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Abstract
In this paper, we introduce the notions of λ-limited sets and λ-L-sets in a Banach space
X and its dual X∗ respectively, using the vector valued sequence spaces λw∗

(X∗) and
λw(X). We find characterizations for these sets in terms of absolutely λ-summing
operators and investigate the relationship between λ-compact sets and λ-limited sets,
with a particular focus on the crucial role played by a norm iteration property. We also
consider λ-limited operators and show that this class is an operator ideal containing
the ideal of λ-compact operators for a suitably restricted λ. Furthermore, we define a
generalized Gelfand-Philips property for Banach spaces corresponding to an abstract
sequence space.

Keywords Banach sequence spaces · Absolutely λ-summing operators · λ-limited
sets · λ-L-sets

Mathematics Subject Classification 46A45 · 46B45 · 47B10

1 Introduction

Limited sets were first introduced by Phillips (1940) in 1940 as a counter example to
disprove the following characterization for compact sets given by Gelfand (1938): a
subset of aBanach space is compact if and only if everyweak∗ null sequence converges
uniformly on that set. The existence of a non-compact set satisfying this property has
provoked the interest of several researchers, and since then limited sets and its related
notions have been studied extensively in the literature (see Chen et al. 2014; Delgado
and Pineiro 2014; Galindo and Miranda 2022, 2024; Schlumprecht 1987). Recently,
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Karn and Sinha (2014) introduced the concept of p-limited sets for 1 ≤ p < ∞ by
replacing c0 with �p in an alternate definition of limited sets. In the same direction,
the so-called L-sets are defined in a similar way to limited sets in dual Banach spaces
and it also has been defined corresponding to �p sequence spaces, called p-L-sets for
1 ≤ p < ∞. In this paper, we generalize the above notions for abstract sequence
spaces λ.

In Sect. 3, we study the vector valued sequence space λw∗
(X∗) corresponding to

a sequence space λ and the dual X∗ of a Banach space X . Using the identification
of λw∗

(X∗) with a class of bounded linear operators, we obtain its relationship with
other vector valued sequence spaces. Section 4 is devoted to the study of the norm
iteration property which plays a vital role in the study of λ-limited sets. We prove
that the dual norm of a monotone Banach AK -space has this norm iteration property.
Our results hold for several sequence spaces including �p spaces, Orlicz, Modular,
Lorentz spaces (cf. Kamthan and Gupta 1981; Lindenstrauss and Tzafriri 1977), and
the sequence spaces μa,p and νa,p given by Garling (1969). In Sect. 5, we introduce
the notion of λ-limited sets in Banach spaces and λ-limited operators between Banach
spaces. We investigate the relations between λ-compact sets (Gupta and Bhar 2013)
and λ-limited sets, and show that the class of λ-limited operators forms an operator
ideal. Furthermore, we introduce the concept of generalized Gelfand-Philips property
for Banach spaces. The final section focuses on the concept of λ-L-sets in the dual
of a Banach space. The results of this paper generalize some of the results proved by
Karn and Sinha (2014), Delgado and Pineiro (2014) and Ghenciu (2023).

2 Preliminaries

We use the letters X and Y to denote Banach spaces over the fieldK of real or complex
numbers, and BX to denote the closed unit ball of X . For a Banach space (X , ‖ · ‖),
the symbol X∗ denotes its topological dual equipped with the operator norm topology.
We denote by L(X ,Y ), the space of continuous linear operators from X to Y .

Let ω denote the vector space of all scalar sequences defined over the field K with
respect to the usual vector addition and scalar multiplication. The symbol en represents
the nth unit vector in ω, and φ the vector subspace spanned by the set {en : n ≥ 1}.
A sequence space λ is a subspace of ω such that φ ⊆ λ. A sequence space λ is said
to be (i) symmetric if (απ(n))n ∈ λ for all permutations π , whenever (αn)n ∈ λ; (ii)
normal if (βn)n ∈ λ, whenever |βn| ≤ |αn|,∀n ∈ N and some (αn)n ∈ λ. The cross
dual or Köthe dual of λ is the sequence space λ× defined as

λ× =
{

(βn)n ∈ ω :
∑
n

|αn||βn| < ∞,∀(αn)n ∈ λ

}
.

If λ = λ××, then λ is called a perfect sequence space. For sequence spaces λ and μ,
we write

λ.μ = {(α jβ j ) j : (α j ) j ∈ λ, (β j ) j ∈ μ}.
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A sequence space λ is said to be monotone if m0λ ⊆ λ, where m0 is the span of the
set of all sequences of zeros and ones. A sequence space λ equipped with a linear
topology is said to be a K-space if each of the projections Pn : λ → K, given by
Pn((αi )i ) = αn , are continuous. A Banach K -space (λ, ‖ · ‖λ) is called a BK-space.
A BK -space (λ, ‖ · ‖λ) is said to be an AK-space if

∑m
n=1 αnen converges to (αn)n

for every (αn)n ∈ λ. For a BK -space (λ, ‖ · ‖λ) with 0 < supn ‖en‖λ < ∞, the space
λ× is a BK -space endowed with the norm, ‖(βn)n‖λ× = sup(αn)n∈Bλ

{∑∞
n=1 |αnβn|}.

For a sequence space (λ, ‖ · ‖λ), the norm ‖ · ‖λ is said to be (i) k-symmetric
if ‖(αn)n‖λ = ‖(απ(n))n‖λ for all permutations π , and (ii) monotone if ‖(αn)n‖λ ≤
‖(βn)n‖λ whenever |αn | ≤ |βn| ∀n. It is proved in (Garling 1974) that for a normal BK -
space, there exists an equivalent norm which is monotone. Therefore, we henceforth
assume that a normal BK -space λ is equipped with a monotone norm.

Proposition 2.1 (Gupta and Bhar 2013, Proposition 3.3) Let (λ, ‖ · ‖λ) be a normal
Banach AK-space such that 0 < supn ‖en‖λ < ∞. Then the topological dual λ∗ of
λ, is isometrically isomorphic to λ× and we write

(λ∗, ‖ · ‖) ∼= (λ×, ‖ · ‖λ×).

