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Abstract
Cadmium (Cd), a non-redox metal, has been described as an environmental toxicant that poses a great threat to human 
health. Therefore, this study aimed to appraise the mitigating potential of the aqueous extract of Bridelia ferruginea (Bf) 
stem bark against hepato-renal toxicity in Cd-exposed Wistar rats. Thirty (30) adult male Wistar rats (weight 150–200 g) 
were randomly grouped into five (5) groups of six (6) rats each (n = 6), and experimental rats received a single treatment 
of cadmium chloride (CdCl2; 30 mg/kg body weight (bw)). Cd-exposed rats were administered 50, 100, and 200 mg/kg bw 
aqueous extract of Bf stem bark for 14 days. Cd exposure caused hepato-renal toxicity in the untreated control as revealed by 
a significant (p < 0.05) increase in the serum liver function markers (i.e., AST, ALT, and ALP) as well as a marked (p < 0.05) 
decrease in hepatic antioxidant enzymes. A similar effect was also noticed in the renal function biomarkers (i.e., creatinine 
and urea) and its antioxidant enzymes. However, Cd-exposed groups–administered aqueous extract of Bf stem bark revealed 
a significant (p < 0.05) decrease in serum activities of AST, ALP, and ALT, as well as a significant (p > 0.05) difference in 
TP level compared to Cd-induced hepato-renal toxicity untreated and normal control. Similarly, hepatic and renal antioxidant 
parameters (SOD, CAT, and GSH), TP, serum lipid profile, urea, and creatinine were significantly (p < 0.05) improved among 
the groups-administered aqueous extract of Bf stem bark compared to Cd-induced hepato-renal toxicity untreated and normal 
control. The renal and hepatic Cd concentrations of groups administered aqueous extract of Bf stem bark significant (p < 0.05) 
decrease compared to Cd-induced hepato-renal toxicity untreated and normal control. Likewise, histological examinations of 
kidney and liver tissues of the groups administered aqueous extract of Bf stem bark revealed restoration of normal architec-
ture. Therefore, aqueous extract of Bf stem bark could be suggested to be hepatoprotective and renoprotective in Cd toxicity.
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Introduction

Heavy metals are naturally present in the soils as natural 
components; however, currently, their presence in the envi-
ronment has been increased due to several human activities 
such as mining, fuel processing, electroplating, spent-water 

treatment, nuclear fuels, and agricultural wastes (Reimann 
and Caritat 2005). Bioaccumulation of these metallic ions 
via food chain exposure route is considered injurious to 
microorganisms, plants, animals, and humans (Vinodhini 
and Narayanan 2008; Pratush et al. 2018). Nevertheless, 
there are essential heavy metals needed in certain amounts 
for biochemical and physiological functions in plants and 
animals (Jaishankar et al. 2014).

Toxicities of heavy metals like As, Cd, Hg, Pb, Cr, and Se 
have been reported to perturb several cell components such 
as cell membrane, mitochondrial, lysosome, endoplasmic 
reticulum, nuclei, and some enzymes involved in metabolism 
and detoxification (Wang and Shi 2001; Beyersmann and 
Hartwig 2008). Several studies have demonstrated that the 
production of reactive oxygen species (ROS) and ultimately, 
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oxidative stress plays a key role in the toxicity and carcino-
genicity of these heavy metal ions (Ercal et al. 2001).

Cd, in particular, is extremely toxic to humans as well as 
plants (Benavides et al. 2005; Shahid et al. 2016). Cd toxic-
ity has been reported in different ways in the past century 
(Godt et al. 2006). It specifically affects a broad spectrum of 
cellular activities such as cell proliferation, differentiation, 
and apoptosis by interfering with the DNA repair mechanism 
via the generation of reaction oxygen species (ROS) (Rani 
et al. 2014; Branca et al. 2018; Erboga and Kanter 2016; 
Rech et al. 2014). The major sources of human exposure to 
Cd are the consumption of contaminated food and drinking 
water (Satarug et al. 2010). Cd toxicity has been associ-
ated with serious poisoning effects on tissues like the heart, 
kidney, liver, and lung (Zhang et al. 2020a). In addition, Cd 
competes with some essential metals such as Zn, Cu, Se, and 
Ca, thereby interfering with various cellular processes such 
as metal membrane transport and energy metabolism (Kar 
and Patra 2021). At very low concentrations, Cd binds to 
the mitochondria and causes inhibition of both the cellular 
respiration and oxidative phosphorylation (Thévenod 2010).

