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Saccharomyces cerevisiae inhibits growth and metastasis
and stimulates apoptosis in HT-29 colorectal cancer cell line
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Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Accumulating evidence has suggested
that probiotics affect cellular pathways and specific genes involved in slow growth. Probiotics reduce the impact or stop the
growth of cancer cells and tumors in animal models and human cell lines. The aim of this study was to investigate the effect of
Saccharomyces cerevisiae (S. cerevisiae) on cell growth, metastasis, and apoptosis of the HT-29 colon cancer cell line. The HT-29
cells and S. cerevisiae were co-cultured in order to study the effects of S. cerevisiae on cell apoptosis, growth, and metastasis
using 4′,6-diamidino-2-phenylindole (DAPI) staining, 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay, and scratch wound-healing assay, respectively. Real-time PCR was applied to evaluate the expression levels of Akt/
PTEN, MAPK, and NF-ĸB genes. The supernatant obtained from S. cerevisiae in HT-29 cell line increased the expression of
PTEN and Caspas3 genes in the first 24 h while the Bclxl and RelA genes showed decreased expression. By using MTT method
after 48 h of treatment HT-29 cells with supernatant of S. cerevisiae, about 75% of the cells showed stopped growing. Therefore,
it could be concluded that S. cerevisiae inhibits the growth of the HT-29 cells by inducing apoptosis and reducing metastasis.
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Background

Cancer occurs as a result of uncontrolled cell division caused
by multifactor agents, such as environmental factors and ge-
netic disorders (Benchekroun et al. 2010). Colorectal cancer
can inflict the entire length of the rectum and colon. CRC is
the third common cause of cancer-related death (dos Reis et al.
2017). It has been estimated that about 24.4 million new cases
of CRCwill be annually detected, by 2035 (OrganizationWH,
Unit WHOMoSA 2014). Resistance to apoptosis and deregu-
lation of cell proliferation are the major features of cancer
cells. The agents that trigger apoptosis in cancer cells can be
applied as anti-cancer drugs. However, resistance to chemo-
therapy has become a major problem in CRC treatment. It has
been demonstrated that gastrointestinal cancers can be in-
duced by the consumption of dietary products; therefore, some
scientists have been attracted to investigate the impact of con-
suming dietary products on the health of the individuals.
Probiotics are non-pathogenic organisms that are present in
the human digestive system and exert beneficial effects on
their host by affecting the microbial flora of the body. It has
been found that certain probiotics exhibit anti-cancer activity
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(Daniluk 2012; Foo et al. 2011). Some studies conducted on
human have previously proved the anti-cancer activity of
probiotics (Commane et al. 2005). Numerous findings have
indicated that probiotics may regulate cell division and apo-
ptosis (Elmore 2007). Saccharomyces cerevisiae, as a species
of yeast, has been widely used in the production of alcoholic
beverages, waffles, and baking since ancient times (Feldmann
2011). Many of the major biological proteins, including cell
cycle proteins, signaling proteins, and the processing en-
zymes, that have been initially found in human resemble those
of the yeast (Walker et al. 2004). The HT-29 cell line is a
human colon adenocarcinoma cell line, which provides a de-
sirable experimental system for studying the effective factors
in the differentiation of epithelial cells. These cells form non-
polar layers, when cultured under standard conditions. These
morphological characteristics of HT-29 cells make them a
suitable model for studying various cell signaling pathways,
as well as therapeutic agents or approaches. The polarized
phenotypes of the cells are characterized by physiological bio-
chemical markers as well as their specific structure (Cohen
et al. 1999). PTEN (phosphatase and tensin homolog deleted
on chromosome ten), a tumor suppressor gene, plays an im-
portant role in cell growth, proliferation, and migration (Saito
et al. 2003). AKT, protein kinase B, is a hyperactivated kinase
protein found in many tumors. AKT is a key player in both
cell survival and resistance to tumor treatment. A recent study
has reported that AKT cannot function unaided; however, it
plays an important role in inhibiting cell death under severe
conditions. Phosphorylation of the AKT gene inhibits the ap-
optosis pathway (Haier and Nicolson 2002). NF-ĸB is a pro-
tein set that controls DNA transcription, cell survival, cyto-
kine production, and the regulation of immune response to the
cancer. It is a heterodimer activator of transcription, which
contains the DNA-binding subunit P50 and exuviates the
trans-subunit p65/RelA (Vasudevan et al. 2004). The Bcl-2
family proteins, which include both anti- and pro-apoptotic
proteins, regulate apoptosis; the Bcl-XL protein is a member
of the bcl-2 family that prevents apoptosis.Therefore, ex-
tremely small changes in the physiological levels of these
proteins may result in either inhibition or promotion of cell
death. Abnormal activation of the Bcl-2 gene appears to be an
early event in colorectal tumorigenesis that can inhibit apo-
ptosis and may facilitate tumor progression (Sinicrope et al.
1995; Ola et al. 2011). Caspases (CASP) play an essential role
in induced apoptosis (Kim et al. 2000; Jänicke et al. 1998;
Yakovlev et al. 2001). Studies have demonstrated that acti-
vation of CASP3 induces apoptosis of HT-29 cells (Yang
et al. 2006). The expression levels of the above mentioned
genes were examined in the present study using realtime
PCR. Our results indicated that the supernatant obtained
from S. cerevisiae exerted beneficial effect in the HT-29
cell line by inducing apoptosis and reducing cell growth
as well as metastasis.