The vector valued sequence spaces λs(X) and λw(X) associated to a sequence space
λ and a Banach space X were introduced by A. Pietsch in Pietsch (1962) as

λs(X) = {(xn)n ⊂ X : (‖xn‖)n ∈ λ}

and

λw(X) = {(xn)n ⊂ X : ( f (xn))n ∈ λ,∀ f ∈ X∗}.

These spaces are Banach spaces equipped with the norm ‖(xn)n‖sλ = ‖(‖xn‖)n‖λ and
‖(xn)n‖w

λ = sup f ∈BX∗ ‖( f (xn))n‖λ respectively.
An operator ideal I is a subclass of the class L of all continuous linear operators

between Banach spaces such that, for all Banach spaces X and Y , its components
I (X ,Y ) = L (X ,Y ) ∩ I satisfy the following properties:

• I contains the class of all finite rank operators.
• The class I (X , Y ) is a subspace of the class L (X ,Y ).
• If U ∈ L (X0, X), S ∈ L (Y ,Y0) and T ∈ I (X ,Y ), then STU ∈ I (X0,Y0).

The component of the dual ideal of I is given by

Id(X ,Y ) = {T : X → Y : T ∗ ∈ I(Y ∗, X∗)}.

The subclass Id of L is an operator ideal.
We refer the reader to Pietsch (1980) for a detailed theory of operator ideals.
The class of absolutely λ-summing operators was introduced by Ramanujan in

Ramanujan (1970a).
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Definition 2.2 A continuous linear operator T : X → Y is said to be absolutely
λ-summing if for each (xn)n ∈ λw(X), the sequence (T xn) ∈ λs(Y ).

The space of all absolutely λ-summing operators from X to Y , denoted by 
λ(X ,Y ),
is a Banach space endowed with norm

πλ(T ) = sup
(xn)n∈Bλw(X)

‖(T xn)n‖sλ.

Moreover, (
λ, πλ) is a Banach operator ideal.
Relating 
λ(X ,Y ) with 
μ(X ,Y ) associated with spaces λ and μ, we have the

following

Theorem 2.3 (Dubinsky and Ramanujan 1971, Theorem 3.1) Let X ,Y be Banach
spaces, and λ,μ be normal sequence spaces and ν = (

λ×.μ
)×

. If
(
ν.λ×)× ⊂ μ and

ν.μ ⊂ λ, then every absolutely λ-summing map from X to Y is μ-summing.

Using the characteristic of compact sets of being sets of elements in the closed
convex hull of null sequences, Sinha and Karn (2002) introduced the concept of p-
compact sets, for 1 ≤ p < ∞. Later, Gupta and Bhar (2013) generalize the above
notions for an arbitrary sequence space λ:

Definition 2.4 (i) A subset K of a Banach space X is said to be λ-compact if there
exists (xn)n ∈ λs(X) such that,

K ⊂
{ ∞∑
n=1

αnxn : (αn)n ∈ Bλ×

}
.

(ii) An operator T ∈ L(X ,Y ) is said to be λ-compact if T (BX ) is a λ-compact subset
of Y .

Let λ be a monotone symmetric sequence space equipped with a k-symmetric norm
‖·‖λ such that (λ, ‖·‖λ) is a BK -space. Then the space of allλ-compact operators from
X to Y denoted by Kλ(X ,Y ) is a quasi-normed space with respect to the quasi-norm

kλ(T ) = inf

{
‖(yn)n‖sλ : (yn)n ∈ λs(X) such that T (BX ) ⊂

{ ∞∑
n=1

αn yn : (αn)n ∈ Bλ×

}}
.

In addition, if ‖ · ‖λ satisfies 0 < infn ‖en‖λ ≤ supn ‖en‖λ < ∞, then (Kλ, kλ) is a
quasi normed operator ideal.

In Gelfand (1938), Gelfand gave the following characterization for compact sets:
a subset B of a Banach space is compact if and only every weak∗ null sequence
converges uniformly on B. Phillips (1940) disproved this characterization by providing
an example of a non-compact set satisfying this property. This gives rise to the notion
of limited subsets of a Banach space on which every weak∗ null sequence converges
uniformly. An equivalent definition for limited sets is given as follows:
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Definition 2.5 A set A ⊂ X is said to be limited if for every ( fn)n ∈ cw∗
0 (X∗), there

exists a sequence (αn)n ∈ c0 such that | 〈x, fn〉 | ≤ αn for every n ∈ N and x ∈ A.

Based on this characterization, Karn and Sinha (2014) introduced the notion of p-
limited sets and p-limited operators. Indeed, for 1 ≤ p < ∞, a subset A of a Banach
space X is p-limited if for every ( fn)n ∈ �w∗

p (X∗), there exists a sequence (αn)n ∈ �p
such that | 〈x, fn〉 | ≤ αn for every n ∈ N and x ∈ A; and an operator T ∈ L(X ,Y ) is
p-limited if T (BX ) is a p-limited subset of Y . Note that the vector valued sequence
spaces cw∗

0 (X∗) and �w∗
p (X∗) are specific cases of the generalized sequence space

λw∗
(X∗) associated with the dual X∗ of a Banach space X , and correspond to λ = c0

and λ = �p (for 1 ≤ p < ∞), respectively, as discussed in the beginning of Sect. 3.
It is clear that every compact set is limited. But the converse need not be true

(see Phillips 1940). Therefore, it is natural to ask which Banach spaces have the
property that every limited (resp. p-limited) set is compact (resp. p-compact). Such
Banach spaces are said to have Gelfand-Philips property (Diestel and Uhl 1983)
(resp. Gelfand-Philips property of order p (Karn and Sinha 2014)).

The following notions of L-sets and p-L sets defined in the dual X∗ of a Banach
space X are given in Ghenciu (2023).