The use of plant parts to treat human or animal ailments 
is now on the increase with herbal medicine being a major 
form of medicine in Africa (Agra et al. 2007). The report 
shows that natural plants are good sources of secondary 
metabolites that protect the body against the damaging 
effects of ROS (Afolabi et al. 2018; Oloyede and Babalola 
2012). Bridelia ferruginea (Bf), family Euphorbiaceae, is 
commonly found in the Savannah regions (Ekanem et al. 
2008). Its other names are Kizni (Hausa), Marehi (Fulani), 
Iralodan (Yoruba), Ola (Igbo), and Kensange abia (Boki). 
Study shows Bf to be rich sources of secondary metabolites 
(Adesina and Akomolafe, 2014), known to exhibit anti-
inflammatory (Olajide et al. 2000), anti-oxidative (Obafemi 
et al. 2019; Jaiyesimi et al. 2020), anti-microbial activities 
(Talla et al. 2002), etc. On the other hand, the stem bark 
component of Bf has also been reported to demonstrate 
similar activities in vivo and in vitro (Ndukwe et al. 2005; 
Olajide et al. 1999). Therefore, the current study aimed at 
appraising the protective effect of the aqueous extract of Bf 
stem bark on tissues such as kidneys and liver in cadmium-
induced toxicity in Wistar rats.

Materials and methods

Chemicals and reagents required

Chemicals used such as cadmium chloride (CdCl2), adrena-
line, and Ellman’s reagent (5,5′-dithiobis (2-nitrobenzoic 
acid), DTNB) were procured from Sigma-Aldrich, Inc., 
(Saint Louis, MO). All other kits used for biochemical assays 
were purchased from Randox Laboratory Ltd., Crumlin, Co. 

Antrin UK. All other chemicals and reagents were of analyti-
cal grades and were prepared in all-glass apparatus.

Sample collection

The fresh stem bark of Bf was collected from Ureje farm-
land, Ado-Ekiti, Ekiti State, Nigeria. A taxonomist at the 
Plant Science and Biotechnology Department, Faculty of 
Science, Ekiti State University, Ado-Ekiti, Nigeria, carried 
out botanical identification and authentication. A voucher 
specimen (Herbarium number: UHAE2020039) was depos-
ited in the herbarium of the department.

Preparation of extract

The fresh stem bark of Bf was shade-dried for 14 days and 
the dried materials were ground to a fine powder using an 
automated blender. Thereafter, a fine powdery sample (5 g) 
was soaked in 100-ml distilled water for 24 h (w/v %). The 
mixture was filtered, and the filtrate was stored in the refrig-
erator before and after daily treatment.

Animal treatment

Thirty (30) adult male Wistar rats (weight 150–200 g) were 
used in this study. Animals were obtained from one Omisan-
jana animal house, Ado-Ekiti, Ekiti State, Nigeria. The rats 
were acclimatized under the humane condition at 25 °C with 
a light–dark cycle for 7 days, prior to the commencement of 
the study that lasted for 14 days with free access to a stand-
ard pelletized animal feed and water ad libitum.

Induction of cadmium toxicity

A modified protocol by Andjelkovic et al. (2019) was used 
for the induction of Cd-induced hepato-renal toxicity in the 
rats. All Cd-induced hepato-renal toxicity groups received a 
single treatment (CdCl; 30 mg/kg bw). However, 24-h post-
treatment observation was considered prior to oral adminis-
tration of graded doses of Bf extract (i.e., 50, 100, 200 mg/
kg).

