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Abstract
Cisplatin (CIS) is a chemotherapeutic agent known to induce cachexia. CIS causes the atrophy of skeletal muscle. Thymo-
quinone (TQ) is a powerful antioxidant with an anti-inflammatory effect. The aim of this study was to determine the effects 
of TQ on mitofusin 2 (Mfsn-2), which is one of the mitochondrial dynamics in CIS-induced muscle atrophy, and meteorin-
like (MtrnL) immunoreactivity, which plays a role in energy metabolism. Twenty-eight rats were randomly divided into four 
groups (n = 7). While the control group was not administered, a single dose of CIS (7 mg/kg) was administered intraperito-
neally (i.p) to the CIS group at the beginning of the experiment. The CIS + TQ group was administered TQ (10 mg/kg/day) 
oral gavage after a single dose of CIS (7 mg/kg) i.p injection at the beginning of the experiment. In the TQ group, only TQ 
(10 mg/kg/day) oral gavage was applied. CIS application caused atrophy in muscle tissue and increased creatine kinase (CK) 
and lactate dehydrogenase (LDH) levels. However, Mfsn-2, TNF, and Casp3 increased while MtrnL decreased. TQ decreased 
the increased biochemical parameters with CIS cognac. Increased Mfsn-2, TNF, and Casp3 levels due to CIS decreased with 
TQ treatment. However, the decreased MtrnL caused by CIS increased with TQ treatment. TQ may exert a protective effect 
in CIS-induced muscle atrophy by regulating Mfsn-2, MtrnL, TNF, and Casp3 immunoreactivities.
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Introduction

Cachexia is a serious syndrome associated with the loss of 
fat mass and skeletal muscle, often associated with cancer 
(Peixoto da Silva et al. 2020). Cisplatin (CIS), a cytotoxic 
agent commonly used in cancer therapy, induces cachexia 
(Sirago et al. 2017). Studies have shown that CIS treatment 
causes skeletal muscle atrophy (Bae et al. 2021; Sakai et al. 
2022). Reactive oxygen species (ROS) production is exces-
sively increased in pathophysiological situations such as 
muscle atrophy (Powers et al. 2020). Oxidative stress trig-
gered by excessive ROS production may increase inflam-
mation by stimulating the production of proinflammatory 
cytokines such as tumor necrosis factor (TNF), Interleu-
kin-1 (Conte et al. 2020). Progression of the inflammatory 
process causes an increase in ROS. This causes changes in 

mitochondrial dynamics and, if not controlled, leads to cell 
apoptosis. Therefore, control of mitochondrial dynamics 
may allow cells to survive during inflammation (Jariyamana 
et al. 2021). There is substantial evidence that expression of 
the fusion protein mitofusin 2 (Mfn-2), one of the mitochon-
drial dynamics, is tightly regulated in both skeletal muscle 
and liver. The changes that occur in this process significantly 
affect cell and tissue functions (Liesa and Shirihai 2013).

Lipid homeostasis plays a very important role in body 
weight regulation and energy metabolism (Conte et  al. 
2020). Studies have reported that lipolysis activation and its 
alicize lipogenesis reduction contribute to weight loss and 
adipose cachexia in cancer, while lipolysis inhibition has a 
protective effect against cancer-related weight reduction and 
muscle loss (Conte et al. 2020; Das et al. 2011). Changes in 
fat metabolism are frequently caused by cancer. However, 
this change is exacerbated by drugs used in cancer treatment 
such as CIS, which induce fat atrophy, decrease in lipogen-
esis, and increase in lipolysis. Apart from liver and white 
adipose tissue, these effects are also seen in skeletal muscles 
(Conte et al. 2020). Energy metabolism in muscle is crucial 
for maintaining the normal physiological function, given that 
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contraction is highly connected to its capability to synthe-
size and use lipids as an energy source (Conte et al. 2020). 
Meteorin-like (MtrnL), involved in energy metabolism, is a 
recently identified myokine induced upon exercise and cold 
exposure. It is known that MtrnL increases systemic energy 
expenditure, induces white adipocyte formation, improves 
glucose tolerance and insulin sensitivity, and supports anti-
inflammatory programs in monocytes, adipocytes, and skel-
etal muscle (Jung et al. 2018).

