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Abstract
In our previous article (Camargo and Martin in Bull Braz Math Soc New Ser 53:501–
522, 2022), we presented some families of sets Θx ⊂ {1, 2, . . . , �x�} such that the
sum of the Möbius function over Θx is constant and equals to −1 and we showed that
the existence of such sets is intimately connected with the existence of the alternating
series used by Tschebyschef and Sylvester to bound the prime counter functionΠ(x).
In this note, we answer two open questions stated in the last section of (Camargo and
Martin 2022) about the general structure of these constant functions. In particular, we
show that every such constant function x �−→ ∑

j ∈ Θx
μ( j) can be characterized by

Tschebyschef–Sylvester alternating series. We also show that the asymptotic sizes of
the setsΘx connects to the Sylvester’s Stigmata of the Tschebyschef–Sylvester series.

Keywords Mertens function · Möbius function · Tschebyschef theory · Prime
number theorem

1 Introduction

For n ≥ 2, 0 ≤ � < n and x ≥ 1, let

Θx,�,n :=
{

j ≤ x :
⌊
x

j

⌋

≡ � (mod n)

}

. (1)

In our previous paper (Camargo and Martin 2022), we showed that, for certain n and
Ln ⊂ {0, 1, . . . , n − 1}, the sums

B André Pierro de Camargo
andrecamargo.math@gmail.com

1 Federal University of the ABC Region, BRA, Santo André, Brazil

2 Institute of Mathematics and Statistics of University of Sao Paulo, BRA, São Paulo, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00574-024-00399-3&domain=pdf
http://orcid.org/0000-0002-9363-1332


24 Page 2 of 13 A. P. de Camargo, P. A. Martin

SLn (x) =
∑

j ∈ ⋃

� ∈ Ln
Θx,�,n

μ( j) (2)

of theMöbius function are constant (independent of x) for x ≥ n. We also showed that
some of these constant functions SLn are related to certain harmonic schemes used by
Tschebyschef and Sylvester to bound the prime counter function Π(x).

A harmonic scheme (named after Sylvester 1912, p. 704) is a couple

r1, r2, . . . , rq; s1, s2, . . . , sm, r1 ≤ r2 ≤ · · · rq , s1 ≤ s2 ≤ · · · sm, (3)

of sequences of positive integers satisfying

q∑

�=1

1

r�
−

m∑

�=1

1

s�
= 0. (4)

Historically, harmonic schemes have been associated with two classes of functions.
The first class of functions,

fψ [r1, r2, . . . , rq; s1, s2, . . . , sm](x) =
q∑

�=1

T

(
x

r�

)

−
m∑

�=1

T

(
x

s�

)

, x ≥ 0, (5)

T (x) = log(�x�!) for x ≥ 2, T (x) = 0 for x < 2, was used by Tschebyschef and
Sylvester (1912, p. 704, and 1852) to bound the Tschebyschef function

ψ(x) =
∑

pr ≤ x
p prime

log(p).

The second class of functions,

fμ[r1, r2, . . . , rq ; s1, s2, . . . , sm](x) =
q∑

�=1

⌊
x

r�

⌋

−
m∑

�=1

⌊
x

s�

⌋

, x ≥ 0, (6)

was considered later by MacLeod and others (see Cohen et al. 2007; MacLeod 1967
and the references therein) to bound the Mertens function

M(x) =
∑

j≤x

μ( j), x ≥ 1 (7)

(we will often write only fψ or fμ instead of fψ [r1, r2, . . . , rq ; s1, s2, . . . , sm] or
fμ[r1, r2, . . . , rq; s1, s2, . . . , sm] for the sake of brevity).
In Camargo and Martin (2022), to every fμ[r1, r2, . . . , rq; s1, s2, . . . , sm] satisfy-

ing
Im( fμ) = {0, 1}, (8)
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we associated a constant component (2) of the Mertens function equal to −1.

