over the corresponding
physiological limits are indicated by *

Level C2-C3 C3-C4 C4-C5 C5-C6 C6-C7
Region Ant Mid  Post  Ant Mid Post Ant Mid Post Ant Mid  Post Ant Mid  Post
Neutral height 4.7 5.5 32 4.4 5.6 2.9 4.6 5.5 3.1 3.5 4.6 3.0 3.6 4.6 3.0
0.9 (04 (0.5 (.00 (09 (1.0) (0.8 (0.7 (079 ((1.2) (14 (©8 (09 (©0.7) (04
Physiological 0.3 0.2 0.4 0.2 0.2 0.3 0.3 0.3 0.4 0.2 0.2 0.2 0.2 0.2 0.3
limits 0.1) (0.1) (0.1) (0.1) (0.1) (02) (0.2) (0.2) (0.3) (0.2) (0.) (0.2) (0.3) (0.2) (0.3
4 g impact 0.6* 0.5 07 02 0.2 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2
0.2) (0.2) (0.2) (©.1) (0.1) (©.2) (0.1) (©.1) (0.2) (©.2) (0.2) (0.3) (02) (0.2) (0.2
6 g impact 0.7%  0.6* 09* 0.2 0.2 0.3 0.3 0.3 0.4 0.2 0.2 0.3 0.3 0.2 0.3
0.2) (0.2) (0.2) (0.2) (0.2) (0.3) (0.2) (0.2) (0.3) (0.2) (0.2) (03 (0.3 (0.2) (0.3
8 g impact 0.8* 0.7* 1.0* 0.2 0.2 0.3 0.3 0.3 0.4 0.2 0.3 0.4 0.4 0.3 0.4
0.2) (0.2) (0.2) (0.2) (0.2) (0.3) (0.2) (0.2) (0.3) (0.1) (0.1) (0.2) (0.2) (0.2) (0.3)
10 g impact 0.7*  0.6* 08* 04* 04* 0.5 0.5 0.4 0.6 0.5* 0.5 07+ 0.7 0.6* 0.7*
0.3) (03 (03) (02 (02 (03) (03 (02 (©3) (02 (@©2 02 02 (@© 0y

Fig. 4 Average peak anterior
(Ant), middle (Mid) and pos-
terior (Post) disc annular tissue
strains at C2—-C3 through C6—
C7 during simulated frontal
impact (4 to 10 g) and physio-
logical limits. Significant in-
creases (p <0.05) in frontal
impact strains over the corre-
sponding physiological limits
are indicated by *

Disc Annular Tissue Strain (%)

Ant  Mid  Post

Ant  Mid Post

Ant  Mid Post

Ant  Mid  Post
C3-C4 C4-C5 Ant  Mid  Post
posterior disc region, reaching 0.9 radians and

cervical spine, with the exception of C3—C4 and C4-C5.
The highest peaks for the anterior and middle annular
tissue strains occurred at 10 g. These were 43.1% and
39.9% at C2-C3 and 29.6% and 28.6% at C5-C6,
respectively. The posterior annular tissue strains beyond
the corresponding physiological limits were observed at
C3-C4 (116.5%) and C5-C6 (105.6%), both during the
10 g impact.

Disc shear strain at C2—C3 exceeded physiological
limits beginning at 4 g (Table 2 and Fig. 5). At 10 g,
increases in disc shear strain were observed at all inter-
vertebral levels, excluding C4—C5. Of these increases, the
greatest disc shear strain was most often noted in the

1.0 radians (125% and 150% increases from physio-
logical limits) at C2—C3, during the 6 g and 8 g impacts,
respectively.

Discussion

Injuries to the cervical disc sustained during automobile
collisions may result in chronic pain [23, 24, 29], yet
there are currently no biomechanical studies investigat-
ing disc injury mechanisms during simulated frontal
impact. The present study determined the dynamic disc
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Fig. 5 Average peak disc shear 10773 I T R — T ; 7
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annular tissue strain and disc shear strain during simu-
lated frontal impact, using a biofidelic whole cervical
spine model with muscle force replication. At 4 g and
6 g, significant increases (p <0.05) over physiological
limits were observed in the C2—C3 disc shear strains and
middle disc annular tissue strains, respectively. The
largest disc shear strain was observed in the posterior
disc region, reaching a maximum of 1.0 radian (150%
increase over the physiological limit) at C2-C3 during
the 8 g impact. At 10 g, anterior disc annular tissue
strains exceeded physiological limits at all intervertebral
levels, excluding C3—-C4 and C4-C5, while the posterior
annular tissue strains exceeded physiological limits at
C3-C4 and C5-C6. The disc annular tissue strain and
disc shear strain results suggest that during frontal
impact, intervertebral flexion combined with disc
shearing may be the injury mechanism producing
subfailure disc injuries. In support of these findings,
previous clinical hypotheses have suggested that frontal
impact would likely produce horizontal shear between
cervical vertebrae, and result in excessive strain of the
anterior disc annular tissues with compression of
zygapophysial joints [2, 58].