Thymoquinone (TQ) is one of the main components of 
the plant known as Nigella sativa L. (Deger et al. 2022). TQ 
exhibits a wide range of pharmacological and therapeutic 
properties, especially anti-inflammatory, antioxidant, cardio-
protective, etc. It has been reported that TQ supplementation 
has a protective effect against toxicities associated with acute 
and chronic CIS applications (Shahid et al. 2021).

Based on this information, we hypothesized that TQ 
might exert a protective effect against CIS-induced mus-
cle atrophy in skeletal muscles by regulating mitofusin 2 
(Mfsn-2) and MtrnL.

Materials and methods

Ethical approval

This study was carried out with the approval of the Dicle 
University Animal Experiments Ethics Committee dated 
29/03/2022 and numbered 2021/39.

Experiment design

CIS (50 mg/100 ml vial, Koçak Farma, Turkey) and TQ 
(dissolved in 1  mg/1  ml distilled water, Cayman Che. 
Comp., USA) used in the experiment were purchased from 
commercial companies. Optimum conditions (22–25 °C, 
12  h light/dark, ad-libitum water and feed) were pro-
vided for the rats used in the experiment. Twenty-eight 
Sprague–Dawley male rats (weight 220 ± 20 g, 8–10 weeks 
old) were randomly assigned to one of four groups sub-
jected to different treatments: control group (n = 7), no 
treatment; CIS group (n = 7), intraperitoneal (i.p) single 
dose CIS (7 mg/kg) at the start of the experiment; CIS + TQ 
group (n = 7), single dose CIS (7 mg/kg) i.p injection at 
the start of the experiment + TQ (10 mg/kg/day) oral gav-
age; In the TQ group (n = 7), only TQ (10 mg/kg/day) was 
administered as oral gavage. At the end of the 14th-day 
experimental period, the rats were sacrificed under anesthe-
sia (ketamine 75 mg/kg and xylazine 10 mg/kg, obtained 
from Dicle University Health Sciences Research Center), 
and the experiment was terminated. Blood serum samples 
for biochemical analyzes were stored at − 80 °C until the 
study day. The removed gastrocnemius muscle tissues were 

fixed in 10% buffered formalin for histopathological and 
immunohistochemical evaluations.

Biochemical analysis

Creatine kinase (CK) and lactate dehydrogenase (LDH) lev-
els in blood serum were determined using a biochemical 
auto-analyzer (ADVIA 2400 Siemens) and kits.

Histopathological evaluation

For histological evaluation, gastrocnemius muscle tissues 
were fixed in 10% buffered formalin. After fixation, the 
muscle tissues were embedded in paraffin. Sections of 5 µm 
thickness were taken from the prepared blocks and stained 
with hematoxylin and eosin (Suvarna et al. 2018). Prepa-
rations were examined with a light microscope (DM2500 
LED, Leica, Germany) and photographed (MC170 HD, 
Leica, Germany).

Immunohistochemical evaluation

In gastrocnemius muscle tissues, cysteine-aspartic protease 3 
(Casp3) (1:200, bs0081R, Bioss, China), Mfsn-2 (1:200, bs-
2988R-TR, Bioss, USA), MtrnL (1:100, Q641Q3, Cusabio, 
China) and TNF (1:200, BL3376, Elabscience, USA) immu-
noreactivities were determined according to the procedure 
described previously using the Avidin–Biotin-Peroxidase 
Complex method (Kaya et al. 2022). Counterstaining of all 
tissues was done with Mayer Hematoxylin. Preparations 
were examined with a light microscope (DM-2500, Leica, 
Germany) and photographed (MC170 HD, Leica, Germany). 
Immunoreactivity was calculated using the formula sever-
ity × prevalence. (Prevalence; 0.1: < 25%, 0.4: 26–50%, 
0.6:51–75%, 0.9:76–100%) and severity; (0: none, 0.5: very 
little, 1: little, 2: moderate, 3: severe).