Lemma 1 (Corollary 4 andTheorem7ofCamargo andMartin 2022)Let r1, r2, . . . , rq ;
s1, s2, . . . , sm be a harmonic scheme satisfying (8) and let η be any integer multiple
of

l.c.m(r1, r2, . . . rq , s1, s2, . . . , sm)

(l.c.m stands for the least common multiple). For x ≥ η,

− 1 = q − m =
∑

j ∈ ⋃

0 ≤ u < η

fμ(u) = 1

Θx,u,η

μ( j). (9)

In the concluding section of Camargo andMartin (2022), we discussed two follow-
ing problems: first, we were unable to answer whether there would exist other constant
functions SLn defined by (2) besides of those described by the right-hand side of (9)
and with other values rather than minus one; second, we were unable to find any n odd
and Ln such that the expression in the right-hand side of (2) is constant for x ≥ n. We
computationally checked that, for n = 3, 5, 7, . . . , 17, the associated function SLn is
non-constant on [30, 100] for every subset Ln of {0, 1, . . . , n − 1}. In this paper, we
answer these questions–surprisingly, both answers are relatively simple.

Theorem 1 If the function SLn defined by (2) is constant for x ≥ n, then SLn is given by
the right-hand side of (9) for some harmonic scheme satisfying (8) (and, consequently,
SLn (x) = −1 for x ≥ n).

Theorem 2 If the function SLn defined by (2) is constant for x ≥ n, then n is even.

In Camargo and Martin (2022), we found some connections between the functions
fψ and fμ defined by (5) and (6), respectively. For instance, equation (35) of Camargo
and Martin (2022) tells us that

fμ[r1, r2, . . . , rq; s1, s2, . . . , sm](k) =
k∑

j=1

b j (10)

is the partial sums of the integer coefficients b j of the Tschebyschef expansion

fψ [r1, r2, . . . , rq; s1, s2, . . . , sm](x) =
∑

j≥1

b jψ(x/ j). (11)

The precise definition of the coefficients b j in (11) is

b j =
∑

1 ≤ i ≤ q
ri | j

1 −
∑

1 ≤ i ≤ m
si | j

1 (12)

(see equation (30) of Camargo and Martin 2022).
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When the non-vanishing b j satisfies b j ∈ {−1, 1} and alternate in sign with the
first one positive, or, equivalently, when (8) holds (see Theorem 8 of Camargo and
Martin 2022 for further details), it can be shown (Sylvester 1881, 1912, pp. 704–706)
that

n1A ≤ lim inf
x→∞

ψ(x)

x
≤ lim sup

x→∞
ψ(x)

x
≤ n1n2

n2 − n1
A, (13)

where n1 and n2 are the first two non-vanishing b j : bn1 = 1, bn2 = −1 and

A := A[r1, r2, . . . , rq; s1, s2, . . . , sm] = −
q∑

�=1

log(r�)

r�
+

m∑

�=1

log(s�)

s�
. (14)

Similarly to (13), Lemma 1 can be used to bound M(x). In fact, for

χ fμ,x :=
⋃

0 ≤ u < η

fμ(u) = 1

Θx,u,η, (15)

we get

|M(x)| ≤
∣
∣
∣
∣
∣
∣

∑

j ∈ χ fμ,x

μ( j)

∣
∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣
∣

∑

j /∈ χ fμ,x

μ( j)

∣
∣
∣
∣
∣
∣

(9)≤ 1 + x − #χ fμ,x . (16)

A slightly improved estimate is

|M(x)| ≤ 1 + [
Q(x) − #(χ fμ,x ∩ Supp(μ))

]
, (17)

where
Q(x) =

∑

j≤x

|μ( j)|

counts the square-free numbers up to x .
Inequalities (16) and (17) were implicitly used in the past to estimate M(x) (see

MacLeod 1967 and the references therein, and also Cohen et al. 2007 for more modern
techniques). Motivated by them, we analyzed the asymptotic size (as x → ∞) of the
sets that appear on the right-hand sides of (16) and (17). Our study revealed other
interesting connections between the theories built on functions fψ and fμ.