Definition 2.6 A subset F ⊂ X∗ is said to be an L-set if each weakly null sequence
(xn)n ⊂ X converges to 0 uniformly on F, and a p-L-set if for each (xn)n ∈ �w

p (X),
there exists a sequence (αn)n ∈ �p, such that | 〈xn, f 〉 | ≤ αn for every n ∈ N and
f ∈ F , where p ∈ [1,∞).

3 Relationship between the spaces �w∗
(X∗) and �w(X∗)

The main result of this section is the equality λw∗
(X∗) = λw(X∗) for a reflexive AK -

BK sequence space λ. We use this equality to obtain a characterization of λ-limited
sets in terms of absolutely λ-summing operators.

Given a sequence space λ and the dual X∗ of a Banach space X , Fourie and Swart
(1979) introduced the vector valued sequence space

λw∗
(X∗) = {( fn)n ⊂ X∗ : ( fn(x))n ∈ λ,∀x ∈ X}

which is a Banach space endowed with the norm

‖( fn)n‖w∗
λ = sup

x∈BX

‖( fn(x))n‖λ.

Now we cite the result (Fourie and Swart 1979, Proposition 2.2(a)) along with the
proof for the reader’s convenience.

Proposition 3.1 Let X be a Banach space and (λ, ‖ · ‖λ) be a normal Banach AK-
space such that 0 < supn ‖en‖λ < ∞. Then the linear map H : λw∗

(X∗) → L(X , λ)

defined as H( f̄ ) = H f̄ , where H f̄ (x) = ( fn(x))n, for f̄ = ( fn)n ∈ λw∗
(X∗), x ∈ X,

is an isometric isomorphism.
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Proof Let f̄ = ( fn)n ∈ λw∗
(X∗). Then,

‖H( f̄ )‖ = ‖H f̄ ‖ = sup
x∈BX

‖( fn(x))n‖λ = ∥∥ f̄
∥∥w∗

λ

proves that H is an isometry. For proving H is onto, consider A ∈ L(X , λ). Then, due
to Proposition 2.1, A∗ ∈ L(λ×, X∗). Since {en}n is a Schauder basis for λ,

(〈
x, A∗en

〉)
n = (〈Ax, en〉)n = Ax ∈ λ, ∀x ∈ X ,

it follows that (A∗en)n ∈ λw∗
(X∗) and if we set f̄ = (A∗en)n ,

H f̄ (x) = (〈
x, A∗en

〉)
n = (〈Ax, en〉)n = Ax,∀x ∈ X .

��
Restricting λ further to be a reflexive sequence space, we prove the following

Proposition 3.2 Let X be a Banach space and (λ, ‖ · ‖λ) be a reflexive Banach AK-
space such that 0 < supn ‖en‖λ < ∞. Then the linear map L : λw(X) → L(λ×, X)

defined as L(x̄) = Lx̄ is an isometric isomorphism, where x̄ = (xn)n ∈ λw(X) and
Lx̄ (ᾱ) = ∑∞

n αnxn,∀ ᾱ = (αn)n ∈ λ×.

Proof By (Gupta and Bhar 2013, Proposition 3.5), the map L is an isometry. Consider
A ∈ L(λ×, X). Then A∗ ∈ L(X∗, (λ×)∗) = L(X∗, λ), since λ is reflexive (and
therefore perfect) and {en}n becomes a Schauder basis. Hence

(〈Aen, f 〉)n = (〈
en, A

∗ f
〉)
n = A∗ f ∈ λ, ∀ f ∈ X∗,

and thus (Aen)n ∈ λw(X).
Moreover, for x̄ = (Aen)n and ᾱ ∈ λ×,

Lx̄ (ᾱ) =
∞∑
n=1

αn Aen

= A

( ∞∑
n=1

αnen

)

= A(ᾱ)

which implies that L is onto. ��
Remark 3.3 If λ is not reflexive, Proposition 3.2 need not be true. For instance, if
λ = (�1, ‖ · ‖1), then for any Banach space X , we have �w

1 (X) ∼= L(c0, X) (Diestel
et al. 1995, p.36). If we consider X = c0, then the identity operator on c0 cannot
be extended to �∞ since c0 is not complemented in �∞ (Megginson 2012, p.301).
Therefore, L(�∞, X) � L(c0, X).
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Note that there is a resemblance between (Botelho and Santiago 2024, Proposition
3.10) and Proposition 3.2, but the objectives (and thus the approaches) of the papers
are different. In Botelho and Santiago (2024) the authors investigate sequence classes
that can be represented by operator ideals, whereas we establish a relation between the
sequence space λw(X) and the space of all linear operators from λ× to X . However,
under the restriction that λ is a reflexive AK -BK space with ‖en‖λ = 1, both results
are equivalent. Remark 3.3 emphasizes the importance of reflexivity in Proposition
3.2.

Finally we prove that for a suitably restricted λ, the vector valued sequence spaces
λw(X∗) and λw∗

(X∗) coincide for every Banach space X .

Theorem 3.4 Let (λ, ‖ · ‖λ) be a reflexive Banach AK-space such that 0 <

supn ‖en‖λ < ∞. Then, for any Banach space X, it follows that λw(X∗) = λw∗
(X∗).

Proof It is easy to see thatλw(X∗) ⊆ λw∗
(X∗).Toprove the reverse inclusion, consider

a sequence f̄ = ( fn)n ∈ λw(X∗). By Proposition 3.1, there exists a linear map
T f̄ ∈ L(X , λ) such that T f̄ (x) = ( fn(x))n . For ᾱ ∈ λ× and x ∈ X ,

〈
T ∗̄
f
(ᾱ), x

〉
=

〈
ᾱ, T f̄ x

〉

=
∞∑
n=1

αn fn(x) ∀x ∈ X ,

where g = ∑∞
n=1 αn fn ∈ X∗ by Banach-Steinhaus theorem. Hence T ∗̄

f
(ᾱ) = g.

Since T ∗̄
f

∈ L(λ×, X∗), by Proposition 3.2 there exists a sequence h̄ = (hn) ∈
λw(X∗) such that T ∗̄

f
= Lh̄ . Therefore, for every ᾱ = (αn)n ∈ λ×,

T ∗̄
f
(ᾱ) = Lh̄(ᾱ)

∞∑
n=1

αn fn =
∞∑
n=1

αnhn .