Methods

Cell culture

The HT-29 cancer cells were obtained from the Pasteur
Institute’s cellular storage (Iran) and stored at − 196 °C.
Briefly, the HT-29 cells were cultured in 1640 RPMI, contain-
ing penicillin and streptomycin and 10% fetal bovine serum
(FBS), and incubated at 37 °C in 5% CO2 (Wright et al. 1999;
Nozari et al. 2016).

Yeast culture

The yeast was isolated from the local yogurt of Tabriz
followed by determining its strain prior to being trans-
ferred to a plate containing the yeast culture media (pep-
tone and distilled water, dextrose 40%, yeast extract, and
agar). It was then incubated at 28 °C for 48 h (Cortes
2004). A yeast colony was then transferred to an YPD
liquid culture (peptone and distilled water, dextrose
40%, and yeast extract) and was incubated in a shaking
incubator for 48 h at 28 °C.

Co-culture of yeast and HT-29

The HT-29 cells were seeded in six-well plates (5 × 105

cells/cm2 per well) and incubated in 5% CO2 at 37 °C for
48 h. A single clone of the yeast was then cultivated in
1640 RPMI, containing 10% FBS, and incubated in a
shaking incubator at 37 °C for 30 to 60 min. The culture
medium containing the yeasts was then centrifuged at
1200 rpm (400g) for 5 min. The supernatant was separat-
ed, and its optic density (OD) was measured at 600 nm
using a Spectrophotometer (Beckman, MO, USA; model
DU-530). The above mentioned steps were repeated at
various time intervals, and the ODs were measured at
600 nm. The HT-29 cells were cultured in six-well plates
and washed twice with 2.5 ml PBS, prior to being treated
with the prepared supernatant with specific ODs (0.3, 0.5,
and 1), followed by 2 to 6-h incubation period in 5% CO2

at 37 °C. The supernatant was filtered through 0.22-μm
filter before being added to the HT-29 cells (Westwater
et al. 2005).

MTT assay

The HT-29 cells were first seeded in 96-well plates (5 ×
103 cells/well) and incubated at 37 °C in 5% CO2 for
48 h. The cultured cells were treated with various concen-
trations of the S. cerevisiae supernatant (0.5, 0.25, 0.125,
0.0625, and 0.031 mg/ml). 5-Fluorouracil (5-FU) treated
HT-29 cells were used as the positive control. The untreat-
ed cells were applied as the negative control. Half of the
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culture medium in each well (100 μl) was replaced with
100 μl of various concentrations of the S. cerevisiae su-
pernatant. All the treatments were performed three times
in triplicate. The cells were incubated at 37 °C and 5%
CO2 for 12, 24, 48, and 72 h. The MTT assay was then
performed for each treatment group) in this method, the
dose-dependent time is used( (Bray and Carpenter 2013).