Statistical analyses

The data obtained within the scope of the study were pre-
sented as mean ± standard error. SPSS 22.0 software was 
used for the statistical analysis of all data. The normality 
of the variables was checked using the Shapiro–Wilk test. 
Different groups were analyzed by one-way ANOVA and 
post hoc Tukey test. A value of p ≤ 0.05 was accepted as a 
statistically significant difference.

Results

In this study, CK and LDH activities in blood serum were 
similar in the control and TQ groups (p > 0.05). CIS appli-
cation caused an increase in serum CK and LDH compared 
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to the control group (p < 0.001). TQ treatment was found 
to decrease CK and LDH activities in the CIS + TQ group 
compared to the CIS group (p < 0.001) (Table 1).

In addition, in the histopathological examination of 
the muscle tissue, it was observed that the control and TQ 
groups had a normal histological structure. Compared to 
the control group, the muscle tissue in the CIS group was 
found to have a diffuse atrophic structure. On the other hand, 
in the CIS + TQ group, there was a significant decrease in 
CIS-induced muscle atrophy and features close to normal 
histology was observed (Fig. 1).

In the muscle tissues of the control and TQ groups, the 
immunoreactivities of MtrnL, Mfsn-2, TNF, and Casp3 were 
similar. Compared to the control group, MtrnL immunoreactiv-
ity was decreased in the CIS group (p = 0.008), while Mfsn-2 
immunoreactivity was increased (p < 0.001). In the CIS + TQ 
group, MtrnL immunoreactivity increased (p = 0.003), while 
Mfsn-2 immunoreactivity decreased (p = 0.001) compared 
to the CIS group (Fig. 2). CIS administration significantly 
increased Casp3 and TNF immunoreactivity in muscle tissue 

compared to the control group (p < 0.001). However, a sig-
nificant decrease in Casp3 and TNF immunoreactivities was 
observed in the CIS + TQ group treated with TQ compared to 
the CIS group (p < 0.001) (Fig. 2).

Discussion

This study examined the effect of CIS and/or TQ adminis-
tration on Mfsn-2 and MtrnL. İt was found that TQ treat-
ment regulated CIS-induced increased Mfsn-2 and decreased 
MtrnL immunoreactivities and alleviated muscle atrophy.

Clinically, elevated activities of CK and LDH are common 
biochemical indices used to indicate muscle tissue damage. 
In this study, CK and LDH activities in the serum of rats 
administered CIS were increased compared to the control. On 
the histopathological examination, it was observed that CIS 
significantly disrupted the histological structure of the muscle 
tissue and caused muscle atrophy. Similarly, a rat model of 
cancer cachexia revealed that administration of CIS resulted 

Table 1  The effect of CIS and/
or TQ administration on MtrnL, 
Mfsn-2, TNF, and Casp3 
immunoreactivities in muscle 
tissue and serum LDH and CK 
activities

Values are presented as average ± standard error. a; compared to the control group (p < 0.05), b; compared 
to the CIS group (p < 0.05). CIS cisplatin, Casp3 caspase 3, MtrnL meteorin-like, Mfsn-2 mitofusin 2, TNF 
tumor necrosis factor, TQ thymoquinone

Control TQ CIS CIS + TQ p

MtrnL 1.41 ± 0.14 1.45 ± 0.16b 0.57 ± .06a 1.50 ± 0.24b  = 0.001
Mfsn-2 0.37 ± 0.07 0.35 ± 0.06b 1.54 ± 0.23a 0.65 ± 0.14b  < 0.001
TNF 0.18 ± 0.04 0.16 ± 0.04b 1.37 ± 0.15a 0.55 ± 0.09b  < 0.001
Casp3 0.10 ± 0.01 0.12 ± 0.02b 1.28 ± 0.14a 0.51 ± 0.05a b  < 0.001
LDH 241.71 ± 17.18 253.85 ± 17.87b 768.28 ± 23.58a 442.14 ± 15.78a b  < 0.001
CK 231.71 ± 15.93 232.85 ± 18.47b 540.42 ± 25.16a 301.57 ± 19.27b  < 0.001