There are several limitations of the present model
that must be considered. Firstly, the T1 vertebra was
fixed to the sled, which may have affected the cervical
spine kinematics, especially at C7-T1. While no data
exist that quantify the in vivo intervertebral rotations
during simulated frontal impact, the peak head-T1
flexion of young volunteers with pre-tensed muscles
ranged between 49.4° and 74.0° during simulated frontal
collisions up to 15.6 g[57]. The average (SD) peak head-
T1 flexion of the present study ranged from 43.1° (5.9°)
to 84.6° (6.0°), during the 4 g and 10 g impacts,

respectively, and exceeded the in vivo corridor, since the
current model simulated the response of an unwarned
subject. Secondly, the incremental trauma approach was
used to determine the relationship between disc strain
and impact acceleration. The many advantages of the
incremental trauma protocol have been well documented
[26, 48]. The incremental and single trauma protocols
have been shown to produce equivalent soft-tissue injury
severity due to frontal impacts of a porcine cervical spine
model [21]. In that study, the incremental trauma group
underwent 2 g, 3.5 g, 5 g, 6.5 g and 8 g impacts, while
the single trauma group underwent only the 8 g impact.
Flexibility testing was performed on each specimen
while intact, and following each impact. There were no
statistically significant differences in the flexibility
parameters between the incremental and single trauma
groups following the 8 g impacts. This well-controlled
experiment validates the use of the incremental trauma
protocol for determining disc strains due to frontal
impact. Lastly, the current model did not simulate an
active neuromuscular response: the MFR system pro-
vided postural stability and passive resistance to inter-
vertebral motion following impact, simulating the
response of an unwarned occupant. While individuals
may be able to anticipate frontal collisions, they may not
be able to generate adequate neck muscle force to
restrict head flexion. The average peak extension mo-
ment of 18.7 Nm at C7-T1 produced by the present
MFR exceeds the peak extension moment developed by
weaker subjects (in vivo female range: 9 to 33 Nm) [49].
In addition to not being able to generate enough force to
resist motion, the muscles may not be able to achieve
peak tension quickly enough to protect the cervical spine
from injury. The peak disc annular tissue strain and disc
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shear strain of the current study occurred between
148.5 ms and 151.3 ms, respectively, following impact.
A recent study measured the electromyographic activity
of the cervical muscles during simulated frontal impacts
up to 1.4 g and found that the trapezius muscle was the
first to achieve peak activity at 189 ms following impact
[36]. Thus, the posterior cervical muscles may neither be
able to develop sufficient strength, nor respond quickly
enough to restrict head flexion or protect the neck
following frontal impact.

Comparison of the current frontal impact disc shear
strain data to previously reported rear impact data [50]
revealed differing intervertebral levels at risk for injury
(Fig. 6). The C2-C3 intervertebral level displayed
greater increases during frontal impact, while in rear
impact, C5—-C6 was at the greatest risk. Although studies
have demonstrated injuries to the C2-C3 disc during
frontal impacts [9, 28, 56], a larger body of evidence
notes that the C5-C6 intervertebral level is most com-
monly injured in both frontal and rear impact collisions
[9, 12, 29, 32, 52, 62]. The injuries at C5-C6 during
frontal impact occurred at 10 g, while injuries due to
rear impact began at 3.5 g. This observation concurs
with epidemiological evidence, which suggests that
injuries may occur at lower impact accelerations during
rear impact, as compared with frontal impact [34, 53,
55]. The data of the current study suggest that injuries
observed at C2—-C3 and C5-C6 might be due to the
increases in disc annular tissue strain and disc shear
strain beyond the physiological limits.

Understanding how subfailure injuries may cause
pain is perhaps the most important issue when investi-
gating disc injuries sustained during frontal impact.
Apart from neck pain, headache is the most commonly

reported symptom following frontal and rear impacts
[2, 53]. Occipital or cervicogenic headache is known to
result from referred pain via injury to the C2-C3 zyga-
pophysial joint, which is innervated by the third occip-
ital nerve [2, 3, 30]. Injury to the C2—C3 disc, suggested
by the present study, may lead to accelerated degener-
ative changes over time, and abnormal loading of the
adjacent zygapophysial joints [8]. Frontal impact
patients may be at higher risk for occipital headaches
and thus obtain relief from therapeutics targeting the
occipital nerve [14, 15]. Other sources of chronic pain
from subfailure injuries have been ascribed to mecha-
nisms directly involving the disc, such as the presence of
injured nociceptive fibers on the annulus fibrosus [4, 10],
and the subsequent production of irritative inflamma-
tory mediators [7, 33]. A final, commonly proposed pain
mechanism is the accelerated degeneration of the injured
disc, leading to facet degeneration and painful facet
inflammation [8, 42, 43].

Conclusions

The present study demonstrated that disc annular tissue
strain and disc shear strain exceeded physiological limits
during simulated frontal impact. These data suggest that
subfailure disc injuries that occur during frontal impact
might be caused by combined intervertebral flexion and
disc shearing. A comparison to previously reported rear
impact data revealed that the C5-C6 intervertebral disc
was at the greatest injury risk during rear impact, while
during frontal impact, in addition to C5-C6, subfailure
injuries are likely at superior intervertebral levels,
including C2-C3. The disc injuries occurred at lower

Fig. 6 Comparison of peak 14
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impact accelerations during rear impact, as compared Acknowledgements This research was supported by NIH Grant 1
with frontal impact. Disc injuries may be a source of RO1 AR45452 1A2 and the Doris Duke Charitable Foundation
chronic pain following both frontal and rear impacts.
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