DAPI staining

A total of 5 × 105 cells/cm2 (HT-29 cells) were seeded in six-
well plates and treated with various concentrations of S.
cerevisiae for 12 h prior to being fixed with paraformaldehyde
4% for 10 min. The fixed cells were then washed three times
with PBS and permeabilized with 0.1% Triton X-100 for
10 min. Finally, the cells were washed three times with PBS
before being stained with DAPI for 5 min. An Olympus IX81
Inverted Fluorescence Microscope was applied to visualize the
cells and acquire images at × 40 magnification (Sabnis n.d.).

Scratch assay

In vitro scratch assay was performed to evaluate the cell
migration capability in a two-dimensional space. The cells
were seeded in six-well plates (2 × 105 cells/cm2) and kept
in culture to obtain confluent monolayers. The HT-29 cells
were treated with supernatant of S. cerevisiae for 4, 24, and
72 h. The cells were then scratched using a scraper across
the layer followed by two washing steps with PBS in order
to remove the floating cells and cellular debris. The culture
media were replaced with a serum-free medium (or 1%
FBS) to inhibit cell proliferation. Images were then acquired
periodically from the same field at 0-, 4-, 24-, and 72-h
intervals (Liang et al. 2007).

DNA ladder assay

The treated cells were incubated at 37 °C for 24 h. The DNA
ladder assay was performed based on a previously published
procedure (Rahbar Saadat et al. 2015). Briefly, the treated cells
were incubated in a lysis buffer 10 mM Tris (pH 7.4), 5 mM
EDTA, and 0.2% Triton at 37 °C for 10 min. The protein
lysate was then denaturized with 700 μl of chloroform/
isoamyl alcohol (a ratio of 24:1), and the total DNAwas sep-
arated by centrifugation at 13,000g. The total DNAwas then
precipitated using an equal volume of isopropranol and was
electrophoresed on a 1.5% agarose gel containing 1 μl/
100 ml SYBR® Safe DNA gel stain. The gel was finally
examined and photographed using an ultraviolet gel docu-
mentation system.

Evaluation of the molecular mechanism
of S. cerevisiae on HT-29

Expression analysis of pro- and anti-apoptosis genes in HT-29

Total RNAwas extracted from the conditioned media-treated
and untreated cells (Sepideh Zununi Vahed et al. 2016). The
RNAyield and purity were determined by using a NanoDrop
(NanoDrop, Wilmington, USA) instrument (Fleige 2006).

cDNA synthesis

In order to perform stem-loop quantitative reverse transcrip-
tion and qRT-PCR analysis, 1 μg of each isolated total RNA
sample was reversely transcribed using universal hexamer
primers and diethyl pyrocarbonate (DEPC) water by incubat-
ing the mixture at 65 °C for 5 min followed by incubation on
ice. The reaction solution was then mixed with MMLV, dNTP
mix, RT buffer, and RNase inhibitor, and the volume of the
solution was adjusted to 20 μl with DEPC water. Reverse
transcription of the mRNAs was performed at 25 °C for
10 min followed by incubation at 42 °C for 60 min.

Gene regulation study

Real-time PCR was performed to measure the expression
levels of the target mRNAs using SYBR Master Mix (Life
Technologies Applied Biosystems, UK) and a Bio-Rad IQ5
Real-Time PCR instrument (Bio-Rad, Hercules, CA, USA).
Q-RT PCR was performed at 95 °C for 30 s, followed by
45 cycles at 95 °C for 5 s, 60 °C (Table 1) for 30 s, and
72 °C for 25 s. Melt curves were generated at 95 °C to verify
specificity of the amplification. To generate the standard
curves, qPCR amplification of cDNAwas performed using a
serial dilution of the cDNA (10−1 to 10−4). GAPDH was used
as an internal comparator in parallel with the control sample in
order to normalize the expression levels of the intended
mRNAs. Cycle number (CT) values were used to calculate
the relative expression using the difference in the CT values
of the target RNAs after normalization to the RNA input level.
The relative quantification was represented by the standard
2−ΔΔCT calculations. All the PCR reactions were performed
in triplicate.