Theorem 3 Under the hypotheses of Lemma 1,

#χ fμ,x = Ax + O(
√
x) (18)

and

#χ fμ,x ∩ supp(μ) = 6

π2 Ax + O
(√

x
)
, (19)

with A defined by (14) and χ fμ,x defined by (15). The underlying constants in the
O-notation may depend on fμ.
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The number A defined in (14) was called by Sylvester the Stigmata of the harmonic
scheme r1, r2, . . . , rq; s1, s2, . . . , sm (perhaps by its role in (13)).By thePrimenumber
theorem, ψ(x) ∼ x,

fψ(x)

x
(11)=

∑

j≥1

b j

j

ψ(x/ j)

x/ j
∼

∞∑

j=1

b j

j
.

However, by Stirling approximation, fψ(x) is asymptotic to Ax . In other words,
we have

Lemma 2 Let r1, r2, . . . , rq ; s1, s2, . . . , sm be a harmonic scheme and let b j and A
be defined by (11) and (14), respectively. We have

∞∑

j=1

b j

j
= A = −

q∑

�=1

log(r�)

r�
+

m∑

�=1

log(s�)

s�
. (20)

We give two simple proofs of Lemma 2. The first is based on the direct analysis

of the partial sums
n∑

j=1

b j
j . The second is an immediate consequence of a different

estimate for the quantities in Theorem 3:

Theorem 4

#χ fμ,x ∼
⎛

⎝
∞∑

j=1

b j

j

⎞

⎠ x (21)

and

#χ fμ,x ∩ Supp(μ) ∼ 6

π2

⎛

⎝
∞∑

j=1

b j

j

⎞

⎠ x, (22)

with b j defined by (11) and χ fμ,x defined in (15).

2 Proofs

We start with some results which could be of independent interest.

Lemma 3 Let r1, r2, . . . , rq; s1, s2, . . . , sm be a harmonic scheme. The associ-
ated function fμ[r1, r2, . . . , rq ; s1, s2, . . . , sm](x) defined by (6) has period T =
l.c.m(r1, r2, . . . rq , s1, s2, . . . , sm).

Proof Let T ∗ be the period of fμ. After collecting occasionally identical terms, we
rewrite fμ as

fμ(x) =
k∑

j=1

c j

⌊
x

a j

⌋

,
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with non-vanishing coefficients c j , ai < a j for i < j , T = l.c.m(a1, a2, . . . ak) and

k∑

j=1

c j
a j

(4)= 0. (23)

Note that

fμ(x + T ) = T
k∑

j=1

c j
a j

+
k∑

j=1

c j

⌊
x

a j

⌋
(23)= fμ(x).

Therefore T ∗|T . We now proceed by showing that

a j | T ∗, j = 1, 2 . . . , k, (24)

what is sufficient to complete the proof. In order to prove (24),we shall build a sequence
of periodic functions fμ,1, fμ,2, . . . , fμ,k of the form

fμ,�(x) =
k∑

j=�

c j

⌊
x

a j

⌋

+ β�

⌊ x

T ∗
⌋

, (25)

such that each fμ,� has period T�, with

T�|T ∗. (26)

Let us first show that (25) and (26) are enough to ensure that a�|T ∗. In fact, we have

fμ,�(x) = 0 for x < min{a�, T
∗}. (27)

– If a� = T ∗, there is nothing to prove.
– If a� < T ∗, then fμ,�(a�) = c� �= 0. This and (27) ensure that a�|T� and (26)
implies that a�|T ∗.

– In the case a� > T ∗, we must to consider two sub-cases:

– If β� = 0, the first non-vanishing value of fμ,� is fμ,�(a�) = c� �= 0.
This is absurd, because fμ,� has period T ∗ and it is vanishing in [0, T ∗] (see
(27)).

– If β� �= 0, (27) tells us that

fμ,�(x) = 0 for x < T ∗ and fμ,�(T
∗) = β� �= 0.

