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Abstract

In our previous article (Camargo and Martin in Bull Braz Math Soc New Ser 53:501-
522, 2022), we presented some families of sets @, C {1,2,..., [x]} such that the
sum of the Mdbius function over ® is constant and equals to —1 and we showed that
the existence of such sets is intimately connected with the existence of the alternating
series used by Tschebyschef and Sylvester to bound the prime counter function I7 (x).
In this note, we answer two open questions stated in the last section of (Camargo and
Martin 2022) about the general structure of these constant functions. In particular, we
show that every such constant function x —> ) jcon w(j) can be characterized by
Tschebyschef—Sylvester alternating series. We also show that the asymptotic sizes of
the sets @, connects to the Sylvester’s Stigmata of the Tschebyschef—Sylvester series.

Keywords Mertens function - Mobius function - Tschebyschef theory - Prime
number theorem

1 Introduction
Forn >2,0<{¢ <nandx > 1, let

Orpn = {j <x: BJ = ¢ (mod n)}. (1

In our previous paper (Camargo and Martin 2022), we showed that, for certain n and
L, C {0,1,...,n— 1}, the sums
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SL,) = Y u() )

j € U @x,i,n
t e Ly

of the Mobius function are constant (independent of x) for x > n. We also showed that
some of these constant functions S, are related to certain harmonic schemes used by
Tschebyschef and Sylvester to bound the prime counter function I7(x).

A harmonic scheme (named after Sylvester 1912, p. 704) is a couple

FLoT2y oo Tgs 1,82, ooy Smy T <12 < -1, S| <82 = -8y, 3)

of sequences of positive integers satisfying

m

| 1
Y—=-> —=o (4)
v S

=1t =10t

Historically, harmonic schemes have been associated with two classes of functions.
The first class of functions,

q m
X X
Sulrisra, ooorgs s1,82, 00, sml(x) = E T(a)—g T<§>,x20, (5
=1

(=1
T(x) = log(lx]!) forx > 2, T(x) = 0 for x < 2, was used by Tschebyschef and
Sylvester (1912, p. 704, and 1852) to bound the Tschebyschef function

Yx) = Y log(p).
1 prme

The second class of functions,
a4 X " X
Fulrty oy e rgs 51,52, 00y sml(x) = ;bJ —;bj x=0, (6

was considered later by MacLeod and others (see Cohen et al. 2007; MacLeod 1967
and the references therein) to bound the Mertens function

Mx) =Y p(), x> 1 ™
J=x
(we will often write only fy or f, instead of fy[ri,r2,...,7r4; s1,82,...,8m] or
Sfulri,ra, ..o rgs 81,82, ..., 5] for the sake of brevity).
In Camargo and Martin (2022), to every ful[r1,72,...,7¢; $1,52, ..., Spu] satisfy-
ing
Im(f,) = {0, 1), ®)
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we associated a constant component (2) of the Mertens function equal to —1.

Lemma 1 (Corollary 4 and Theorem 7 of Camargo and Martin 2022) Letry, 12, . .., ty;
S1, 82, ..., Sm be a harmonic scheme satisfying (8) and let 1 be any integer multiple
of

lem(ri,ra,...7g, $1,52, ..., Sm)

(l.c.m stands for the least common multiple). For x > n,

~l=q-m= > ). ©)

J € U Oruy
O0<u<n

fu.(u) =1

In the concluding section of Camargo and Martin (2022), we discussed two follow-
ing problems: first, we were unable to answer whether there would exist other constant
functions Sz, defined by (2) besides of those described by the right-hand side of (9)
and with other values rather than minus one; second, we were unable to find any n odd
and L, such that the expression in the right-hand side of (2) is constant for x > n. We
computationally checked that, forn = 3,5,7, ..., 17, the associated function Sy, is
non-constant on [30, 100] for every subset L, of {0, 1,...,n — 1}. In this paper, we
answer these questions—surprisingly, both answers are relatively simple.

Theorem 1 Ifthe function S, defined by (2) is constant for x > n, then Sy, is given by
the right-hand side of (9) for some harmonic scheme satisfying (8) (and, consequently,
S, (x) = —1forx >n).

Theorem 2 [f the function Sy, defined by (2) is constant for x > n, then n is even.