In particular, taking ᾱ = en , we get fn = hn for each n ∈ N and hence f̄ = h̄ ∈
λw(X∗). ��

4 Norm iteration property of ‖ · ‖�

In this section, we study the norm iteration property of the dual norm of a sequence
space λ and establish the conditions on λ such that the norm ‖ · ‖λ× has the norm
iteration property.

The norm iteration property is defined in Ramanujan (1970b) by the following
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Definition 4.1 A sequence space (λ, ‖ ·‖λ) is said to have the norm iteration property
if for each sequence (ᾱn)n = ((αn

j ) j )n in λ, the sequence ᾱ j = (αn
j )n ∈ λ,∀ j ∈ N

and
∥∥(‖(ᾱn)‖λ)n

∥∥
λ

=
∥∥∥(‖(ᾱ j )‖λ

)
j

∥∥∥
λ
.

To prove the main result of this section we need the following lemma, cf. (Nogueira
2016, Lema 2.4.10):

Lemma 4.2 Let A and B be non empty sets and f : A × B → R be a function. Then

sup
a∈A

sup
b∈B

f (a, b) = sup
b∈B

sup
a∈A

f (a, b).

Theorem 4.3 Let (λ, ‖ · ‖λ) be a monotone Banach AK-space such that 0 <

infn ‖en‖λ ≤ supn ‖en‖λ < ∞. Then the norm ‖ ·‖λ× has the norm iteration property.

Proof Since (λ×, ‖ · ‖λ×) is topologically isomorphic to (λ∗, ‖ · ‖), we have

‖ᾱ‖λ× = sup
(βn)n∈Bλ

∞∑
n=1

|αnβn|

for any ᾱ = (αn)n ∈ λ×. Clearly ‖ · ‖λ× is monotone. To prove that ‖ · ‖λ× has norm
iteration property, consider the sequence (ᾱn)n ∈ (λ×)s(λ×)where ᾱn = (α

j
n ) j ∈ λ×,

for all n ∈ N. Then for each j ∈ N, α j
n e j ∈ λ× and

|α j
n |‖e j‖λ× = ‖α j

n e j‖λ× ≤ ‖ᾱn‖λ× .

Thus, we have

∞∑
n=1

|α j
nγn| ≤ 1

‖e j‖λ×

∞∑
n=1

‖ᾱn‖λ×|γn| ≤ 1

c

∞∑
n=1

‖ᾱn‖λ×|γn| < ∞ (1)

where (γn)n ∈ λ and c = inf j ‖e j‖λ× . Hence α̂ j = (α
j
n )n ∈ λ× for each j ∈ N.

In order to prove that (α̂ j ) j ∈ (λ×)s(λ×) consider β̄ = (β j ) j ∈ λ. Then form ∈ N,

m∑
j=1

‖α̂ j‖λ×|β j | =
m∑
j=1

(
sup

(γn)n∈Bλ

∞∑
n=1

|α j
nγn|

)
|β j | = sup

(γn)n∈Bλ

m∑
j=1

∞∑
n=1

|α j
nβ jγn|

= sup
(γn)n∈Bλ

lim
k

m∑
j=1

k∑
n=1

|α j
nβ jγn| = sup

(γn)n∈Bλ

lim
k

k∑
n=1

⎛
⎝ m∑

j=1

|α j
nβ j |

⎞
⎠ |γn|

≤ sup
(γn)n∈Bλ

∞∑
n=1

(‖ᾱn‖λ×‖(β j ) j‖λ

) |γn| ≤ ‖(β j ) j‖λ‖(ᾱn)n‖sλ× .

123



λ-Limited Sets in Banach and Dual... Page 9 of 19 41

Hence (α̂ j ) j ∈ (λ×)s(λ×). Observing that

‖(ᾱn)n‖λ× = sup
(γn)n∈Bλ

∞∑
n=1

⎛
⎝ sup

(β j ) j∈Bλ

∞∑
j=1

|α j
nβ j |

⎞
⎠ |γn|

= sup
(γn)n∈Bλ

sup
(β j ) j∈Bλ

∞∑
n=1

∞∑
j=1

|α j
nβ jγn|

and

‖(α̂ j ) j‖λ× = sup
(β j ) j∈Bλ

sup
(γn)n∈Bλ

∞∑
j=1

∞∑
n=1

|α j
nβ jγn|

it follows that the sequence ((α
j
nβ jγn) j )n ∈ �s1(�1) and hence

∞∑
n=1

∞∑
j=1

|α j
nβ jγn| =

∞∑
j=1

∞∑
n=1

|α j
nβ jγn|,

using the norm iteration property of the norm of �1.
Define f : λ × λ → K by f ((β j ) j , (γn)n) = ∑∞

j=1
∑∞

n=1 |α j
nβ jγn|. Then

applying Lemma 4.2 to the function f , we get ‖(ᾱn)n‖λ× = ‖(α̂ j ) j‖λ× and thus
the norm iteration property of ‖ · ‖λ× follows. ��
From the above theorem, we have the following examples of sequence spaces with its
norm having norm iteration property:

• For 1 ≤ p < ∞, �p = {(α j ) j ∈ ω :
∞∑
j=1

|α j |p < ∞} with norm ‖(α j ) j‖p =
(

∞∑
j=1

|α j |p
)1/p

.

