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Abstract
We consider some local entropy properties of dynamical systems under the assump-
tion of shadowing. In the first part, we give necessary and sufficient conditions for
shadowable points to be certain entropy points. In the second part, we give some nec-
essary and sufficient conditions for (non) h-expansiveness under the assumption of
shadowing and chain transitivity; and use the result to present a counter-example for
a question raised by Artigue et al. (Proc Am Math Soc 150:3369–3378, 2022).

Keywords Shadowable points · Entropy points · Shadowing · h-expansive · s-limit
shadowing
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1 Introduction

Shadowing, introduced byAnosov (1967) andBowen (1975), is a feature of hyperbolic
dynamical systems and has played an important role in the global theory of dynamical
systems [see Aoki and Hiraide (1994) or Pilyugin (1999) for background]. It generally
refers to a phenomenon in which coarse orbits, or pseudo-orbits, are approximated
by true orbits. In Morales (2016), by splitting the global shadowing into pointwise
shadowings, Morales introduced the notion of shadowable points, which gives a tool
for a local description of the shadowing phenomena. The study of shadowable points
has been extended to shadowable points for flows (Aponte and Villavicencio 2018);
pointwise stability and persistence (Das et al. 2020; Das and Khan 2022; Dong et al.
2019; Jung et al. 2020; Koo et al. 2018); shadowable measures (Shin 2019); average
shadowable and specification points (Das et al. 2019; Das and Khan 2021); eventually
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shadowable points (Dong et al. 2020); shadowable points of set-valued dynamical
systems (Luo et al. 2020); and so on.

In Kawaguchi (2017b), some sufficient conditions are given for a shadowable point
to be an entropy point. Recall that the notion of entropy points is obtained by a concen-
tration of positive topological entropy at a point (Ye and Zhang 2007). Also, in Arbieto
and Rego (2020), the notion of shadowable points is applied to obtain pointwise suf-
ficient conditions for positive topological entropy (see also Arbieto and Rego 2022).
In the first part of this paper, we improve the result of Kawaguchi (2017b) by giving
necessary and sufficient conditions for shadowable points to be certain entropy points.
The h-expansiveness is another local entropy property of dynamical systems (Bowen
1972). In the second part of this paper, we present several necessary and sufficient
conditions for (non) h-expansiveness under the assumption of shadowing and chain
transitivity; and use the result to obtain a counter-example for a question in Artigue
et al. (2022).

We beginwith a definition. Throughout, X denotes a compactmetric space endowed
with a metric d.

Definition 1.1 Given a continuous map f : X → X and δ > 0, a finite sequence
(xi )ki=0 of points in X , where k > 0 is a positive integer, is called a δ-chain of f if
d( f (xi ), xi+1) ≤ δ for every 0 ≤ i ≤ k − 1. A δ-chain (xi )ki=0 of f with x0 = xk is
said to be a δ-cycle of f .

Let f : X → X be a continuous map. For any x, y ∈ X and δ > 0, the notation
x →δ y means that there is a δ-chain (xi )ki=0 of f with x0 = x and xk = y. We
write x → y if x →δ y for all δ > 0. We say that x ∈ X is a chain recurrent point
for f if x → x , or equivalently, for any δ > 0, there is a δ-cycle (xi )ki=0 of f with
x0 = xk = x . Let CR( f ) denote the set of chain recurrent points for f . We define a
relation ↔ in

CR( f )2 = CR( f ) × CR( f )

by: for any x, y ∈ CR( f ), x ↔ y if and only if x → y and y → x . Note that ↔ is
a closed equivalence relation in CR( f )2 and satisfies x ↔ f (x) for all x ∈ CR( f ).
An equivalence class C of ↔ is called a chain component for f . We denote by C( f )
the set of chain components for f .

A subset S of X is said to be f -invariant if f (S) ⊂ S. For an f -invariant subset S
of X , we say that f |S : S → S is chain transitive if for any x, y ∈ S and δ > 0, there
is a δ-chain (xi )ki=0 of f |S with x0 = x and xk = y.

Remark 1.1 The following properties hold

• CR( f ) = ⊔
C∈C( f ) C ,

• Every C ∈ C( f ) is a closed f -invariant subset of CR( f ),
• f |C : C → C is chain transitive for all C ∈ C( f ),
• For any f -invariant subset S of X , if f |S : S → S is chain transitive, then S ⊂ C
for some C ∈ C( f ).
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Let f : X → X be a continuous map. For x ∈ X , we define a subset C(x) of X by

C(x) = {x} ∪ {y ∈ X : x → y}.

By this definition, we easily see that for any x ∈ X ,C(x) is a closed f -invariant subset
of X . We say that a closed f -invariant subset S of X is chain stable if for any ε > 0,
there is δ > 0 for which every δ-chain (xi )ki=0 of f with x0 ∈ S satisfies d(xi , S) ≤ ε

for all 0 ≤ i ≤ k. A proof of the following lemma is given in Sect. 3.