In Camargo and Martin (2022), we found some connections between the functions
fy and f;, defined by (5) and (6), respectively. For instance, equation (35) of Camargo
and Martin (2022) tells us that

k
fulriora,rgs st selk) = D b; (10)
j=1

is the partial sums of the integer coefficients b; of the Tschebyschef expansion

Sulri,ra, oo rgs s1,82, .0 Ssml(x) = Zbﬂﬁ(x/j). (1

j=1

The precise definition of the coefficients b; in (11) is

b= Y 1 - Yoo (12)

1 <i<gq 1 <i<m

rilj silj

(see equation (30) of Camargo and Martin 2022).
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When the non-vanishing b; satisfies b; € {—1, 1} and alternate in sign with the
first one positive, or, equivalently, when (8) holds (see Theorem 8 of Camargo and
Martin 2022 for further details), it can be shown (Sylvester 1881, 1912, pp. 704-706)
that

nA < liminf 2% < fimeup Y& < M2, (13)
X—00 X X—00 X ny) —ni
where ny and n; are the first two non-vanishing b;: b,, = 1, b,, = —1 and
q m
log(r¢) log(s¢)
A = Alr1,ra, ..., g, S1,82, ..., = — . 14
[r1, 72 rqs S1,82 Sm] ; v +; 5 (14

Similarly to (13), Lemma 1 can be used to bound M (x). In fact, for

Xfu,x = U @x,u,ny (15)
O<u<n

fu. W) =1

we get

. RES
M| < | D0 wi| + | D wl)| £ 1+x—#x5..  (16)
J € Xfux J & Xfu.x

A slightly improved estimate is

IM(x)| < 14 [Q(x) — #(xf,.x N Supp())]. (17)
where
Q) = > In(l
Jj<x

counts the square-free numbers up to x.

Inequalities (16) and (17) were implicitly used in the past to estimate M (x) (see
MacLeod 1967 and the references therein, and also Cohen et al. 2007 for more modern
techniques). Motivated by them, we analyzed the asymptotic size (as x — 00) of the
sets that appear on the right-hand sides of (16) and (17). Our study revealed other
interesting connections between the theories built on functions fy and f,.

Theorem 3 Under the hypotheses of Lemma 1,

#xpx = Ax+ O(/X) (18)

and

6
#Xfux NSUPP(L) = —3Ax + 0 (V). (19)

with A defined by (14) and xy, x defined by (15). The underlying constants in the
O-notation may depend on f,.
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The number A defined in (14) was called by Sylvester the Stigmata of the harmonic
schemery, rp,...,7q; S1,582, ..., sy (perhapsbyitsrolein (13)). By the Prime number
theorem, ¥ (x) ~ x,

Sy @ an b v/ by
i DE 2.

x/J i)

However, by Stirling approximation, fy (x) is asymptotic to Ax. In other words,
we have

Lemma2 Letry,rz,...,7q; 1,82, ...,Sy be a harmonic scheme and let b; and A
be defined by (11) and (14), respectively. We have

2!

q m
_ Z log(re) n Z log(s¢) . 20)

i
p
J =1 't =

We give two simple proofs of Lemma 2. The first is based on the direct analysis

of the partial sums Z . The second is an immediate consequence of a different
=1

estimate for the quantltles in Theorem 3:

Theorem 4
o
X fur ™~ Z 7’ 21)
and
>\ b
#Xfp O Supp() ~ — [ S (22)
Jj=1 J
with b; defined by (11) and X fuox defined in (15).
2 Proofs
We start with some results which could be of independent interest.
Lemma3 Let ri,r2,...,74; S1,82,...,5n be a harmonic scheme. The associ-

ated function fy[r1,r2,...,7¢; S1,52,...,8m](x) defined by (6) has period T =
Lem(ri, 1o, .. Fg, $1,82, ..., 5n).

Proof Let T* be the period of f,,. After collecting occasionally identical terms, we
rewrite f;, as

k
fu0) =Y ¢ H

j=1 /
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with non-vanishing coefficients cj, a; < aj fori < j,T = l.c.m(ay, az, ...a) and

k
Z 5 @y, (23)
— a;
Note that
“le; k Y@
Ty =T)Y L =
fuc+ D) =T L4 e | 2| 2 g
j=1 j=1
Therefore T*|T. We now proceed by showing that
aj | T*, j=1,2... k, (24)
whatis sufficient to complete the proof. In order to prove (24), we shall build a sequence
of periodic functions fy; 1, fu,2, ..., fu,k of the form
¢ X X
= i|— — |, 25
fut) ;c, LJ,J + b | =] 25)

such that each f, ¢ has period Ty, with
T,|T*. (26)
Let us first show that (25) and (26) are enough to ensure that a;|7*. In fact, we have
fu.e(x) = 0for x < min{ap, T*}. 27

— If ap = T*, there is nothing to prove.