Animal grouping

Thirty (30) adult male Wistar rats used in this study were 
randomly divided into five treatment groups of six (6) rats 
are as follows:

(i)	 Group 1: Normal control exposed to distilled water for 
14 days

(ii)	 Group 2: Cadmium-induced untreated control
(iii)	 Group 3: Cadmium-induced + 50 mg/kg bw aqueous 

extract of Bf stem bark
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(iv)	 Group 4: Cadmium-induced + 100 mg/kg bw aqueous 
extract of Bf stem bark

(v)	 Group 5: Cadmium-induced + 200 mg/kg bw aqueous 
extract of Bf stem bark

Preparation of blood sample

After 14 days of treatment, animals were euthanized and 
dissected following a mild exposure to diethyl-ether. Tis-
sues (liver and kidneys) were briefly removed and placed 
on ice. Blood samples were immediately collected by direct 
heart puncture into both plains. The blood samples were 
centrifuged at 3000 rpm for 10 min to obtain the sera used. 
The sera were separated and kept (−20 °C) for various bio-
chemical analyses while the residual tissues were discarded. 
In addition, organs such as kidneys and liver were carefully 
isolated and homogenized in preserved for bioassays and 
histopathological examination.

Preparation of tissue homogenates

Tissues such as the liver and kidney were subsequently dis-
sected and rinsed in 0.1 M tris-buffer (pH 7.4), blotted with 
filter paper, and placed on ice. Each tissue was weighed and 
subsequently homogenized in 0.1 M tris buffer (1:5 w/v). 
Homogenate was centrifuged at 3000 rpm for 10 min to yield 
a pellet that was discarded, and the supernatant was kept for 
the various biochemical assays.

Biochemical analyses

Determination of liver enzyme biomarkers such as aspartate 
aminotransferase (AST), alanine aminotransferase (ALT), 
and alkaline phosphatase (ALP) was carried out using the 
method described by Reitman and Frankel (1957), while 
serum TP, urea, creatinine, cholesterol (CHOL), and triglyc-
erides (TG) were determined according to the user manuals 
(Randox reagent kits).

Determination of antioxidant parameters

Enzymatic antioxidant parameters of the liver and kidney 
tissues such as superoxide dismutase (SOD) was determined 
using the method of Misra and Fridovich (1972), catalase by 
Sinha (1972), while non-enzymatic antioxidant parameter 
such as reduced glutathione (GSH) was performed using 
Ellman’s method (1959).

Estimation of Cd concentrations in tissue 
homogenates

The accumulated concentration of Cd in tissue samples 
was determined using atomic absorption spectrophotom-
etry (AAS), according to the established method of AOAC 
(1995).

Histological examination

Histopathological investigations of renal and hepatic tis-
sues were carried out according to the method described by 
Morakinyo et al. (2008).

Statistical analyses

All data were analyzed using one-way ANOVA with the 
appropriate Duncan’s multiple range test where necessary. 
Statistical significance was considered at p < 0.05. Values 
were expressed as mean ± SD of six trials (n = 6).

Results

Table 1 represents the effect of aqueous extract of Bf stem 
bark on hepatic enzyme activities and serum TP in Cd-
induced toxicity in rat. As shown in the results, there was a 
significant (p < 0.05) increase in AST, ALP, and ALT activi-
ties, as well as a significant (p > 0.05) difference in the TP 

Table 1   Effect of aqueous 
extract of Bf stem bark on serum 
hepatic enzymes and serum 
total protein in Cadmium-
induced toxicity in rat

Values are expressed as mean ± SD of six trials (n = 6)
Key: ALP alkaline phosphatase, AST aspartate transaminase, ALT alanine transaminase, Bf aqueous extract 
of Bf stem bark
*indicates statistical (p < 0.05) difference versus normal control
# versus CdCl2-induced control

Treatment
groups

AST
(U/l)

ALP
(g/L)

ALT
(U/l)

Total protein
(U/l)