Statistical analysis

Numerical data were expressed as the mean ± SD. The Excel
spreadsheet software (Microsoft, Redmond, WA) was applied
for data analysis. Statistical analyses were performed using the
Graphpad Prism (version 5; Graphpad Software, San Diego,
CA) and one-way ANOVA test, followed by Tukey’s multiple
comparison test. 푃 value < 0.05 was considered as statistical-
ly significant (Livak and Schmittgen 2001).
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Results and discussion

MTT assay

Viability of the HT-29 cells was significantly reduced in re-
sponse to treatment with the supernatant obtained from S.
cerevisiae (Fig. 1). The cell death rate was more than 75%
post-treatment with S. cerevisiae for 48 h (P < 0.05). All the
in vitro results were expressed as the inhibition ratio of HT-29
cell proliferation as follows: an ELISA reader was applied to
read the absorbance at 600 nm, and the inhibitory effect of S.
cerevisiae on cell proliferation was then calculated to deter-
mine the IC50 values. The following formula was used to
calculate the inhibitory rate:

Inhibition ratio %ð Þ
¼ OD control−OD−treatedð Þ= OD controlð Þ½ � � 100%OD

: optical density

Evaluation of the nuclear morphology using DAPI
staining

DAPI staining was applied to determine the nuclear morphol-
ogy and integrity. The capability of the S. cerevisiae to induce
apoptosis in the HT-29 cells cultured in the conditioned media
was investigated using the microscopic analysis of the DAPI-
stained cells (Fig. 2). As illustrated in Fig. 3, the control cells
showed intact nuclei of uniform shape and size with smooth
edges, whereas the nuclei of treated cells showed chromatin
condensation and fragmentation.

Evaluation of cell migration using scratch assay

To study the effect of S. cerevisiae on the motility of HT-29
cells, scratch assay was performed by measuring the extent of
cell migration into the scratched area. The cells were treated
with the conditioned media for 24, 48, and 72 h. Cell migra-
tion was significantly inhibited in response to the S. cerevisiae
treatment as shown in Fig. 3.

Table 1 Details of the primers
used for real-time PCR mRNA/miR Sequence Annealing (°C)

PTEN Forward: 5′-TCGACTACTTGCTTTGTAGA-3′

Reverse: 5′-TTTACAGCCCCGATTGGGCT-3′

60

BCL-XL Forward: 5′-ACGTGT TAGCTTATCAGACTGA-3′

Reverse: 5′-GCTCTCGGGTGCTGTATTG-3′

60

RelA Forward: 5′-CCAGACCAACAACAACCCCT-3′

Reverse: 5′-TCACTCGGCAGATCTTGAGC-3′

61

Caspas3 Forward: 5′-TGATGATGTGGAAGAACTTAGG-3′

Reverse: 5′-ACGGCTCCGCACCTGAGGC-3′

60

GAPDH Forward: 5′-AAGCTCATTTCCTGGTATGACAACG-3′

Reverse: 5′-TCTTCCTCTTGTGCTCTTGCTGG-3′

63

PTEN phosphatase and tensin homolog deleted on chromosome ten

Fig. 1 The inhibitory effects of
Saccharomyces cerevieses on
proliferation rates of the HT-29
cell during various exposure peri-
od (12, 24, 48, and 72 h). In this
method, the dose-dependent time
is used. All the experiments were
performed, at least, in triplicate.
All the data are presented as mean
(n = 3) ± 1 standard deviation.
Different lowercase letters show
intragroup difference (P < 0.05)
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Detection of DNA fragmentation by DNA ladder assay

The DNA fragmentation is considered a hallmark of cell apo-
ptosis. The results of the DNA ladder assay demonstrated that
treatment of the HT-29 cells with the conditioned media re-
sulted in the formation of the typical DNA ladder pattern
(Fig. 4) indicating cell apoptosis.

