
Introduction

In 1982 Schellnack and Büttner-Janz initiated the devel-
opment of the functional artificial disc, the SB Charité I
(Fig.1A) at the Charité Hospital in Berlin [11]. The idea
was based on the “low-friction” principle, which had
proven to be successful in total joint replacement: an
UHMWPE (Ultra High Molecular Weight Polyethylene)
sliding core articulates between two highly polished metal
endplates, imitating the movement of the nucleus within
its annular containment.

In September 1984, following mechanical testing at the
Institut für Leichtbau und ökonom, Verwendung von Werk-
stoffen, Dresden [10], the SB Charité I artificial disc was
implanted for the first time at the Charité Hospital in Berlin.
The endplates of this model were made of 1-mm-thick
URX2CrNiMoN 18.12 steel and the sliding core was pro-
duced from Chirulen UHMWPE. For fixation in the bony
vertebral endplates, the artificial disc incorporated first 11
and later 5 sharp anchoring teeth for cementless fixation.

In 1985, due to axial migrations, the artificial disc was
modified to SB Charité II (Fig.1B). It was based on the
same functional principle as type I, but the metal end-
plates were enlarged with bilateral “wings”, to improve
the support of the implant on the bony endplates of the
vertebral bodies. The endplates incorporated three ventral
and two dorsal anchoring teeth. Mark II was manufac-
tured of stainless steel and later of EMO titanium sheeting
(only for biomechanical testing) [10]. Both the mark I and
the mark II implants were manufactured in the former
German Democratic Republic (GDR) only, and were
never commercially available. The usage was confined to
the Charité Hospital.

Fractures in Mark II endplates and insufficient instru-
mentation for implantation were the reasons that the au-
thors contacted LINK for production of a state of the art
implant version of the artificial disc, the design of which
has basically remained unchanged since LINK started
production in 1987.

The endplates of the LINK SB Charité III disc (Fig.2)
are of cast CoCrMo alloy (ISO 5832/IV; ASTM F75–82)
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for optimal static mechanical properties, each with three
anchoring teeth ventrally and dorsally. Originally three
sizes of metal endplates in parallel and 5° angulation were
produced [11]. In 1998 a size 4, and in 1999 an even
larger size 5, was added to allow for an optimal choice of
the largest endplate giving best possible support on the
cranial and caudal vertebral body (Fig.3).

To improve lordotic reconstruction, additional angu-
lated endplates of 7.5° and 10° were introduced in 1999.
Endplates of the same size but with different lordotic an-
gulations may be combined with each other, allowing an
even more precise reconstruction of the lumbar lordosis.
UHMWPE sliding cores (ISO 5834/II; ASTM 648–83) of
various heights are available for each endplate size to al-
low for physiological restoration of the intervertebral disc
space (Fig.3).

Since 1987, approximately 4000 SB Charité artificial
discs have been implanted, and spine surgeons in Ger-
many, France, the UK and the Netherlands have reported
[12, 15, 16, 21] on results of 10 years or more follow-up.

The bioactive coating

To improve the anchoring of the endplates and to establish
a mineralized connection between bone and implants, 
the endplates receive on their outside a “bioactive double
coating” (Fig. 4). This concept has been successfully tested
in an animal study [24, 25] and in non-cemented joint re-
placements such as pressfit hip cups, ankle joint prosthe-
ses and dental implants [23].

The coating consists of three layers. The first two lay-
ers are of commercially pure titanium (Ti) – the first layer
provides a special strong bond between the cobalt-chrome
endplate and the coating, and the second layer of plasma-
sprayed Ti provides the desired pore size of 75–300 µm.
The third coating consists of a layer of calcium phosphate
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Fig.1 A SB Charité I. B SB Charité II

Fig.2 SB Charité III

Fig.3 Range of size, CoCr
endplates and UHMWPE 
(Ultra High Molecular Weight
Polyethylene) sliding cores



(CaP). This is applied to the Ti surface in an electrochem-
ical process that results in:

1. A thin layer of 10–25 µm
2. The retention of the open-cell structure of the Ti coat-

ing
3. A mechanically strong bond, which is necessary to

cope with the stresses applied on the coating during
implantation

The open-cell porous structure provides an optimal base
for the ingrowth of bone cells. The attachment of os-
teoblasts on the structured surface is accelerated by the
bioactive CaP coating (Fig.5). This avoids at the same
time the growth of connective tissues onto the implant.

Biomechanics

Sagittal rotation, lateral rotation, axial rotation 
and range of motion

Flexion and extension in the lumbar spine constitutes an
arc-like motion combining sagittal rotation with sagittal

translation [27]. The position of the instantaneous axis of
rotation (IAR) point is not constant, and changes depend-
ing on the joint position.