Normal control 8.88 ± 1.54 37.50 ± 5.89 8.75 ± 1.13 0.18 ± 0.05
CdCl2-induced control 18.41 ± 3.01* 77.78 ± 48.83* 19.20 ± 5.80* 0.18 ± 0.06
CdCl2-induced + 50 mg/kg Bf 7.97 ± 1.12# 39.58 ± 7.23# 8.32 ± 1.61# 0.18 ± 0.08
CdCl2-induced + 100 mg/kg Bf 10.33 ± 1.57# 55.56 ± 9.55** 7.48 ± 1.37# 0.16 ± 0.05
CdCl2-induced + 200 mg/kg Bf 7.69 ± 1.02# 47.00 ± 10.51# 9.61 ± 2.89# 0.15 ± 0.02
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level of the Cd-induced untreated control compared to nor-
mal control. However, treatment with the aqueous extract of 
Bf stem bark caused a marked significant (p < 0.05) reduc-
tion in the activities of these biomarkers among the treated 
groups compared to the untreated control. Although, little/
no significant (p > 0.05) difference was noted in the TP level 
of the treated groups compared to the normal and untreated 
controls.

Figure 1I–IV represents the effect of aqueous extract of 
Bf stem bark on hepatic tissue antioxidant parameters and 
TP in Cd-induced toxicity in rat. As shown in Fig. 1, there 
was a noted decrease significantly (p < 0.05) in the SOD 
and CAT activities, as well as GSH and TP levels of the 
Cd-induced toxicity control compared to normal control. 

However, following treatment with 50, 100, and 200 mg/kg 
bw aqueous extract of Bf stem bark, there was a significant 
(p < 0.05) increase in SOD and CAT enzymatic activities, 
as well as GSH level in a dose-dependent manner com-
pared to Cd-induced toxicity control. Similarly, treatment  
with the extract of Bf stem bark caused a notable signifi-
cant (p < 0.05) increase in the hepatic tissue TP (especially, 
100 mg/kg bw) when compared with Cd-induced untreated 
control

Figure 2I–IV represents the effect of aqueous extract of 
Bf stem bark on renal tissue antioxidant parameters and TP 
in Cd-induced toxicity in rat. As shown in Fig. 2, there was 
a significant (p < 0.05) decrease in the SOD and CAT activi-
ties, as well as GSH and TP levels of the Cd-induced toxicity 
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Fig. 1   I–IV Effect of aqueous extract of Bf stem bark on hepatic tis-
sue antioxidant parameters and total protein in cadmium-induced tox-
icity in rat. Values are expressed as mean ± SD of six trials (n = 6). * 

indicates statistical (p < 0.05) difference versus normal control, # ver-
sus CdCl2-induced control. Keys: Bf, aqueous extract of Bf stem bark
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control compared to normal control. However, treatment 
with 50, 100, and 200 mg/kg bw aqueous extract of Bf stem 
bark, caused a significant (p < 0.05) increase in the enzy-
matic activities of SOD and CAT, as well as GSH level in 
a dose-dependent manner compared to Cd-induced toxicity 
control. Similarly, treatment with the extract of Bf stem bark 
exhibited a notable significant (p < 0.05) increase in the renal 
tissue TP when compared with Cd-induced untreated control

Table 2 represents the effect of aqueous extract of Bf stem 
bark on serum lipid profile in Cd-induced toxicity in rat. 
As shown in the results, there was a significant (p < 0.05) 
increase in cholesterol and triglyceride levels of the Cd-
induced control compared to the normal group. Conversely, 
treatment with the aqueous extract of Bf stem bark exhibited 
a significant (p < 0.05) reduction in the lipid profile compared 

to untreated Cd-induced control, especially in the group 
treated with 50 mg/kg bw aqueous extract of Bf stem bark.

Table 3 represents the effect of aqueous extract of Bf stem 
bark on renal function biomarkers in Cd-induced toxicity 
in rat. As indicated in the results, a significant (p < 0.05) 
increase was observed in the urea and creatinine levels of 
Cd-induced control compared to the normal group. Whereas, 
treatment with 50, 100, and 200 mg/kg bw aqueous extract 
of Bf stem bark caused a noticeable decrease significantly 
(p < 0.05) in the levels of these renal clearance markers com-
pared to untreated Cd-induced control.