We now use the periodicity of fμ,� to evaluate fμ,� at x of the form λT ∗T ,
where λ is a free (integer) parameter:

β� = fμ,�(λT T
∗) (25)= λT T ∗

⎛

⎝ β�

T ∗ +
k∑

j=�

c j
a j

⎞

⎠ . (28)
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This is absurd, because the right-hand side of (28) is either identically vanish-
ing, or it is a non-constant linear function in λ.

The sequence fμ,1, fμ,2, . . . , fμ,k is defined inductively as follows:

– fμ,1 = fμ.

– fμ,�+1 = fμ,� − c�

(⌊
x

a�

⌋

− T ∗

a�

⌊ x

T ∗
⌋)

, � = 1, 2, . . . , k − 1.

We proved that T ∗
a�

is integer, so the term in brackets in the definition of fμ,�+1 has
period T ∗ when a� �= T ∗. ��
Corollary 1 The sequence (b j ) j≥1 defined by (12) is periodic with period T =
l.c.m(r1, r2, . . . rq , s1, s2, . . . , sm).

Proof By (10), we have

b j = fμ( j) − fμ( j − 1), j ≥ 1.

This and Lemma 3 tell us that the sequence (b j ) j≥1 is periodic with some period T ∗
such that T ∗|T . Moreover, the definition of fμ and (4) give

fμ(T ) = 0.

Polling all this together, we get

0 = fμ(T )
(10)=

T /T ∗
∑

k=1

T ∗
∑

j=1

b(k−1)T ∗+ j = T

T ∗
T ∗
∑

j=1

b j .

This and (10) tell that

fμ(T ∗ + k) =
T ∗+k∑

j=T ∗+1

b j =
k∑

j=1

b j = fμ(k) ∀k ≥ 0,

what implies T |T ∗. ��

2.1 Proof of Theorem 1

Assume that n ≥ 2, Ln = {�1, �2, . . . �k} ⊂ {0, 1, . . . , n − 1} and c ∈ Z are such
that

SLn (x) =
∑

j ∈ ⋃

� ∈ Ln
Θx,�,n

μ( j) = c (29)

for x ≥ n. Note that
SLn (x) =

∑

j≤x

μ( j)g(x/ j),

123
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with

g(y) =
{
1, if �y� ≡ �ν (mod n) for some ν ≤ k,
0, otherwise.

(30)

By the Möbius inversion formula (Apostol 1976, Thm. 2.23)

g(x) =
∑

j≤x

SLn (x/ j)

=
∑

j≤x/n

SLn (x/ j) +
∑

x/n< j≤x

SLn (x/ j)

(29)= c
⌊ x

n

⌋
+
∑

i<n

SLn (i)

(⌊ x

i

⌋
−
⌊

x

i + 1

⌋)

. (31)

Moreover, because g is bounded, we must have

c
1

n
+
∑

i<n

SLn (i)

(
1

i
− 1

i + 1

)

= 0. (32)

This shows that g = fμ[r1, r2, . . . , rq; s1, s2, . . . , sm] is the function associated to
the harmonic scheme described by (32). By Lemma 3, fμ is periodic with period
T = l.c.m(r1, r2, . . . rq , s1, s2, . . . , sm) and (30) tells us that

T | n. (33)

Finally, Lemma 2 and Corollary 7 of Camargo and Martin (2022) tell us that, for
x ≥ n,

−1 = q − m =
SLn (x)

︷ ︸︸ ︷∑

j≤x

μ( j) fμ(x/ j) =
⎛

⎝
∑

j ∈ Ω

μ( j)

⎞

⎠ ,

where Ω = ⋃
0 ≤ u < n
fμ(u) = 1

Θx,u,n . ��

Example 1 Let us consider the following constant component of the Mertens function
taken from Table 3 of Camargo and Martin (2022)

S(x) =
∑

j≤x

μ( j) f (x/ j), f (x) = �x� −
⌊ x

2

⌋
−
⌊ x

3

⌋
−
⌊ x

4

⌋
+
⌊ x

12

⌋
,

whose value is c = −1 for n ≥ 12. We have

f ( j) = 1 for j ∈ {1, 2, 3, 5, 7, 11}, f ( j) = 0 for j ∈ {4, 6, 8, 9, 10, 12},

and

S(1) = 1, S(2) = 0, S(3) = −1, S(4) = −2,
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S(5) = −2, S(6) = −2, S(7) = −2, S(8) = −2,

S(9) = −2, S(10) = −2, S(11) = −2, S(12) = −1.