This important aspect of spinal biomechanics is repli-
cated in the functional motion of the SB Charité, due to its
three-component set-up, which incorporates a floating
sliding core, whose convex surfaces are encased in the
concave cavities of the metal endplates (Fig.6).

In vitro evaluations carried out by Ahrens [5, 24] of the
mobility of the L4/L5 motion segment in fresh frozen ca-
davers with most ligamentous structures intact have re-
vealed a similar mobility in those with and those without
implanted SB Charité disc, in extension and flexion as
well as right and left bending.

Only figures for the range of motion (ROM) in torsion
(Table 1) for moments greater than 5 Nm were different.
This seems to be related to the severed anterior ligament,
the ventrally incised annulus fibrosis and the removed
disc tissue. Clinical experience established that the soft-
tissue structures adapt to that situation over a period of
time. 

Clinical evaluations have confirmed the values Ahrens
found; David and Lemaire have both documented retained
motion in their medium- and long-term follow-ups [14, 21].

Translation and the zygapophysial joints

Translation is a movement that causes all points in a body
to move in parallel in the same direction and to the same
extent as the force [7]. During flexion in an intervertebral
segment two types of movement take place:

1. The center of nucleus moves dorsally
2. The cranial vertebral body translates ventrally

The major movements of an intervertebral segment in
flexion and extension are sagittal rotation plus translation.
The center of rotation changes and the path of the various
centers of rotation is a centrode [8, 18] (Fig.7).

In flexion and extension, the unconstrained sliding
core of the SB Charité mimics this kind of movement
(Fig.8).

S100

Fig.4 The SB Charité “bioactive double coating” showed mean
ingrowth of 47.9% in a baboon study (coronal diamond cut sec-
tion, courtesy of Dr. McAfee, Baltimore)

Fig.5 CaP coating on porous
implant surface



In lateral bending, coronal rotation is combined with
translation. The mobile sliding core of the SB Charité
mimics such movements as well.

In axial distraction or compression there is a possibil-
ity of axial translation. Such translation is possible in the
sliding core of the modular SB Charité artificial disc, as it
is attached to neither the superior nor the inferior endplate
of the artificial disc.

If a vertebral body slides forward, the inferior articular
processes are resisted by the superior articular processes
of the inferior vertebral body. This resistance is transmit-
ted to the vertebral body through the pedicles and the pos-
terior elements and anterior vertebral column interact [9].
Such motion can be duplicated in the SB Charité without
unphysiological stress, only due to the unconstrained
three-component set-up. An artificial disc must allow the
abovementioned motions simultaneously, otherwise zy-
gapophysial joints and/or disc prostheses undergo un-

physiologic/mechanically unfavorable stresses. Flexion,
for instance, combines [7, 9]:

1. Upward sliding movement of inferior articular pro-
cesses

2. Tension of zygapophysial joint capsule
3. Tension of ligaments of intervertebral joint: (i) supra-

spinous and interspinous ligament, (ii) ligamentum
flava

4. Contribution of longissimus thoracis pars lumborum
muscle

Adams et al. calculated that the disc contributes 29% of
resistance to flexion, while the capsule contributes 39%
and the ligaments 32% [1]. Consequently, one can state
that capsule and ligaments together dominate the action of
movement. Thus the soft tissue structures under high
stress must have a compensating counter element in the
anterior vertebral column to avoid strain and noxious
movement. In the natural disc it is the nucleomobility, in
the SB Charité this compensating element is the uncon-
strained sliding core.

Joint replacement in diarthrodial joints has led this
approach to mimicking physiologic movement. For in-
stance, mobile bearing knee designs offer the advantage
[19] of maximum conformal geometry, while protecting
the interface between bone and implant from high stress,
and by following the pattern of movement that the liga-
ments dictate, they offer advantages in cases of compo-
nent malalignment.

And just like the contemporary mobile bearing knee
designs (Fig.9), the SB Charité artificial disc has a mobile
sliding core which, in its degree of mobility, defines the
required interaction between soft tissues, facet joints and
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Fig.6 Free-floating biconvex sliding core encased in concave
endplates

Table 1 Mean range of motion in degrees (±SD) at level L4-L5,
as published by Ahrens et al. [5]

Maximum Lumbar disc Artificial disc
load (Nm)

Extension 12 3.49 (0.82) 3.27 (0.83)
Flexion 12 7.72 (1.74) 9.78 (1.48)
Left flexion 8 2.78 (1.78) 2.37 (0.57)
Right flexion 8 5.24 (2.54) 7.41 (2.65)
Torsion 7 1.66 (0.74) 3.01 (0.73)

Fig.7 Rotation and translation
in the natural disc

Fig.8 SB Charité artificial disc showing rotation and translation



implant geometry, to maintain a stable articulation and
thus a physiologic restoration of the lumbar segment.