Table 4 represents the effect of aqueous extract of Bf 
stem bark on Cd concentrations in liver and kidney tissue 
homogenates in Cd-induced toxicity in rat. As indicated 
in the results, a significant (p < 0.05) rise was noted in the 
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Fig. 2   I–IV Effect of aqueous extract of Bf stem bark on renal tissue 
antioxidant parameters and total protein in cadmium-induced toxicity 
in rat. Values are expressed as mean ± SD of six trials (n = 6). * indi-

cates statistical (p < 0.05) difference versus normal control, # versus 
CdCl2-induced control. Keys: Bf, aqueous extract of Bf stem bark
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residual concentrations of Cd both in the hepatic and renal 
tissues of the Cd-induced control compared to the normal 
group. Whereas, following 14 days of administration of 50, 
100, and 200 mg/kg bw aqueous extract of Bf stem bark, 
a reduction was noted significantly (p < 0.05) in the bio-
accumulated Cd concentrations both in the liver and kid-
neys of the treated groups compared to untreated Cd-induced 
control.

Figure 3A–E represents the histological status of hepatic 
tissues in Cd-induced toxicity in rat treated with/without 
aqueous extract of Bf stem bark. As indicated in the hema-
toxylin–eosin–stained hepatic tissues, Cd-induced control 
revealed poor oriented and degenerated polyhedral hepato-
cytes when compared to normal control that revealed a nor-
mal histo-architectural polyhedral hepatocytes. However, 
following treatment with aqueous extract of Bf stem bark, 50 
and 100 mg/kg bw aqueous extract of Bf stem bark-treated 
groups revealed a mild shrunk portal areas and necrosis, 
while 200 mg/kg bw aqueous extract of Bf stem bark-treated 
group showed a normal portal area and poorly organized 
lobular polyhedral hepatocyte.

Figure 4A–E represents the histological status of renal 
tissues in Cd-induced toxicity in rat treated with/without 
aqueous extract of Bf stem bark. As indicated in the hema-
toxylin–eosin–stained renal tissues, Cd-induced control 
revealed a Bowman’s capsule void of urinary space, disrupted 
endothelial cells/podocytes, poorly distributed proximal and 
distal convoluted tubules compared to normal control with a 
typical architectural renal cortex, Bowman’s capsule, urinary 
space, and a well-distributed distal and proximal convoluted 
tubules. However, following the administration of aqueous 
extract of Bf stem bark, the group treated with 50 mg/kg 
bw showed a Bowman’s capsule void of urinary space, mild 
disrupted podocytes with a poor distributed proximal/distal 
convoluted tubules, whereas, 100 and 200 mg/kg bw treated 
groups revealed normal Bowman’s capsule, observable uri-
nary space, and a -distributed distal and proximal convoluted 
tubules compared to untreated control.

Discussion

Cd, a non-redox metal, and its derivatives are considered 
as most toxic compounds and environmental pollutants of 
ages (Ognjanovic et al. 2008). Exposure to Cd has increas-
ingly been recognized to pose a serious threat to human 
health across the globe (Stankovic et al. 2014). Bioaccu-
mulation of Cd in target organs such as the liver and kidney 
has been shown to underlie pathological diseases associ-
ated with these organs via depletion of their enzymatic and 
non-enzymatic antioxidant system (Arisawa et al. 2007). The 
ameliorative effect of aqueous extract of Bf stem bark against 
Cd-induced toxicity in male rats was appraised and reported 
in this study.