— Ifag < T* then f, ¢(ar) = c¢ # 0.This and (27) ensure that a,|T; and (26)
implies that ap|T*.

— In the case ay > T*, we must to consider two sub-cases:

— If B¢ = 0, the first non-vanishing value of  fj, ¢ is  fyu ¢(ar) = c¢ # 0.
This is absurd, because  f}, ¢ has period 7* and it is vanishing in [0, T*] (see

(27)).
— If B¢ # 0, (27) tells us that

fue(x) = Oforx <T* and f,(T*) = B¢ #0.
We now use the periodicity of f, ¢ to evaluate f, ¢ at x of the form AT*T,
where A is a free (integer) parameter:

(25) « | P Cj
Br = futGTT®) =ATT*| 22 +JX% j (28)
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This is absurd, because the right-hand side of (28) is either identically vanish-
ing, or it is a non-constant linear function in A.

The sequence fy 1, fu,2, .-, fuk is defined inductively as follows:

- fp.,l :fp,-
T*
= SJu1 = fuz—Ce(L;J—ZLT*J> £=1,2,...,k—1.

We proved that Z—Z is integer, so the term in brackets in the definition of f, ¢41 has
period T* when a; # T*. O

Corollary 1 The sequence (b;)j>1 defined by (12) is periodic with period T =
Lem(ry, 1o, ... Fg, S1,82, ..., 5m).

Proof By (10), we have

bj = fu()=fuG =D, j=z1L

This and Lemma 3 tell us that the sequence (b;) ;> is periodic with some period T*
such that 7*|T. Moreover, the definition of f,, and (4) give

f,u(T) = 0.
Polling all this together, we get
1w T/T* T*
= fu(1) =30 D ba-nresj = T*Z -
k=1 j=1
This and (10) tell that
T*+k
fuT*+k) = Y b = ij = fulk) Vk > 0,
j=T*+1
what implies T'|T*. O

2.1 Proof of Theorem 1

Assume thatn > 2, L, = {€1,40p,... 4} C {0,1,...,n— 1} and ¢ € Z are such
that

SL,() = Y. () =c (29)

/ € U @x,i,n
L elLp

for x > n. Note that

SL,(x) = Y u()gk/i),

Jj=<x
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with
(y) = 1, if ly] =4, (mod n) for some v <k,
g\ = 0, otherwise.

By the Mobius inversion formula (Apostol 1976, Thm. 2.23)

(30)

g(x) = Y S, (x/j)

J=x
= > SLG/)+ Y S/
Jj=<x/n x/n<j<x

2ot s Eseo(|3)-[5]) @D

Moreover, because g is bounded, we must have

1 1 1
c— + Sp, ()| - — = 0. 32
n .ZL"(’)(i i—i—l) 32)
<n

This shows that g = f,[r1,72,...,74; S1,82,...,5p,] is the function associated to
the harmonic scheme described by (32). By Lemma 3, f,, is periodic with period

T = l.cm(ry,ra,...1rq, S1,582,...,5,) and (30) tells us that
T |n. (33)

Finally, Lemma 2 and Corollary 7 of Camargo and Martin (2022) tell us that, for
X >n,
SLy (%)

—l=q-m =Y u(fux/p) = | D ni].

J=x jEeR

where 2 = U05u<n @X.M,Vl' .
fu(“)=1

Example 1 Let us consider the following constant component of the Mertens function
taken from Table 3 of Camargo and Martin (2022)

s = Yeiiralh. fo = -3 513+ 5]
Jj=<x
whose value is ¢ = —1 for n > 12. We have

f(jy=1forj € {1,2,3,5,7,11}, f(j)=0forj € {4,6,8,9,10, 12},
and

S(Hh=1, S2)=0, SG=-1, S@ =-2,
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SO)=-2, S6)=-2, S(7H=-2, SO =-2,
SO =-2, S(10)=-2, SA) =-2, S(12)=-1.

By (31), the function g defined by (30) satisfies

5]+ =D - (G- D -2 ()| )
w-[51- 51 )+ L)

thatis, the link between g = f and the harmonic scheme 1, 12; 2, 3, 4 can be recovered
by the values of §, as predicted by Theorem 1.

g(x)

2.2 Proof of Theorem 2

By Theorem 1, we can assume that the given constant component of the Mertens func-
tion Sy, (x) is of the form (9) for some harmonic scheme ry, 2, ..., 745 1,82, ..., Sm.
Because m = g + 1 (see (9)), ¢ + m is odd. This and condition

~

7.1 &
IEEDEY
=t =8

tell us that at least one among the numbers r1, 72, ..., 74, 51, 52, . . ., S must be even
(a sum of an odd number of odd integers can not be zero). Hence, by (33), n is even. O

2.3 Proof of Theorem 3

Let
By (x) = Y fulx/)).

