
Introduction

Wire sutures, cerclage constructs, and tension bands have
been used for many years to re-appose bone fragments, to
tether ligaments or tendons to bone, and to improve sta-
bility in weakened constructs following trauma or surgery.
Closure of a sternotomy following cardiovascular surgery,
trochanteric reattachment in reconstructive hip surgery,
and stabilization of long bone fragments are a few exam-
ples of procedures utilizing tension-band systems [5, 14,
26, 48, 50, 57, 59, 65].

The natural posterior spinal tension member is com-
prised of several ligaments that are attached to the bones
of the spine lying dorsal to the spinal canal: the inter- and
supra-spinous ligaments, the ligmentum flavum, the facet
capsular ligaments, and the posterior longitudinal liga-
ment [3, 4, 36, 37, 41, 42]. When intact, the posterior

spinal ligamentous structures function to limit flexion, ro-
tation, and anterior and posterior translation of the spine
[27, 42]. In spine surgery, wire and other strands and ca-
bles have been widely used to re-establish stability of the
posterior spinal ligament complex [7, 11, 12, 24, 30, 34,
39, 60, 62].

Although much of the compression load of the spine is
borne by the vertebral bodies and intervertebral discs of
the anterior column [3, 40], attaching posterior tension
bands around the laminae, spinous processes, or trans-
verse processes can improve stability [12, 22, 24, 31, 39,
46, 49]. Easy surgical access to the spinous processes al-
lows the surgeon to pass wires around these bony ap-
pendages or through holes prepared in individual spinous
processes. However, variable strength of the bone and the
relatively small surface area of the wire can cause the wire
to cut through the spinous process, leading to loosening of
the construct and loss of stability [6, 43, 65]. Inventors
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have developed techniques and devices to address this
problem. Examples include the “Wisconsin technique,”
wherein the Drummond Button is placed on the sides of
the spinous process, and K-wires are passed through the
spinous process [21, 28, 47].

When the spinous process is weak, fractured, or miss-
ing, the lamina can be utilized for wiring one spinal seg-
ment to another. The lamina is a stronger point of attach-
ment than the spinous process [12, 20, 23, 25, 53, 64].
However, passing a wire or cable into the sublaminar space
can lead to injury of the dura or spinal cord [18, 51, 54, 60,
61]. In spite of this possibility, sublaminar wiring tech-
niques have been widely used for segmental fixation of
spinal instrumentation to the posterior spine, in most cases,
without nervous system injury [2, 33, 35, 45, 58, 65].

Rigid monofilament wires (Ethicon wire, Codman
Sof’wire) often fail due to weakening created during
twisting or wrapping [10, 15, 19, 20, 23, 51]. To address
these deficiencies, multi-strand cables (Acromed Songer
cable, Sofamor Danek Axis cable), which have better sta-
tic yield, and tensile and fatigue strength, have been de-
veloped [12, 13, 29, 32, 38, 54, 55, 56, 63]. More recently,
polyethylene cables (e.g., Smith & Nephew Richards
SecureStrand), which are soft, flexible, and radiolucent,
have become available. Tests indicate that they have ten-
sile strength equivalent to multi-strand cables [8, 9, 16,
19, 38, 56, 63]. The soft polyethylene cables are easier to
handle than wires or metal cables, and they conform to the
bone surfaces, leading to a distribution of loads over a
greater contact area [15, 18].

The Loop system

The Loop system (Spineology Inc., Stillwater, Minn.) con-
sists of a braided polyethylene cable, a locking clip, and
an optional ferrule that can be placed in the spinous
process (Fig.1). The Loop cable is a polyethylene braid
with material properties similar to SecureStrand [68]. The
Loop system is supplied in two versions: small cable and
small locking clip for the cervical and upper thoracic
spine, and large cable and large locking clip for the lower
thoracic and lumbar spine.
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Table 1 Physical properties of single constructs. Properties were determined with the construct held between two “S” hooks on the test-
ing machine

AcroMed Songer Smith & Nephew Spineology Loop a
titanium cable a SecureStrand b

Mean tensile failure load (N) 2068 1565 Large – 1953
Small – 1301

Construct stiffness (N/mm) 477 322 Large – 438
Small – 410

Construct creep maximum (mm) at % of construct strength 1.8 mm @ 75% 3.7 mm @ 75% 2.4 mm @ 75%
2.8 mm @ 50% 1.9 mm @ 50%
2 mm @ 30% 1.4 mm @ 30%

Fatigue strength (N) @ 3 million cycles <44 578 Large – 578
Small – 333

a Data from testing at Phillips Plastics Technical Center
b Data from Dickman et al. [19]

Fig.1 The Loop system uses a braided polyethylene cable that is
passed through two ferrules placed at the base of the spinous
process. After tension is applied by use of the tensioning tool (Fig.
3), the locking clip (Fig.2) secures the construct



Posterior spinal ligaments range in strength from ap-
proximately 67–208 lb (300–927 N) in the cervical and
upper thoracic spine to about 145–321 lb (647–1432 N) in

the lower thoracic spine and the lumbar spine [44]. The
testing setup for the Loop construct was designed to con-
form to the test setup used by Dickman et al. [19], in
which multiple tension-band constructs were tested. Dick-
man found the tensile strength of the Songer titanium ca-
ble system to be 465 lb (2068 N), which was superior to
that of the SecureStrand, at 352 lb (1565 N) [19]. The
Loop construct (cable and locking clip) was found to have
a tensile strength of about 293 lb (1301 N) for the small
cable and small clip construct and about 439 lb (1953 N)
for the large cable and large clip construct [68] (Table 1).
Both Loop systems exceed the expected failure loads of
the spinous processes and laminae in their respective ar-
eas of use in the spine [12, 25].