Increased serum hepatic-specific biomarkers ALT, AST, 
and ALP have been recognized as specific indicators of 
hepatocellular injury or oxidative damage to functional 
hepatic membrane architecture (Ozer et al. 2008; Srilaxmi 

Table 4   Effect of aqueous extract of Bf stem bark on Cadmium con-
centrations in liver and kidney tissue homogenates in Cadmium-
induced toxicity in rat

Values are expressed as mean ± SD of six trials (n = 6)
Keys: Bf aqueous extract of Bf stem bark
 *indicates statistical (p < 0.05) difference versus normal control
# versus CdCl2-induced control

Treatment Groups Liver (¬µg/g) Kidney (¬µg/g)

Normal control 0.005 ± 0.007 0.01 ± 0.009
CdCl2-induced control 0.011 ± 0.001* 0.06 ± 0.001*

CdCl2-induced + 50 mg/kg Bf 0.007 ± 0.005*# 0.03 ± 0.002#

CdCl2-induced + 100 mg/kg Bf 0.004 ± 0.001# 0.02 ± 0.007#

CdCl2-induced + 200 mg/kg Bf 0.006 ± 0.001*# 0.01 ± 0.000#

Table 2   Effect of aqueous extract of Bf stem bark on serum lipid pro-
file in Cadmium-induced toxicity in rat

Values are expressed as mean ± SD of six trials (n = 6)
Keys: Bf aqueous extract of Bf stem bark
*indicates statistical (p < 0.05) difference versus normal control
# versus CdCl2-induced control

Treatment
Groups

Cholesterol (mg/dl) Triglycerides
(mg/dl)

Normal control
CdCl2-induced control

102.70 ± 16.19
258.09 ± 31.54*

294.44 ± 31.42
476.85 ± 68.92*

CdCl2-induced + 50 mg/
kg Bf

140.69 ± 26.17# 297.22 124.40*

CdCl2-induced + 100 mg/
kg Bf

165.00 ± 29.33# 323.95 ± 61.76#

CdCl2-induced + 200 mg/
kg Bf

192.28 ± 8.84# 362.96 ± 10.74#

Table 3   Effect of aqueous extract of Bf stem bark on serum renal 
function biomarkers in Cadmium-induced toxicity in rat

Values are expressed as mean ± SD of six trials (n = 6)
Keys: Bf aqueous extract of Bf stem bark
*indicates statistical (p < 0.05) difference versus normal control
# versus CdCl2-induced control

Treatment
Groups

Creatinine
(mg/dl)

Urea
(mg/dl)

Normal control 0.72 ± 0.02 9.17 ± 1.18
CdCl2-induced control 1.87 ± 0.04* 33.33 ± 0.04*

CdCl2-induced + 50 mg/kg Bf 0.64 ± 0.06** 17.50 ± 7.50**

CdCl2-induced + 100 mg/kg Bf 0.71 ± 0.02# 11.17 ± 2.18#

CdCl2-induced + 200 mg/kg Bf 1.05 ± 0.07** 29.17 ± 1.18**
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A B                 

D C

E

Fig. 3   A–E Photomicrographs of hematoxylin–eosin stained hepatic 
tissues in cadmium-induced toxicity in rat (magnification, × 800; 
scale bar: 35 µm). A Normal control. B CdCl2-induced untreated con-
trol. C Cadmium-induced + 50 mg/kg bw aqueous extract of Bf stem 

bark. D Cadmium-induced + 100  mg/kg bw aqueous extract of Bf 
stem bark. E Cadmium-induced + 200  mg/kg bw aqueous extract of 
Bf stem bark. H; Hepatocytes, white and black circle; portal area/triad 
(i.e., portal vein (PV), hepatic artery (HA), bile duct (BD))

973Comparative Clinical Pathology (2022) 31:967–978



1 3

A B

C  D

E

Fig. 4   A–E Photomicrographs of hematoxylin–eosin stained renal tis-
sues in cadmium-induced toxicity in rat (magnification, × 800; scale 
bar: 35 µm). A Normal control. B CdCl2-induced untreated control. C 
Cadmium-induced + 50 mg/kg bw aqueous extract of Bf stem bark. D 