S. cerevisiae treatment altered the expression
of apoptosis genes in the HT-29 cells

To analyze the expression variation of certain pro-oncogenes
that are reported to be over-expressed in cancer, their expres-
sion levels were measured in the S. cerevisiae-treated HT-29
cells 12 and 24 h post-treatment. S. cerevisiae significantly
downregulated the expression levels of the intended pro-
oncogenes in the HT-29 cells. Therefore, S. cerevisiae acted
as a pro-apoptosis agent (Figs. 5, 6, 7, and 8).

Discussion

The results of the present study indicated that the expression
levels of RelA and bcl-XL genes were significantly downreg-
ulated in the HT-29 cells treated with S. cerevisiae, while those
of PTEN and CASP3 genes were markedly upregulated 24 h
post-treatment. CRC is one of the deadliest cancers.
Therefore, it has attracted global attention as it results in a high

mortality rate (Liu et al. 2015; Ting Shuang et al. 2016;
Gaikwad et al. 2015). Cognition of the molecular mechanisms
underlying chemo-resistance is a critical step in improving the
survival rate of the CRC patients (Sato and Itamochi 2015;
Chen et al. 2009). Recent developments in the field of anti-
cancer drug discovery are often related to drug design
targeting a specific molecule or a signaling pathway. Various
targets are used in anti-cancer drug development, including
growth signaling cascades, cell division, DNA replication,
angiogenesis, and apoptosis processes (Bernardes et al.
2010; Saber et al. 2017). Even though the gold standard of
ovarian cancer management is still chemotherapy, employing
adjunctive therapies are being rigorously investigated (Maria
Muccioli 2014). The microbial-based therapy of cancer is one
of the recently developing cancer treatment modalities (dos
Reis et al. 2017; Bernardes et al. 2010). The protective and
anti-cancer effects of probiotics have been reported in an
in vitro, in vivo, epidemiologic, and clinical trials study con-
ducted by Kim et al. The effects of the cellular components of
the probiotics on 11 different cancer cell lines have been stud-
ied (MariaMuccioli 2014). It has been reported that probiotics
significantly inhibited proliferation of the cancer cell lines
(Kim et al. 2003). Ghoneum and Gollapudi have investigated
the effect of heat-killed S. cerevisiae, isolated from yeast tab-
lets, on non-metastatic andmetastatic breast cancer cells. They
have found that heat-killed S. cerevisiae induced apoptosis in
their cells of interest (GHONEUM 2004). Moreover, Ravi
Subbiah et al. have found that ergosterol (a 28-carbon sterol

Fig. 2 Effects of Saccharomyces
cerevisiae on induction of cell
apoptosis in the HT-29 cells. The
fluorescent microscopy of DAPI-
stained HT-29 cells of a untreated
control cells, b treated cells with
Saccharomyces cerevisiae, and c
treated cells with 5-FU. HT-29
human colorectal adenocarcino-
ma cell line, DAPI 4′,6-
diamidino-2-phenylindole, 5-FU
5-fluorouracil
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which is present in bread and yeast tablet) in vitro and in the
presence of 17β-estradiol inhibited the proliferation of breast
cancer cells (Ravi Subbiah and Abplanalp 2003). Hence,
Chan et al. have studied the effect of S. cerevisiae on human
liver cell line (HepG2) and found that it induced an anti-tumor
effect as well as apoptosis in the intended cell line (Chan et al.
2004). Investigating the effects of heat-killed S. cerevisiae,
isolated from yeast tablet, on the human tongue cancer cells
(SCC-4 and SCC-9) and human colon cancer cells (Caco-2,
DLD-1) indicated that S. cerevisiae induced apoptosis in these
cells (Ghoneum et al. 2005). Demiret et al., in a study on
treating breast cancer patients, have found that β-glucan ex-
tracted from S. cerevisiae induced peripheral blood monocyte
proliferation and activation in the advanced breast cancer pa-
tients (Demir et al. 2007). The protective effects of β-glucan,
extracted from S. cerevisiae, on damaged DNA and cellular
toxicity have been investigated in the wild cell line, CHO-k1,
and )xrs5(CHO using live cell survival tests, and it has been