• Orlicz sequence space �M (Kamthan and Gupta 1981, p.297), defined as

�M = {(α j ) j ∈ ω :
∞∑
j=1

M

( |α j |
k

)
< ∞ for some k > 0}

with respect to the norm

‖(α j ) j‖(M) = inf

⎧⎨
⎩k > 0 :

∞∑
j=1

M

( |α j |
k

)
≤ 1

⎫⎬
⎭ ,

where M is an Orlicz function satisfying �2 condition (for instance, M(x) =
ex − 1).
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• Modular sequence spaces �{Mj } (Kamthan and Gupta 1981, p.319) defined as

�{Mj } = {(α j ) j ∈ ω :
∞∑
j=1

Mj

( |α j |
k

)
< ∞ for some k > 0}

with respect to the norm,

‖(α j ) j‖(Mj ) = inf

⎧⎨
⎩k > 0 :

∞∑
j=1

Mj

( |α j |
k

)
≤ 1

⎫⎬
⎭ ,

where (Mj ) j is a sequence of Orlicz functions.
• For 1 ≤ p < ∞, Lorentz sequence spaces of order p (Kamthan and Gupta
1981, p.323) defined as

d(x, p) =
⎧⎨
⎩(α j ) j ∈ c0 : sup

⎧⎨
⎩

∞∑
j=1

x j |ασ( j)|p : σ ∈ 


⎫⎬
⎭ < ∞

⎫⎬
⎭ ,

where x = (x j ) j ∈ c0, x /∈ �1 such that x j > 0 ∀ j and 1 = x1 ≥ x2 ≥ · · ·
endowed with the norm

‖(α j ) j ; p‖ = sup

⎧⎨
⎩

∞∑
j=1

x j |ασ( j)|p : σ ∈ 


⎫⎬
⎭ .

• The sequence spaces m(φ̄) and n(φ̄) introduced by Sargent in Sargent (1960).
For a sequence ᾱ = (α j ) j , define �α j = (α j − α j−1), α0 = 0; S(ᾱ) denotes
the collection of all sequences which are permutations of ᾱ. C is the set of all
finite sequences of positive integers. For σ ∈ C define c(σ ) = (c j (σ )), where
c j (σ ) = 1 if j ∈ σ and 0 otherwise. Let Cs = {σ ∈ C : ∑∞

j=1 c j (σ ) ≤ s}. Let
φ̄ = (φ j ) be a given sequence such that for each j , 0 < φ1 ≤ φ j ≤ φ j+1 and
( j + 1)φ j > jφ j+1. Then the sequence spaces

m(φ̄) =
⎧⎨
⎩ᾱ : ‖ᾱ‖ = sup

s≥1
sup
σ∈Cs

⎛
⎝ 1

φs

∑
j∈σ

|α j |
⎞
⎠ < ∞

⎫⎬
⎭

and

n(φ̄) =
⎧⎨
⎩ᾱ : ‖ᾱ‖ = sup

u∈S(ᾱ)

∑
j

|u j |�φ j < ∞
⎫⎬
⎭
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are perfect BK -spaces which are Kothe duals of each other. Additionally, the
sequence space n(φ̄) is an AK -space and, by Theorem 4.3, the norm of m(φ̄) has
the norm iteration property.

Remark 4.4 Note that there are sequence spaces with the norm iteration property with-
out being cross duals of other sequence spaces. For instance, the AK -BK space c0,
of all sequences converging to zero with respect to supremum norm, has the norm
iteration property.

Remark 4.5 Additionally, it should be noted that �×∞ = �1 possesses the norm iteration
property, despite �∞ not being an AK space.

Remarks 4.4 and 4.5 indicate that the conditions stated in Theorem 4.3 are only
necessary, not sufficient.

5 �-limited sets

In this section, we introduce the concepts of λ-limited sets and λ-limited operators
associated to a sequence space λ and give characterizations in terms of absolutely
λ-summing operators.

Definition 5.1 Let λ be a sequence space. Then a subset A of a Banach space X is said
to be λ-limited, if for each ( fn)n ∈ λw∗

(X∗), there exists a sequence (αn)n ∈ λ such
that

| fn(x)| ≤ αn, ∀ n ∈ N, x ∈ A.

Thus p-limited (limited) sets are precisely λ-limited sets for λ = �p(λ = c0). Some
elementary results about λ-limited sets are given in the following

Proposition 5.2 Let λ be a Banach sequence space and A, B be subsets of a Banach
space X.

(i) Every λ-limited set is bounded.
(ii) If A is λ-limited, then Ā is λ-limited.
(iii) If A, B are λ-limited, then A + B, A ∪ B, A ∩ B are λ-limited.
(iv) If A ⊆ B and B is λ-limited, then A is λ-limited.
(v) If A is λ-limited, then T (A) is λ-limited for each T ∈ L(X ,Y ).

(vi) If λ is normal and A is λ-limited, then αA is λ-limited for each α ∈ K.

Proof (i) If A is λ-limited, then for each f ∈ X∗, ( f , 0, 0, · · · ) ∈ λw∗
(X∗) and

there exists a sequence ᾱ f = (α f n)n ∈ λ such that

| f (x)| ≤ α f 1, ∀ x ∈ A.

Therefore A is weakly bounded and hence bounded.
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(ii) If x ∈ Ā, then there exists a sequence (xk)k ⊆ A such that xk converges to x . For
each ( fn)n ∈ λw∗

(X∗) there exists (αn)n ∈ λ such that | fn(xk)| ≤ αn,∀k, n ∈
N. Letting k → ∞, we get

| fn(x)| ≤ αn,∀ n ∈ N, x ∈ Ā

and so Ā is λ-limited. (iii), (iv) and (vi) have straightforward proofs.
(v) For every (gn)n ∈ λw∗

(Y ∗), (T ∗gn)n ∈ λw∗
(X∗). As A is λ-limited, there exists

(αn)n ∈ λ such that

|gn(T x)| = | 〈x, T ∗gn
〉 | ≤ αn ∀ x ∈ A, n ∈ N.

Thus T (A) is λ-limited. ��
A necessary and sufficient condition for the closed unit ball in X to be λ-limited is
given by the following

Theorem 5.3 Let λ be a normal sequence space and X be a Banach space. Then BX

is λ-limited if and only if λw∗
(X∗) = λs(X∗).

Proof The result follows directly from the definition of λ-limited sets. ��
As a consequence of the above result, we derive

Corollary 5.4 1. The closed unit ball BX of an infinite dimensional Banach space X
is not limited in X.