By (31), the function g defined by (30) satisfies

g(x) = −
⌊ x

12

⌋
+
(
�x� −

⌊ x

2

⌋)
−
(⌊ x

3

⌋
−
⌊ x

4

⌋)
− 2

11∑

i=4

(⌊ x

i

⌋
−
⌊

x

i + 1

⌋)

= �x� −
⌊ x

2

⌋
−
⌊ x

3

⌋
−
⌊ x

4

⌋
+
⌊ x

12

⌋
,

that is, the link between g = f and the harmonic scheme 1, 12; 2, 3, 4 can be recovered
by the values of S, as predicted by Theorem 1.

2.2 Proof of Theorem 2

By Theorem 1, we can assume that the given constant component of theMertens func-
tion SLn (x) is of the form (9) for some harmonic scheme r1, r2, . . . , rq; s1, s2, . . . , sm .
Because m = q + 1 (see (9)), q + m is odd. This and condition

q∑

�=1

1

r�
−

m∑

�=1

1

s�
= 0

tell us that at least one among the numbers r1, r2, . . . , rq , s1, s2, . . . , sm must be even
(a sum of an odd number of odd integers can not be zero). Hence, by (33), n is even. ��

2.3 Proof of Theorem 3

Let
Φ fμ(x) =

∑

j≤x

fμ(x/ j).

Following the proof of Lemma 2 of Camargo and Martin (2022), for fixed x ≥ η and
j ≤ x , write

x

j
= a η + u + δ, with a, u ∈ N, 0 ≤ u < η and 0 ≤ δ < 1.

Note that

fμ(x/ j) =
q∑

�=1

⌊
x/ j

r�

⌋

−
m∑

�=1

⌊
x/ j

s�

⌋

=
q∑

�=1

(

a
η

r�
+
⌊
u + δ

r�

⌋)

−
m∑

�=1

(

a
η

s�
+
⌊
u + δ

s�

⌋)
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(4)=
q∑

�=1

⌊
u

r�

⌋

−
m∑

�=1

⌊
u

s�

⌋

= fμ(u).

Therefore, fμ(x/ j) = 1 if and only if fμ(u) = 1, u =
⌊
x
j

⌋
(mod η). In other

words,

{ j ≤ x : fμ(x/ j) = 1} =
⋃

0 ≤ u ≤ η

fμ(u) = 1

Θx,u,η
(15)= χ fμ,x .

Hence,
Φ fμ(x) = #χ fμ,x , (34)

since Im( fμ) = {0, 1}. Analogously, for

Φ̃ fμ(x) :=
∑

j≤x

|μ( j)| fμ(x/ j),

we obtain
Φ̃ fμ(x) = #χ fμ,x ∩ Supp(μ).

Note that

Φ fμ(x) =
q∑

�=1

D

(
x

r�

)

−
m∑

�=1

D

(
x

s�

)

, (35)

where

D(y) =
∑

j≤y

⌊
y

j

⌋

=
∑

ab≤y

1.

By Theorem 3.3 of Apostol (1976),

D(y) = y log(y) + (2γ − 1)y + O(
√
y)

(γ is the Euler–Mascheroni constant). Hence, by (34) and (35),

#χ fμ,x =
q∑

�=1

x

r�
log

(
x

r�

)

+ (2γ − 1)
x

r�

−
[

m∑

�=1

x

s�
log

(
x

s�

)

+ (2γ − 1)
x

s�

]

+ O(
√
x)

(4)=
(

−
q∑

�=1

log(r�)

r�
+

m∑

�=1

log(s�)

s�

)

x + O(
√
x).