Fig. 3 Cell migration was
evaluated using scratch assay. The
confluent cells were treated with
the supernatant obtained from
Saccharomyces cerevisiae
(containing 1% FBS) for 0, 4, 24,
and 72 h. a1, a2, a3, and a4
illustrate untreated cells, while the
treated cells are presented in b1,
b2, b3, and b4. FBS fetal bovine
serum

1 2 3 4

Fig. 4 DNA ladder assay performed on the HT-29 cells. Lane 1, standard
molecular size marker (1 kb); lane 2, untreated control cells; and lanes
3and 4, Saccharomyces cerevisiae-treated cells
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found that β-glucan maintained cell viability in both cells and
prevented apoptosis (Oliveira et al. 2007a). Moreover,
Ghoneum et al. have performed a similar experiment on mice
and found that heat-killed S. cerevisiae reduced tumor volume
in mice (Oliveira et al. 2007b; Ghoneum et al. 2008).
Furthermore, Joon and his colleagues have reported that β-
glucan, isolated from S. cerevisiae, enhanced the innate im-
mune system, but little evidence was found for its anti-cancer
activity (Yoon et al. 2008). Lee et al. have investigated the
effects of S. cerevisiae on the survival and proliferation rates
of the HT-29 cells using MTT and [3H] thymidine assays and

found that it positively affected the cells (Lee et al. 2005a; Lee
et al. 2005b).The results of a study conducted by Javmen et al.
have indicated that β-glucan, derived from S. cerevisiae, in-
duced cell death in the mouse hepatoma cells (Javmen et al.
2015). Baricault et al. have examined the effects of fermented
milk on the growth and proliferation rates of the HT-29 cells
and found that it induced an inhibitory effect on both the
growth and proliferation (Baricault et al. 1995). Moreover,
Tiptiri et al. have reported that Lactobacillus casei prevented
growth and initiated apoptosis in the HT-29 cells (Tiptiri-
Kourpeti et al. 2016). In a study performed by Zhung-Yuan

Fig. 5 The expression levels of PTEN gene in the Saccharomyces
cerevisiae-treated HT-29 cells. The data are expressed as fold changes.
S.C (12 h), HT-29 cells treated with Saccharomyces cerevisiae for 12 h;
S.C (24 h), HT-29 cells treated with Saccharomyces cerevisiae for 24 h;
S.C (5FU), HT-29 cells treated with 5FU; and Cnt, untreated HT-29 cells

(used as the negative control). All the experiments were performed, at
least, in triplicate. All the data are presented as mean (n = 3) ± 1 standard
deviation (P < 0.05). PTEN phosphatase and tensin homolog deleted on
chromosome ten, 5FU 5-fluorouracil, HT-29 human colorectal adenocar-
cinoma cell line

Fig. 6 The expression levels of bcl-XL gene in the Saccharomyces
cerevisiae-treated HT-29 cells. The data are expressed as fold changes.
S.C (12 h), HT-29 cells treated with Saccharomyces cerevisiae for 12 h;
S.C (24 h), HT-29 cells treated with Saccharomyces cerevisiae for 24 h;
S.C (5FU), HT-29 cells treated with 5FU; and Cnt, untreated HT-29 cells

(used as the negative control). All the experiments were performed, at
least, in triplicate. All the data are presented as mean (n = 3) ± 1 standard
deviation (P < 0.05). 5FU 5-fluorouracil, HT-29 human colorectal adeno-
carcinoma cell line
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Chen, it has been demonstrated that the Lactobacilli, isolated
from fermented products, induced inhibitory effects on the
growth of the human colonic carcinoma cell line, HT-29
(Chen et al. 2017). Furthermore, Lee et al. have found that
S. boulardii effectively inhibited the survival and proliferation
of the HT-29 (Lee et al. 2005b). The results of a study con-
ducted by Jabber et al. have indicated that beta-glycan, ex-
tracted from S. cerevisiae, induced an inhibitory effect on
the growth of the AMN3 cell line in dose- and time-
dependent manners. They have reported that the greatest in-
hibitory effect of beta-glycan was detected at the