2. For 1 ≤ p < ∞, the closed unit ball BX of an infinite dimensional Banach space
X is not p-limited in X.

Proof 1. By the Josefson-Neissenzweig theorem (Diestel 2012, p.219), there exists a
weak∗ null sequence ( fn)n with ‖ fn‖ = 1 in X∗. Since ‖ fn‖ = supx∈BX

| fn(x)| =
1, BX is not a limited subset of X .

2. Since �sp(X
∗) � �w

p (X∗), byDvoretzky-Rogers theorem (Diestel et al. 1995, p.50),
the result follows. ��

Let us recall from Delgado and Pineiro (2014); Gupta and Bhar (2013), the bounded
linear operator UA : �1(A) → X associated to a bounded subset A of a Banach space
X , defined by UA((ηx )x ) = ∑

x∈A ηx x . We obtain the following characterization for
λ-limited sets using this operator.

Proposition 5.5 Let X be a Banach space and (λ, ‖ · ‖λ) be a reflexive Banach AK-
space such that 0 < supn ‖en‖λ < ∞. Then a subset A of X is λ-limited if and only
if U∗

A is λ-summing.

Proof Let A ⊆ X beλ-limited. Since A is bounded, byProposition 5.2, the operatorUA

is bounded. To prove that U∗
A is absolutely λ-summing, consider ( fn)n ∈ λw(X∗) ⊆

λw∗
(X∗). Since A is λ-limited, there exists a sequence (αn)n ∈ λ such that

‖U∗
A( fn)‖∞ = sup

x∈A
| fn(x)| ≤ αn ∀ x ∈ A, n ∈ N,
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which implies that
(‖U∗

A( fn)‖∞
)
n ∈ λ and hence U∗

A is absolutely λ-summing.

Conversely, letU∗
A beλ-summing.ThenusingTheorem3.4, for ( fn)n ∈ λw∗

(X∗) =
λw(X∗) and x ∈ A,

| fn(x)| ≤ sup
x∈A

| fn(x)| = ‖U∗
A( fn)‖∞

proves that A is λ-limited. ��
The next result follows from Proposition 5.5 and Theorem 2.3.

Theorem 5.6 Let X be a Banach space and (λ, ‖ · ‖λ), (μ, ‖ · ‖μ) be normal Banach
AK-spaces such that 0 < supn ‖en‖λ, supn ‖en‖μ < ∞. Also assume that μ is reflex-

ive and ν = (
λ×.μ

)×
. If

(
ν.λ×)× ⊂ μ and ν.μ ⊂ λ, then every λ-limited subset of X

is μ-limited.

Corollary 5.7 (Delgado and Pineiro 2014, Proposition 2.1(3)) If 1 ≤ p ≤ q < ∞,
then every p-limited set is q-limited.

Proof Let 1r = 1
p − 1

q . Then for (αn)n ∈ �q and (βn)n ∈ �r , the sequence (αnβn)n ∈ �p
by generalized Holder’s inequality

(∑
n

|αnβn|p
)1/p

≤
(∑

n

|αn|q
)1/q (∑

n

|βn|r
)1/r

. (2)

Consider λ = �p and μ = �q , we get ν = (�p′ · �q)
× = �r , and (ν.λ×)× = �q = μ

and ν · μ = �p = λ by (2). Thus, by Theorem 5.6, every p-limited set is q-limited. ��
Corollary 5.8 For a reflexive sequence space μ, every 1-limited set is μ-limited.

Proof Let λ = �1 and μ be any reflexive sequence space. Then μ being reflexive, is
perfect and hence normal. Note that ν = (�∞ · μ)× = μ×, (ν · λ×)× = (μ)×× = μ

and ν · μ = μ× · μ ⊆ �1 = λ. Hence, by Propositon 5.6, every 1-limited set is
μ-limited. ��
Remark 5.9 For λ = μ = c0, ν = �∞ and ν · μ = c0, (ν.λ×)× = �∞ � μ. Thus
each λ-limited set is μ-limited set, but the condition (ν.λ×)× ⊆ μ is being violated.

The next result establishes the relation between λ-compact subsets and λ-limited
subsets of a Banach space.

Proposition 5.10 Let λ be a normal sequence space such that ‖ · ‖λ has the norm
iteration property. Then every λ-compact subset of a Banach space X is λ-limited.

Proof Let K ⊆ X be a λ-compact subset. Then there exists a sequence (xn)n ∈ λs(X),
such that

K ⊆
{∑

n

αnxn : (αn)n ∈ Bλ×

}
.
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Let ( fn)n ∈ λw∗
(X∗). Then

‖( fn(xk))n‖λ = ‖xk‖
∥∥∥∥
(
fn

(
xk

‖xk‖
))

n

∥∥∥∥
λ

≤ ‖xk‖‖( fn)n‖w∗
λ ∀ k ∈ N.

Since λ is normal and (xk)k ∈ λs(X), we get (‖( fn(xk))n‖λ)k ∈ λ. Therefore, by the
monotonicity and norm iteration property of ‖ · ‖λ,∥∥(‖( fn(xk))k‖λ)n

∥∥
λ

= ∥∥(‖( fn(xk))n‖λ)k
∥∥

λ

≤
∥∥∥(

‖xk‖‖( fn)n‖w∗
λ

)
k

∥∥∥
λ

< ∞.

Set βn = ‖( fn(xk))k‖λ for each n ∈ N. It is clear that (βn)n ∈ λ. Consider x ∈ K .
Then x = ∑∞

k=1 αk xk for some (αk)k ∈ Bλ× . For ( fn)n ∈ λw∗
(X∗),

| fn(x)| =
∣∣∣∣∣
∑
k

αk fn(xk)

∣∣∣∣∣
≤ ‖(αk)k‖λ×‖( fn(xk))k‖λ

≤ βn ∀ n ∈ N.