If the vertebra were loaded in flexion and the artificial
disc’s components allowed no translational movements,
what would happen to the zygapophysial joints? The an-
swer is: impingement and stress rising ... due to the in-
ability of the disc’s intermediate components to move
posteriorly (Fig.10).

In extension similar kinematics apply in reverse se-
quence (Fig.11).

Nature has used the simple ball and socket joint in the
vertebra, but only in species where weight bearing is not
important, for example in fish, and just to provide mobil-
ity of the vertebral column. Wherever weight bearing is
important, intervertebral adjustment is required to com-
pensate for the rocking movements of the vertebrae [7].
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Fig.9 Just like the contempo-
rary “mobile bearing” knee de-
signs, the SB Charité artificial
disc has a “mobile sliding
core”

Fig.10 Fixed inferior component: vertebra loaded in flexion Fig.11 Fixed inferior component: vertebra loaded in extension



In a biomechanically sound artificial disc set-up, a slid-
ing component would give way, allowing adjustment of
the two adjacent vertebral bodies to each other and avoid-
ing stress risers in the zygapophysial joints (Fig.12).

Proper biomechanical function and the best possible
relationship between anterior (implant loaded) and poste-
rior elements requires, of course, correct implant position-
ing, which means central positioning in the sagittal and
coronal planes. This is one of the basic requirements for
successful disc replacement, and is especially necessary to
avoid facet problems, as clinical follow-up reports have
documented [12, 15, 16, 21, 22].

Biomechanical testing

Several biomechanical tests have been performed with the
SB Charité artificial disc. As no mechanical problems
with the cobalt-chrome endplates have ever been reported,
tests concentrated on the endurance of the UHMWPE
sliding core [2, 3, 4].

The University of Kiel as well as the Orthopedic Re-
search Laboratory of the Mt. Sinai Medical Center in
Cleveland/Ohio independently performed FDA- (Food
and Drug Administration)- required dynamic tests under
similar conditions: sliding cores size 2 (second smallest
size), 7.5 and 9.5 mm in height were tested with 2.5- and
4.5(!)-kN loads.

Kiel concluded: “None of the specimens tested failed,”
and “For all testing phases and loads, the creep rates were
found to be low” [17]. Cleveland stated: “...under normal
in vivo conditions the permanent deformation of the core
is not expected to reduce the available articulating surface
or result in premature failure of the device due to signifi-
cant cold-flow or delamination” [28].

Most recently, a functional 10 million cycles simulator
test was performed at the Laboratory for Biomechanical
Testing Grosshadern/Munich (Fig.13).

The report stated: “An extremely mild abrasive wear
was recorded, of negligible volume...” and, “The result of
this tribologic investigation is considered to be very posi-
tive, especially in light of the 10 million cycles and the
demanding test set-up” [20].

Clinical experiences have confirmed the results of such
tests. Staudte as well as Zeegers reported that no polyeth-
ylene wear particles were detected when surrounding tis-
sues taken during revisions were histomorphologically
examined, provided the implants had been properly sized
and implanted (personal communications, H-W Staudte/
W Zeegers, 1998).
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Fig.12 A Sliding intermediate
component: vertebrae loaded in
flexion. B Sliding intermediate
component: vertebrae loaded in
extension

Fig.13 Simulator test set-up at the Laboratory for Biomechanic
Testing, Munich
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Whether or not wear debris is produced due to im-
proper size or position, progressive bone lysis as seen in
patients with aseptic loosening of joint replacements in di-
arthrodial joints is still unlikely, and has not been re-
ported. This is most probably due to the absence of syno-
vial membrane in the intervertebral joint [29].

Such bone resorbing factors as interleukin-1 (IL-1),
interleukin-6 (IL-6), tumor necrosis factor-X (TNF-X),
prostaglandin E2 (PGE2) and collagenase are produced
by activated macrophages and fibroblasts [6, 13, 26]. As
the synoviocyte-containing membrane, resembling macro-
phages and fibroblasts, is not present in amphiarthrosis
[A], it can be hypothesized that such synovial absence is
the reason for the absence of the “particle disease” in the
intervertebral space.

To avoid cold-flow of the polyethylene core, it is im-
portant to always choose the largest possible size of im-

plant and to use the appropriately angled endplates, so
that the internal surfaces of the endplates encase the
UHMWPE sliding core in a parallel fashion, thus distrib-
uting the forces evenly.

Conclusion

Biomechanical tests and more than 10 years of clinical
experience at various centers have demonstrated that 
the LINK SB Charité artificial disc is a safe and effective
operative treatment for pain of discogenic origin, pro-
vided the indications are right, the recommended inter-
vention techniques are followed and implant choice is
appropriate.
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