concentration of 500 μg/ml 48 h post-treatment (Jabber et al.
2011). Chenet et al. have reported that S. boulardii prevented
the induction of epidermal growth factor (EGF)-induced pro-
liferation, and reduced cell colony formation and promoted
apoptosis in the human colonic cancer cells, namely HT-29
and SW480 (Chen et al. 2009). Sougioultzis et al. have found
that S. cerevisiae produced low molecular weight peptides (<
1 kDa) which blocked NF-kB activation by downregulating
the NF-kB-mediated IL-8 gene expression in the intestinal
epithelial cells and monocytes (Papatheodoridis et al. 2006).
Hence, Kühle et al. have shown that S. cerevisiae decreased

Fig. 7 The expression levels of CASP3 gene in the Saccharomyces
cerevisiae-treated HT-29 cells. The data are expressed as fold changes.
S.C (12 h), HT-29 cells treated with Saccharomyces cerevisiae for 12 h;
S.C (24 h), HT-29 cells treated with Saccharomyces cerevisiae for 24 h;
S.C (5FU), HT-29 cells treated with 5FU; and Cnt, untreated HT-29 cells

(used as the negative control). All the experiments were performed, at
least, in triplicate. All the data are presented as mean (n = 3) ± 1 standard
deviation (P < 0.05). 5FU 5-fluorouracil, HT-29 human colorectal adeno-
carcinoma cell line

Fig. 8 The expression levels of RelA gene in the Saccharomyces
cerevisiae-treated HT-29 cells. The data are expressed as fold changes.
S.C (12 h), HT-29 cells treated with Saccharomyces cerevisiae for 12 h;
S.C (24 h), HT-29 cells treated with Saccharomyces cerevisiae for 24 h;
S.C (5FU), HT-29 cells treated with 5FU and Cnt, untreated HT-29 cells

(used as the negative control). All the experiments were performed, at
least, in triplicate. All the data are presented as mean (n = 3) ± 1 standard
deviation (P < 0.05). 5FU 5-fluorouracil, HT-29 human colorectal adeno-
carcinoma cell line
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the expression levels of pro-inflammatory cytokine IL-1a, in
the porcine intestinal epithelial cell lines (Van der Aa Kühle
et al. 2005; Jacobson 2015). Orland et al. have studied the
effects of heat-killed Bacillus ramenus (B. ramenus) GG and
Bacillus paracoxus IMPC 2.1 on the DLD-1 colon cancer cell
line and found that they inhibited cell growth or proliferation
(Madempudi and Kalle 2017). Fortin et al. have examined the
effects of β-glucan, extracted from the wall of S. cerevisiae,
on the CRC cells and found that it inhibited the proliferation of
the target cells (Fortin et al. 2018). Vahed et al. have treated
the HT-29 cells with the conditioned medium, containing
Lactobacillus mesenteroides, and studied apoptosis using
DAPI staining, flow cytometry, DNA ladder assays, as well
as real-time q-PCR and found that L. mesenteroides induced
apoptosis via upregulation of the expression levels of CASP3
as well as downregulation of the expression levels of AKT,
NF-κB, and Bcl-XL in the HT-29 cell line (Vahed et al. 2017).
The present study investigated the effect of the S. cerevisiae
supernatant on the HT-29 cells 12, 24, 48, and 72 h post-
treatment. We found that the S. cerevisiae supernatant reduced
both the proliferation and migration rates and increased apo-
ptosis in the HT-29 cells.

Conclusion

The results of the present study indicated that the supernatant
obtained from Saccharomyces cerevisiae significantly
inhibited cell growth and induced apoptosis in the HT-29 cells.
Saccharomyces cerevisiae is present in some of the world’s
most popular foods, and studies have indicated that it can
effectively inhibit the growth of cancer cells; therefore, we
suggest performing further studies on other cancer cell lines.
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