Cadmium-induced + 100 mg/kg bw aqueous extract of Bf stem bark. 
E Cadmium-induced + 200  mg/kg bw aqueous extract of Bf stem 
bark. White arrow; glomerulus, PCT; proximal convoluted tubules, 
DCT; distal convoluted tubule
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et al. 2010). As indicated in this study, serum activities of 
these hepatic-specific markers were increased significantly 
in response to Cd toxicity (Table 1). Cd-induced oxidative 
damage of the hepatic membrane has been implicated a plau-
sible cause of ALT and AST leakage from the liver cyto-
sol into the bloodstream (Musa and Çelik 2020; Ozer et al. 
2008). Loss of these intracellular macromolecules could 
possibly have contributed to the hepatocellular degenera-
tion/necrosis observed in the histomorphological studies on 
the hepatic tissue (Fig. 3) (Salama et al. 2019). However, 
treatment with the extract triggered decreased activities of 
these biomarkers with a marked improvement in hepatic his-
tological status. This development could possibly suggest 
the hepatoprotective effect of the extract against Cd-induced 
hepatotoxicity.

Redox imbalances are known to negatively affect the body 
system through ROS generation, which destroys proteins, 
lipids, and DNA by oxidation (Sharma et al. 2014). Anti-
oxidant enzymes primarily provide intracellular defense by 
catalyzing the decomposition of ROS (Szaleczky et al. 1999). 
A significant reduction was revealed in SOD, CAT, GSH, and 
TP in this study, among Cd-exposed hepatic and renal tissues 
(Figs. 1 and 2). Although cadmium itself does not generate 
free radicals directly (Hassoun and Stohs 1996), it indirectly 
generates various radicals such as superoxide radical, reactive 
nitrogen species (RNS) such as peroxynitrite, nitric oxide, 
and hydroxyl radical, thus, causing damage consistent with 
oxidative stress (Stohs et al. 2001). Reports have connected 
a severe oxidative alteration of enzymatic proteins, and bio-
membrane lipids resulting into impaired cellular functions in 
Cd-fostered overwhelming production of ROS (Cuypers et al. 
2010; Liu et al. 2021; Shukla and Kumar 2009). Changes in 
multiple physiological and biochemical processes, however, 
have been implicated (Pham-Huy et al. 2008), due to the 
depletion of low molecular weight antioxidant apparatus via 
Cd-enzyme interaction mechanisms, that result into pertur-
bation of enzyme structure important for catalytic activities 
(Kefaloyianni et al. 2005; Zheng et al. 2019; Zhang et al. 
2020b). The report of this study corroborates the report of 
El-Boshy et al. (2017). However, the observed post-treatment 
sharp rise in hepatic and renal tissue antioxidant systems in 
this study (Figs. 1 and 2), could possibly be attributed to the 
ability of the extract to attenuate the deleterious effect of Cd-
induced oxidative stress, thereby promoting protection in the 
organs against Cd-induced hepatotoxicity and nephrotoxicity 
(Podgórska et al. 2017).

Alteration of lipid profile represents an important and 
potentially etiological component in the pathophysiogenesis 
of many disorders (Brewer 2011). In this report, elevated 
serum CHOL and TRIG were noted in the Cd-induced group. 
Disruption in the homeostasis of lipids may be responsible 
for the increase in the levels of CHOL and TRIG (Mal-
hotra et al. 2020). Oxidative injury to cellular membranes, 

alterations in trans-membrane gradients, and activation or 
inhibition of enzymes involved in lipid metabolism have 
been reported to elevate serum TRIG and CHOL levels in 
Cd toxicity (Ness et al. 2001; Seif et al. 2019; Deng et al. 
2017). Similarly, a decrease in the activities of cytochrome 
P450 enzymes or impaired hepatocytes has also been identi-
fied to occasion elevated serum lipid profiles in Cd toxicity 
(Wang and Shi 2001; Kojima et al. 2004). However, fol-
lowing treatment with the extract, a decline observed in the 
serum TRIG and CHOL could possibly suggest the ability of 
the extract to attenuate oxidative stress in the hepatic tissue 
and reactivation of enzymes involved in lipid metabolism.