Hence K is a λ-limited set. ��
Example 5.11 For λ = (�p, ‖·‖p), 1 ≤ p < ∞, the unit vector basis of c0 is λ-limited
but not λ-compact. Indeed A = {en : n ∈ N} ⊂ c0. Clearly A is not compact, and
hence not p-compact. Since U∗

A : c∗
0 → �∞(A) is the inclusion operator from �1

to �∞, by Grothendieck’s theorem (Diestel et al. 1995, p.15), U∗
A is p-summing for

1 ≤ p < ∞. Therefore, by Proposition 5.5, A is p-limited.

Example 5.11 shows that the converse of Proposition 5.10 is not necessarily true.
This leads to the following

Definition 5.12 A Banach space X is said to have the generalized Gelfand-Philips
property if every λ-limited subset of X is λ-compact.

For proving a characterization for spaces having the generalized Gelfand-Philips
property, we introduce the concept of λ-limited operators as follows:

Definition 5.13 A linear operator T : X → Y is said to be λ-limited if T (BX ) is a
λ-limited subset of Y .

Let us denote the class of λ-limited operators from X to Y by 
λ,L(X ,Y ). Then, if
λ is normal, 
λ,L(X ,Y ) is a subspace of L(X ,Y ) = 
φ(X ,Y ), cf. (Dubinsky and
Ramanujan 1971), where the former assertion follows from Proposition 5.2 and the
second equality follows from the fact that φs(X) = φw(X). Therefore we have, the
following
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Proposition 5.14 
λ,L is an operator ideal if λ is normal.

Proof It is easy to see that every finite rank operator from X to Y is λ-limited and

λ,L(X ,Y ) is a subspace of L(X ,Y ), for every Banach spaces X and Y . To prove
the ideal property, let T ∈ 
λ,L(X ,Y ), U ∈ L(X0, X) and S ∈ L(Y ,Y0). Then, for
every ( f j ) j ∈ λw∗

(Y ∗
0 ) and x ∈ BX0 , there exists (α j ) j ∈ λ such that,∣∣ f j (STU (x))

∣∣ ≤ α j‖U (x)‖ ≤ α j‖U‖.

This proves that STU ∈ 
λ,L(X0,Y0) and hence 
λ,L is an operator ideal. ��
Moreover, by Proposition 5.10 and (Gupta and Bhar 2013, Theorem 3.10), a monotone
symmetric sequence space λ equipped with a k-symmetric norm ‖ · ‖λ such that
(λ, ‖ · ‖λ) is a BK -space with the norm iteration property, and 0 < infn ‖en‖λ <

supn ‖en‖λ < ∞, Kλ(X ,Y ) ⊆ 
λ,L(X ,Y ).

Proposition 5.15 Let (λ, ‖ · ‖λ) be a reflexive Banach AK-space such that 0 <

supn ‖en‖λ < ∞. Then T ∈ 
λ,L(X ,Y ) if and only if T ∗ is absolutely λ-summing.

Proof Let T ∈ L(X ,Y ) be a λ-limited operator. Then for each (gn)n ∈ λw∗
(Y ∗) =

λw(Y ∗), there exists a sequence (αn)n ∈ λ such that |g(T x)| ≤ αn , for all x ∈ BX

and n ∈ N. To prove that T ∗ is λ-summing, consider (gn)n ∈ λw(Y ∗) = λw∗
(Y ∗).

Thus, we have

‖T ∗gn‖ = sup
x∈BX

∣∣T ∗gn(x)
∣∣ ≤ αn, ∀ n ∈ N.

Since λ is normal, (T ∗gn)n ∈ λs(X∗) and therefore T ∗ is λ-summing. Tracing back
the above proof, converse can be easily proved. ��
Proposition 5.16 Let X and Y be Banach spaces and (λ, ‖ · ‖λ) be a reflexive, sym-
metric Banach AK-space such that 0 < supn ‖en‖λ < ∞. Then the following are
equivalent:

(i) Y has the generalized Gelfand-Philips property.
(ii) Kλ(X ,Y ) = 
d

λ(X ,Y ) for each Banach space X.

Proof Suppose that Y has the generalized Gelfand-Philips property. By (Gupta and
Bhar 2013, Proposition 4.3), we have Kλ(X ,Y ) ⊂ 
d

λ(X ,Y ) for each Banach space
X . To prove the equality, consider T ∈ 
d

λ(X ,Y ). Then, by Proposition 5.15, T (BX )

is λ-limited in Y and hence T is a λ-compact operator.
Conversly, assume that Kλ(X ,Y ) = 
d

λ(X ,Y ). Let A ⊂ Y be a λ-limited set.
Then, using Proposition 5.5, U∗

A is λ-summing and hence UA(B�1(A)) is λ-compact.
It is easy to see that A ⊂ UA(B�1(A)). Therefore A is a λ-compact set. ��

6 �-L-sets

Analogous to the definition of a λ-limited set, we introduce the notion of a λ-L-set in
the dual of a Banach space X as follows:
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Definition 6.1 Let λ be a sequence space and X be a Banach space. Then a subset F of
the dual X∗ is said to be a λ-L-set if for each (xn)n ∈ λw(X), there exists a sequence
(αn)n ∈ λ such that,

| f (xn)| ≤ αn, ∀ n ∈ N, f ∈ F .

Some elementary facts about λ-L-sets are presented in Proposition 6.2.

Proposition 6.2 Let λ be a normal sequence space and X be a Banach space.

(i) Every λ-L-subset F of X∗ is bounded.
(ii) If F is a λ-L-set, then the closures F̄w∗

, F̄w and F̄ of F, with respect to the
weak∗, weak and norm topology respectively, are λ-L-sets.

(iii) If F,G are λ-L-sets, then F + G, F ∪ G, F ∩ G are λ-L-sets.
(iv) If F ⊆ G and G is a λ-L-set, then F is λ-L-set.
(v) If F is λ-L-set in Y ∗, then T ∗(F) is a λ-L-set in X∗ ∀ T ∈ L(X ,Y ).

Proof (i) Let F be a λ-L-set. Since (x, 0, 0, . . . ) ∈ λw(X) for each x ∈ X , there
exists a sequence ᾱx = (αxn)n ∈ λ such that

| f (x)| ≤ αx1, ∀ f ∈ F

which proves that F is weak∗ bounded and hence bounded by Banach Steinhaus
theorem.