Fig. 1  Histopathological effect of CIS and/or TQ application on mus-
cle tissue. Muscle tissue exhibited normal histological structure in 
the control and TQ groups. Significant atrophic muscle fibers were 

detected in the CIS group. In the CIS + TQ group, CIS-induced atro-
phy was significantly reduced. Arrow, atrophic muscle fibers; double-
headed arrow, muscle fibers. CIS cisplatin, TQ thymoquinone
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in weight loss and muscle atrophy (Conte et al. 2020). Many 
studies have reported that CIS-induced skeletal muscle atro-
phy or dysfunction is mainly due to autophagy (Lin et al. 
2017) and mitochondrial dysfunction (Conte et al. 2020; Lin 
et al. 2017; Cocetta et al. 2019). Given the mitochondrial 
dysfunction due to CIS, it is clear that mitochondrial func-
tion is critical for preserving muscle mass. The arrangement 
of mitochondrial dynamics (fusion and fission) is critical in 
maintaining mitochondrial structure and functions. These 
dynamics play a key role in the mitochondrial cycle and the 
life cycle in muscle. Excessive mitochondrial fusion or fis-
sion leads to muscle atrophy by causing disruption of mito-
chondrial network integrity in skeletal muscle (Romanello 
and Sandri 2022). CIS application affected mitochondrial 
fusion and fission proteins in skeletal muscle fibers in rats 
and caused muscle atrophy (Sirago et al. 2017). Consistent 

with these data, in this current study, it was observed that CIS 
administration increased Mfsn2 immunoreactivity in mus-
cle tissue. A previous study reported an increase in fusion 
(Mfsn2) proteins in rats treated with CIS (Sirago et al. 2017). 
A greater amount of mitochondrial fusion than fission, that 
is, an imbalance of mitochondrial dynamics, results in the 
induction of apoptosis (Wang et al. 2022). In this current 
study, it was observed that CIS application increased proap-
optotic Casp3 immunoreactivity in muscle tissue. In addition, 
irregular mitochondrial dynamics may cause oxidative stress 
and inflammation (Geto et al. 2020).

Adenosine monophosphate-activated protein kinase 
(AMPK) may act as a sensor in response to oxidative stress 
(Kosztelnik et al. 2019). AMPK is expressed in many tissues, 
including skeletal muscle, heart, and brain. AMPK is consid-
ered a switch for cellular energy metabolism, the activation of 

Fig. 2  Photomicrographs of the effects of CIS and/or TQ admin-
istration on MtrnL, Mfsn-2, TNF, and Casp3 immunoreactivities in 
muscle tissue. MtrnL, Mfsn-2, TNF, and Casp3 immunoreactivities 
were similar in the control and TQ groups. Mfsn-2, TNF, and Casp3 
immunoreactivities were increased in the CIS group compared to the 
control group. CIS application decreased MtrnL immunoreactivity. 

Mfsn-2, Casp3, and TNF immunoreactivities were decreased in the 
CIS + TQ group compared to the CIS group, while MtrnL immunore-
activity was increased. MtrnL, Mfsn-2, TNF, and Casp3 immunohis-
tochemical images, scale bar: 100 µm. CIS cisplatin, Casp3 caspase 3, 
MtrnL meteorin-like, Mfsn-2 mitofusin 2, TNF;tumor necrosis factor, 
TQ thymoquinone
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which can be induced by glucose deprivation (Kim and Choi 
2010). AMPK activation can increase PGC-1a expression 
(Hu et al. 2014). An isoform of the PGC-1α gene, which is 
induced upon resistance exercise and increases muscle hyper-
trophy and strength, has been identified as PGC-1α4. Muscle-
specific transgenics expressing PGC-1α4 increase muscle size 
and strength and are resistant to muscle wasting from can-
cer cachexia (Ruas et al. 2012). It has also been reported that 
PGC-1α4 expression in skeletal muscle stimulates increased 
mRNA and MtrnL secretion (Rao et al. 2014). Moreover, an 
increase in PGC-1α-mediated signaling stimulates increased 
MtrnL expression (Rao et al. 2014; Das et al. 2020).