Renal diseases that diminish the glomerular filtration 
rate lead to urea and creatinine retention (Webster et al. 
2017). These biochemical parameters are indicators of 
renal function (Pham 2017). Urea serves an important 
role in the metabolism of nitrogen-containing compounds 
by animals and is the main nitrogen-containing substance 
in the urine of mammals (Walser and Bodenlos 1959; 
Knepper and Roch–Ramel 1987). Its serum concentration 
is influenced by the rate of excretion (Levey et al. 1999). 
While creatinine is a waste product of metabolism primar-
ily excreted by the kidneys (Huang et al. 2002; Donadio  
et  al. 1997). The elevated serum urea and creatinine 
caused by Cd toxicity (Table 3), could probably be con-
nected to disorder in protein catabolism due to an increase 
in the synthesis of arginase enzyme involved in urea bio-
synthesis (Renugadevi and Prabu 2010), and perturba-
tion of glomerular filtration rate implicated in Cd toxicity 
(Liang et al. 2012; Laskow et al. 1990), which results in 
poor creatinine clearance (Rani et al. 2014). However, 
a consequential reduction in serum urea and creatinine 
levels, as well as improved renal histopathology (Fig. 4), 
following the administration of the extract at low doses 
could substantiate the ability of the extract to enhance 
moderation of arginase induction, increase glomerular 
filtration rate (Yang and Bankir 2005). This observation 
suggests the cytoprotective effect of the extract against 
Cd-induced nephrotoxicity/renal toxicity.

Organs such as liver and kidney tissues have been 
reported to be the critical targets in Cd toxicity (Kar and 
Patra 2021; Guirlet and Das 2012). Hepatic and renal 
lesions abetted by Cd-induced oxidative stress, protein 
cross-linking, and DNA damage have been implicated in 
Cd toxicity (Morales et al. 2006). Thus, elevated renal 
and hepatic Cd concentrations noticed in the Cd-exposed 
group (Table 4) could consequently have facilitated the 
reduced antioxidant system and essential biomolecules, 
as well as responsible for various modifications in the 
architectural histomorphology of hepatic and renal tis-
sues of the Cd-exposed group (Figs. 3 and 4). It is note-
worthy that extract-treated groups reflected a significant 
reduction in renal and hepatic Cd concentrations. This 
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observation suggests the renoprotective and hepatopro-
tective effects of the extract against Cd-induced toxicity, 
probably via mechanisms that facilitate either Cd chela-
tion or its release from these organs. This report corrobo-
rates the study of Ige and Akhigbe (2013).

Furthermore, histological examination of the hepatic 
tissue of Cd-treated rats revealed poor oriented, degen-
erated polyhedral hepatocytes, and tubular necrosis 
(Fig. 3A–E). Renal tissue of Cd-induced control as well 
revealed a Bowman’s capsule void of urinary space, dis-
rupted endothelial cells/podocytes, and poorly distributed 
proximal and distal convoluted tubules (Fig. 4A–E). Simi-
lar studies have also implicated alterations in histological 
architectures of the kidney (Gabr et al. 2019) and hepatic 
tissue (Mantur et al. 2014) in Cd toxicity. Accordingly, 
these observations could be due to several deleterious 
effects of bio-accumulated Cd-induced ROS in the tis-
sues. On the other hand, treatment with the extract 
revealed hepatoprotective and renoprotective potentials 
by demonstrating a reversal to the Cd-induced histologi-
cal modifications/alterations in these tissues. This effect 
is in agreement with our observation in Tables 1 and 3 
and could be credited to the antioxidative potential of 
the extract.

Conclusion

The damaging effect of Cd-toxicity in vital tissues namely 
the kidney and liver were clearly elucidated and estab-
lished in this report. Conversely, aqueous extract of Bf 
stem bark increased hepatic antioxidant system, renal 
clearance of urea and creatinine, as well as mitigated 
histological alteration in Cd-induced toxicity. Therefore, 
aqueous extract of Bf stem bark could be suggested to be 
hepatoprotective and renoprotective in Cd toxicity.
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