The Loop locking clip consists of two mating pieces of
titanium alloy that secure the polyethylene cable without
the need for knots (Fig.2). Testing of the construct for
creep, again compared to testing done by Dickman [19]
on several different constructs, shows that the creep of the
Loop construct is comparable to the Songer cable with
metal crimp lock, and superior to the weave and knotted
lock of the SecureStrand [67]. The Loop tensioner (Fig.3),
used to create tension in the construct prior to locking, al-
lows the surgeon to precisely control the degree of tension
on the band material [55]. The male portion of the Loop
clip is locked into the female portion of the clip using a
self-limiting torque wrench.

The Loop ferrule is designed to distribute stress over a
broad surface area. The smooth internal surface of the fer-
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Fig.2 The Loop locking clip utilizes friction between the female
outer shell and the male inner cone, both of which are smoothly
threaded. Once the male portion is secured in place, with the cable
wedged between the male and female parts, the construct is excep-
tionally secure, with very little creep

Fig.3 The tensioning tool al-
lows the surgeon to apply the
desired degree of tension be-
fore securing the construct
with the male portion of the
locking clip

Fig.4 The ferrule punch allows the surgeon to create a precise
hole for placement of the ferrule using the ferrule inserter
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rule provides for passage of the cable without damaging
the fibers. A standard towel clip, dental drill, or curved
awl is used for making a hole in the spinous process for
some wiring procedures or for passing a K-wire through
the bone [1, 17, 47, 48, 52, 54, 60]. The Loop ferrule hole
cutter prepares a clean, precise hole for a press fit of the
ferrule in the bone. The ferrule is positioned into place us-
ing the ferrule inserter tool Fig.4.

Mechanical properties of spinal cable 
and wire fixation systems

The new Loop polyethylene cable system was tested and
compared to published performance values for currently
available metallic spinal cable fixation systems.

Materials and methods

Published data on nine different spinal cable and wire fixation sys-
tems were reviewed: titanium and stainless steel Codman, Danek
and AcroMed cable, polyethylene Smith & Nephew SecureStrand,
and Ethicon 20 and 22-gauge stainless steel monofilament wire.
Static tensile and fatigue strength, stiffness, and creep properties
were evaluated. In all systems, a loop of the cable or wire was
formed and connected, using the manufacturers suggested method.
The Loop device was tested on the EnduraTec SmartTest system.

Results

The new Loop polyethylene cable system proved to be
stronger in tensile strength, 1953 N, than all the other sys-
tems by 10–89% (P=0.01), except for the AcroMed
Songer titanium system using end loop attachment, with a
strength of 2068 N. For all systems, the fatigue limit
ranged from 44.8 N to 578 N. The Loop fatigue strength
is 578 N [66].

The creep behavior breaks down into two parts:

1. Change due to initial settling of the system (confor-
mance to bone and tightening of fastener, and

2. True system creep (cutting at the bone/band interface,
slipping of the fastening method, stretch in the tension
band)

Creep during the initial stretch of the new Loop tension
band was 19.36 µm/m/N, compared to an average of
22.12 µm/m/N for metal cables, and 113.33 µm/m/N for
20-gauge and 106.35 µm/m/N for 22-gauge monofilament
wires. Initial creep of the SecureStrand polyethylene band
was 35.92 µm/m/N. After initial stretch on application of
the load, none of the multifilament metal cables exhibited
appreciable creep during the 24-h test period. The two
polyethylene cables did stretch after initial loading. The
SecureStrand stretched an additional 24.22 µm/m/N ver-
sus 7.4µm/m/N for the Loop tension band.

Discussion

In comparisons, the new tension band has equivalent
strength to all band types, and has higher fatigue strength
than the metal bands. Metal cables and wire systems eas-
ily cut through bone and are opaque on radiographs. The
polyethylene systems are radiolucent and afford better ra-
diographic observation of the fixation site. They also pro-
vide better conformation to the bone to distribute the load
more evenly.

The creep behavior of the new tension-band system is
more like that of the metal cable systems. Both polyethyl-
ene cable systems creep initially while the band conforms
to the tissues. The SecureStrand has additional creep be-
cause the connecting knot continues to tighten over time.
Additional creep of the new system is lower than the Se-
cureStrand, because the creep is only due to the stretching
of the polymer fibers. The unique, “no-slip clip” is designed
to limit damage to the band while providing a secure lock
for the construct. Unlike a knot, this lock will not slide.

Conclusion

Tension bands have been used in general orthopedics and
spine surgery for many years. The Loop System has strength
similar to titanium cable systems and has a no-slip locking
clip designed to maintain construct tension. It combines
the advantages of the metallic systems (lower creep) with
the advantages of the polymer cables (high fatigue strength)
without sacrificing strength, stiffness or ease of use.
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