The underlying constant in the O-notation depends on m and q. This proves (18).
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The proof of (19) follows along the same lines, using Φ̃ fμ(x) instead of Φ fμ(x) in
(35), replacing D by the function

D̃(y) =
∑

j≤y

|μ( j)|
⌊
y

j

⌋

=
∑

ab≤y

|μ(a)|

and using that Kumchev (2000)

D̃(y) = 1

ζ(2)
y log(y) +

(
2γ − 1

ζ(2)
− 2

ζ ′(2)
ζ(2)2

)

y + O(
√
y)

(ζ is the Riemann zeta function). ��

2.4 Proof of Lemma 2

By (12), we have

n∑

j=1

b j

j
=

n∑

j=1

1

j

⎛

⎜
⎜
⎜
⎝

∑

1 ≤ i ≤ q
ri | j

1 −
∑

1 ≤ i ≤ m
si | j

1

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
q∑

i=1

n/ri∑

j=1

1

j ri

⎞

⎠ −
⎛

⎝
m∑

i=1

n/si∑

j=1

1

j si

⎞

⎠

=
( q∑

i=1

1

ri

[
log(n/ri ) + γ + O

(ri
n

)]
)

−
(

m∑

i=1

1

si

[
log(n/si ) + γ + O

( si
n

)]
)

=
( q∑

i=1

1

ri
−

m∑

i=1

1

si

)

[log(n) + γ ] + A + O

(
1

n

)

(4)= A + O

(
1

n

)

.

The underlying constant in the O-notation depends r1, r2, . . . , rq , s1, s2, . . . , sm . ��

2.5 Proof of Theorem 4

We have

#χ fμ,x =
η−1∑

u=0

fμ(u)#Θx,u,η.
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The exact value of #Θx,u,η is given by the alternating series

#Θx,u,η =
∑

j≥0

(⌊
x

jη + u

⌋

−
⌊

x

jη + u + 1

⌋)

, u < η (36)

(with the convention that j starts with 1 for u = 0). Note that, for every fixed x , the
terms in (36) alternate in sign and are non-increasing. Therefore, for every k > 0,

∣
∣
∣
∣
∣
∣
#Θx,u,η −

k∑

j=0

(⌊
x

jη + u

⌋

−
⌊

x

jη + u + 1

⌋)
∣
∣
∣
∣
∣
∣
≤
⌊

x

(k + 1)η + u

⌋

. (37)

By (37), we get,

#Θx,u,η = x
k∑

j=0

(
1

jη + u
− 1

jη + u + 1

)

+ O

(
x

(k + 1)η + u
+ x

k

x

)

,

where the implicit constant is absolute (does not depend on k or x). Hence, taking k
large and x/k large, we see that

#Θx,u,η ∼ x
∞∑

j=0

(
1

jη + u
− 1

jη + u + 1

)

. (38)

By (38),

#χ fμ,x

x
∼

η−1∑

u=1

fμ(u)

∞∑

j=0

(
1

jη + u
− 1

jη + u + 1

)

=
∞∑

j=0

η−1∑

u=1

fμ(u)

(
1

jη + u
− 1

jη + u + 1

)

. (39)

Because fμ(k)
(10)= ∑

q≤k
bq and fμ(η) = 0, summing the right-hand side of (39) by

parts (see Proposition 1.3.1 of Jameson 2004) gives

#χ fμ,x

x
∼

∞∑

j=0

η∑

u=1

bu
jη + u

=
η∑

u=1

∞∑

j=0

bu
jη + u

. (40)

By Corollary 1, the sequence (b j ) j≥1 is periodic with period

T = l.c.m(r1, r2, . . . rq , s1, s2, . . . , sm).
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Since T |η by hypothesis, we get bu = b jη+u ∀ j ≥ 0. This and (40) complete the
proof of (21).

The proof of (22) is analogous. ��
Acknowledgements The authors are much thankful to an anonymous referee who carefully read previous
versions of this paper, corrected some flaws and suggesting several improvements to produce a much better
final result.
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