J=<x

Following the proof of Lemma 2 of Camargo and Martin (2022), for fixed x > n and
Jj < x, write

i:an—i—u—i—& with a,ue N, 0<u<nand 0<§ < 1.
J

Note that
RN R AR SR
wen = 2| 57|25
q m
_ n u—+34 _ n u—+34
(e [ ) -2 15)
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:£[2)-£13) - oo
(=1 LTt =1 L5t o

Therefore, f,,(x/j) = 1ifand only if f,(u) =1, u = Lﬂ (mod n). In other
words,

. . (15)
{j<x: ﬁt(x/J) =1} = U @x,u,n = Xfu.x-
O<u<n
Su) =1
Hence,
Dg, (X) = #Xf,.xs (34)

since Im(f,,) = {0, 1}. Analogously, for

By, (1) = 3D fux/ ),

J=<x

we obtain .
Dy, (x) = #xy,x N Supp(u).
Note that
il x i x
@y, (0) = ZD<,—>—ZD(;>’ (35)
=1 ¢ =1 ¢
where

D(y) = ZHJ - Y1

J=<y ab<y

By Theorem 3.3 of Apostol (1976),

D(y) = ylog(y) + 2y — Dy + O(/)
(y is the Euler—Mascheroni constant). Hence, by (34) and (35),

q

X X X

=1
" X X X

- Z—log —)+Qy-D=|+0Wx)
— s st st

- (‘ibg(m 53 log(w>x + 0.
50

=1 =1
The underlying constant in the O-notation depends on m and g. This proves (18).
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The proof of (19) follows along the same lines, using é £, (x) instead of @, (x) in
(35), replacing D by the function

D(y) = Zm(m{ J = > @)

J=Yy ab<y

and using that Kumchev (2000)

1 2y — 1 ;‘ (2))
= — e +0
D(y) = : (z)y og(y) + ( @ ; 2z2)Y V)
(¢ is the Riemann zeta function). O

2.4 Proof of Lemma 2

By (12), we have

n b n 1
J
SO 1 - 1
> =l X 2
J= J= 1 <i=<gqg 1<i<m
rilj silj
q nfr 1 m n/s
=22 - ZZM
i=1 j=1 i=1 j=1

_ (i ~[iogn/ry 4y +0 (% )])

=1
_<i$[log<n/s,>+y+o( )])
71 1

- (2524
A .

o)

The underlying constant in the O-notation depends r1, 72, ...,7q, S1,52,...,8y. O

) [log(n) +y] + A + 0(1)

2.5 Proof of Theorem 4

We have
n—1

Bl fux = D Fu@H#O .

u=0
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The exact value of #0), , , is given by the alternating series

X X
#Orun = Z(L"HMJ - L’n+u+1J>’ = (36)

Jj=0

(with the convention that j starts with 1 for u = 0). Note that, for every fixed x, the
terms in (36) alternate in sign and are non-increasing. Therefore, for every & > 0,

k

o3 |7 ~ L )| = lowma -
e \Lintu jn+u+1])| =~ Ltk+Dn+u

By (37), we get,

_xz B 1 L0 X —i—xk
Oxun = jn+u jn+u+1 k+Dn+u x)’

where the implicit constant is absolute (does not depend on k or x). Hence, taking k
large and x /k large, we see that

— 1 1
#6O ~ X - . 38
o ,X:(:)(jwru jn+u+1) %)
By (38),
1
s 5w i( ~ Ges)
e tu jntut ]
inlfm(l ) (39)
= w(u - — = .
o g jntu  jntu+l

Because f (k) O > by and f,,(n) = 0, summing the right-hand side of (39) by
q=k

parts (see Proposition 1.3.1 of Jameson 2004) gives

x o et m+u

u=1 j=0
By Corollary 1, the sequence (b;) j>1 is periodic with period
T = lcem(ri,ry,...Tq, 1,82, ..., 8m).
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Since T'|n by hypothesis, we get b, = bjy4, ¥j > 0. This and (40) complete the
proof of (21).
The proof of (22) is analogous. O
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