In this current study, MtrnL, which plays a role in energy 
metabolism, was decreased in muscle tissue treated with 
CIS. In a recent study, it was reported that exercise applica-
tion together with CIS treatment reduced muscle atrophy. 
The same study shows that exercise training directly affects 
the overexpression of PGC1-a during CIS treatment (Bae 
et al. 2021). PGC-1α acts as the main regulator of mito-
chondrial biogenesis (Conte et al. 2020). Activated PGC-1α 
controls the expression of genes encoding proteins involved 
in mitochondrial biogenesis, oxidative phosphorylation, and 
other properties of oxidative muscle fibers. Increased expres-
sion of PGC-1α leads to amelioration of symptoms in differ-
ent states of muscle wasting, as has been shown for Duch-
enne muscular dystrophy, sarcopenia, fiber atrophy caused 
by statins (Conte et al. 2017). In addition, the functional role 
of PGC-1α in protecting against catabolic muscle wasting 
in cardiac cachexia has also been demonstrated (Geng et al. 
2011). In addition, it has been reported that the PGC-1α 
molecule inhibits classical nuclear factor kappa B (NF-kB) 
pathway activation (Eisele et al. 2013).

In this current study, CIS treatment increased TNF 
immunoreactivity compared to the control group (Fig. 2). 
Inflammatory cytokines such as TNF and IL-6 activate 
NF-kB pathways to increase skeletal muscle atrophy 
(Zhang et al. 2022). A tissue injury signal arising in skel-
etal muscle activates toll-like receptors, leading to an 
inflammatory response with NF-kB activation. In addition, 
proinflammatory cytokines such as TNF, which are the 
main mediators of skeletal muscle atrophy, are produced 
(Schakman et  al. 2012). Studies have shown that CIS 
application induces NF-kB activity associated with mus-
cle loss (Sidharta et al. 2022; Moreira-Pais et al. 2018). 
NF-κB can lead to loss of muscle mass by increasing the 
expression of inflammatory mediators and various proteins 
and disrupting the myogenic program correlated with the 
renovation of atrophic skeletal muscle fibers (Moreira-Pais 
et al. 2018). In addition, a recent study reported that CIS 
administration induced TNF and IL-1 overexpression in 
parallel with our findings (Conte et al. 2020).

In this current study, Mfsn-2, TNF, and Casp3 immuno-
reactivities and serum CK and LDH levels were increased 
in CIS-induced muscle atrophy, while MtrnL immunore-
activity was decreased compared to control. TQ treatment, 
on the other hand, alleviated muscle atrophy by regulating 
CIS-induced changes in muscle tissue. A previous study 
reported that TQ increased AMPK phosphorylation against 
hepatic fibrosis in mice (Bai et al. 2014). In addition, a 
study in vascular smooth muscle cells reported that Angio-
tensin II treatment inhibited AMPK, PPARg, and PGC-1a 
protein expressions, but TQ could regulate this situation in 
a dose-dependent manner (Pei et al. 2016). In another pre-
vious study, it was reported that PGC-1α decreased in rats 
cured with CIS (Conte et al. 2020). Based on these data, 
we think that TQ may act particularly through the PGC-1a 
signaling pathway and may have a protective effect against 
CIS-induced muscle atrophy.

Based on the idea that cachexia is a multifactorial 
pathological condition often characterized by inflamma-
tion (Onesti and Guttridge 2014), activation of PGC-la, 
possibly induced by TQ, may ameliorate CIS-induced 
muscle atrophy. Regulation of energy metabolism and 
increased mitochondrial biogenesis due to TQ therapy 
may be a successful strategy in preventing muscle atrophy 
and cachexia. More extensive studies are required to ana-
lyze the effects of TQ on the cachexia model and normal 
healthy controls.
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