(ii) Let f ∈ F̄w∗
. Then there exists a net ( fδ)δ ⊆ F such that fδ converges to f . For

each (xn)n ∈ λw(X) there exists (αn)n ∈ λ such that

| fδ(xn)| ≤ αn ∀n ∈ N.

Thus | f (xn)| ≤ αn ∀n ∈ N,∀ f ∈ F̄ , and hence F̄w∗
is a λ-L-set.

Similar arguments can be used to prove that F̄w and F̄ are λ-L-sets. (iii) and (iv)
have straighforward proofs.

(v) Note that for every (xn)n ∈ λw(X), (T xn)n ∈ λw(Y ). Since F is a λ-L-set, there
exists (αn)n ∈ λ such that

| 〈xn, T ∗g
〉 | = | 〈T xn, g〉 | ≤ αn ∀g ∈ F, n ∈ N.

Hence T ∗(F) is a λ-L-set in X∗. ��
One can easily establish the next result.

Proposition 6.3 For a Banach space X, the following sentences are equivalent:

1. X has the Schur’s property.
2. BX∗ is an L-set.
3. BX∗ is a c-L-set.

The following result gives the relation between λ-limited sets and λ-L-sets in a dual
Banach space.
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Proposition 6.4 For a normal sequence spaceλ and aBanach space X, everyλ-limited
set in X∗ is a λ-L-set.

Proof Let F be a λ-limited set in X∗, (xn)n ∈ λw(X) and J : X → X∗∗ be the
canonical inclusion. Then for every f ∈ X∗, the sequence (〈 f , J xn〉)n = ( f (xn))n ∈
λ. Therefore, (J xn)n ∈ λw∗

(X∗∗). Since F is λ-limited, there exists (αn)n ∈ λ such
that

|〈xn, f 〉| ≤ αn ∀n ∈ N, f ∈ F .

��
The converse of the above proposition is not necessarily true as exhibited in the
following result.

Proposition 6.5 Let X be an infinite dimensional Banach space having the Schur’s
property. Then BX∗ is a L-set which is not limited.

Proof By Proposition 6.3, BX∗ is a L-set, but it is not limited by Corollary 5.4.1. ��
Let F be a bounded subset of X∗. Define a continuous linear operator EF : X →
�∞(F) as

EF (x) = ( f (x)) f ∈F , x ∈ X .

Next, we obtain a characterization for λ-L sets.

Proposition 6.6 Let λ be a normal sequence space and X be a Banach space. A subset
F of X∗ is a λ-L-set if and only if the operator EF is absolutely λ-summing.

Proof Let F be aλ-L-set. Then EF iswell defined and continuous. For (xn)n ∈ λw(X),
we have

‖EF (xn)‖∞ = sup
f ∈F

| f (xn)| ≤ αn ∀n ∈ N

for some (αn)n ∈ λ. Since λ is normal, the sequence (EF (xn))n ∈ λs(X). Tracing
back the proof, the converse can be easily proved. ��
The above proposition along with Theorem 2.3 leads to the following

Proposition 6.7 Let λ and μ be normal sequence spaces, and ν = (
λ× · μ

)×
. If(

ν.λ×)× ⊂ μ and ν.μ ⊂ λ, then every λ-L-subset of X∗ is a μ-L-set.

Similar to Corollaries 5.7 and 5.8, the above proposition yields the next result.

Corollary 6.8 For 1 ≤ p ≤ q < ∞, every p-L-set is a q-L-set; and every 1-L-set is
a μ-L-set for a perfect sequence space μ.
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Proposition 6.9 Every L-set is a φ-L-set.

Proof Let F ⊂ X∗ be an L-set. Then EF : X → �∞(F) defined as EF (x) =
( f (x)) f ∈F is continuous and hence absolutely φ-summing. By Proposition 6.6, it is
clear that F is a φ-L-set. ��
Proposition 6.10 Let X ,Y be Banach spaces, T ∈ L(X ,Y ) and λ be a normal
sequence space. Then T is absolutely λ-summing if and only if T ∗(BY ∗) is a λ-L-set
in X∗.

Proof If T ∈ L(X ,Y ) is absolutely λ-summing, then for (xn)n ∈ λw(X), (‖T xn‖)n ∈
λ. For g ∈ BY ∗ ,

∣∣〈xn, T ∗g
〉∣∣ ≤ sup

h∈BY∗
|〈T xn, h〉| = ‖T xn‖.

Hence T ∗(BY ∗) is a λ-L-set. The converse follows easily since λ is normal. ��
As a consequence of the above proposition, we derive the following

Corollary 6.11 For Banach spaces X and Y , where X has the Schur’s property,
L(X ,Y ) = 
c0(X , Y ) = 
c(X ,Y ).

Proof Assume that X has the Schur’s property and T ∈ L(X ,Y ). Then, by Proposi-
tion 6.3, T ∗(BY ∗) is a L-set in X . Hence, by Proposition 6.10, T ∈ 
c0(X ,Y ). As

c(X ,Y ) = 
c0(X ,Y ), the result follows. ��
Remark 6.12 Since �1 has the Schur’s property, we get the solution of (Megginson
2012, Ex.3.51(a)) using the above Corollary.

Proposition 6.13 Let X, Y be Banach spaces and λ be a normal sequence space. If

λ(X ,Y ) = Kd

λ (X ,Y ), then X∗ has the generalized Gelfand-Philips property.

Proof Let A be a λ-limited set in X∗. By Propositions 6.4 and 6.6, A is a λ-L-set
and the operator EA : X → �∞(A) is absolutely λ-summing. Since 
λ(X ,Y ) =
Kd

λ (X ,Y ), E∗
A(B(�∞(A))∗) is λ-compact. For f ∈ A, δ f denotes the point mass at f ,

that is, E∗
A(δ f ) = f . Then A = E∗

A

({δ f : f ∈ A}) ⊂ E∗
A(B(�∞(A))∗) and then A is a

λ-compact set. ��
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