Lemma 1.1 C(x) is chain stable for all x ∈ X.

Remark 1.2 For any x ∈ X , since C(x) is chain stable, it satisfies the following
properties

• CR( f |C(x)) = C(x) ∩ CR( f ),
• for every C ∈ C( f ), C ⊂ C(x) if and only if C ∩ C(x) 	= ∅,
• C( f |C(x)) = {C ∈ C( f ) : C ⊂ C(x)}.
Let f : X → X be a continuous map and let ξ = (xi )i≥0 be a sequence of points

in X . For δ > 0, ξ is called a δ-pseudo orbit of f if d( f (xi ), xi+1) ≤ δ for all i ≥ 0.
For ε > 0, ξ is said to be ε-shadowed by x ∈ X if d( f i (x), xi ) ≤ ε for all i ≥ 0.

Definition 1.2 Given a continuous map f : X → X , x ∈ X is called a shadowable
point for f if for any ε > 0, there is δ > 0 such that every δ-pseudo orbit (xi )i≥0
of f with x0 = x is ε-shadowed by some y ∈ X . We denote by Sh( f ) the set of
shadowable points for f .

For a continuous map f : X → X and a subset S of X , we say that f has the
shadowing on S if for any ε > 0, there is δ > 0 such that every δ-pseudo orbit (xi )i≥0
of f with xi ∈ S for all i ≥ 0 is ε-shadowed by some y ∈ X . We say that f has the
shadowing property if f has the shadowing on X .

The next lemma is a basis for the formulation of Theorems 1.1 and 1.2.

Lemma 1.2 For a continuous map f : X → X and x ∈ X, the following conditions
are equivalent

(1) x ∈ Sh( f ),
(2) C(x) ⊂ Sh( f ),
(3) f has the shadowing on C(x).

Next, we recall the definition of entropy points from Ye and Zhang (2007). Let
f : X → X be a continuous map. For n ≥ 1, the metric dn on X is defined by

dn(x, y) = max
0≤i≤n−1

d( f i (x), f i (y))

for all x, y ∈ X . For n ≥ 1 and r > 0, a subset E of X is said to be (n, r)-separated
if dn(x, y) > r for all x, y ∈ E with x 	= y. Let K be a subset of X . For n ≥ 1 and
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r > 0, let sn( f , K , r) denote the largest cardinality of an (n, r)-separated subset of
K . We define h( f , K , r) and h( f , K ) by

h( f , K , r) = lim sup
n→∞

1

n
log sn( f , K , r)

and

h( f , K ) = lim
r→0

h( f , K , r).

We also define the topological entropy htop( f ) of f by htop( f ) = h( f , X).

Definition 1.3 Let f : X → X be a continuous map. For x ∈ X , we denote by K(x)
the set of closed neighborhoods of x .

(1) Ent( f ) is the set of x ∈ X such that h( f , K ) > 0 for all K ∈ K(x),
(2) For r > 0, Entr ( f ) is the set of x ∈ X such that h( f , K , r) > 0 for all K ∈ K(x),
(3) For r > 0 and b > 0, Entr ,b( f ) is the set of x ∈ X such that h( f , K , r) ≥ b for

all K ∈ K(x).

Remark 1.3 The following properties hold

• Ent( f ), Entr ( f ), r > 0, and Entr ,b( f ), r , b > 0, are closed f -invariant subsets
of X ,

•

Ent( f ) ⊂ Entr ( f ) ⊂ Entr ,b( f )

for all r , b > 0,
• for any closed subset K of X and r > 0, if h( f , K , r) > 0, then K ∩Entr ( f ) 	= ∅,
• for any closed subset K of X and r , b > 0, ifh( f , K , r) ≥ b, then K∩Entr ,b( f ) 	=

∅.
For a continuous map f : X → X , we define Co( f ) as the set of C ∈ C( f ) such

that C is a periodic orbit or an odometer. We also define Cno( f ) to be

Cno( f ) = C( f ) \ Co( f ).

We refer to Sect. 2.1 for various matters related to this definition.
The first theorem characterizes the shadowable points that are entropy points of a

certain type.

Theorem 1.1 Given a continuous map f : X → X and x ∈ Sh( f ),

x ∈
⋃

r>0

Entr ( f )

if and only if Cno( f |C(x)) 	= ∅.
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The following theorem characterizes the shadowable points that are entropy points
of other type.

Theorem 1.2 Given a continuous map f : X → X and x ∈ Sh( f ),

x ∈
⋃

r ,b>0

Entr ,b( f )

if and only if htop( f |C(x)) = h( f ,C(x)) > 0.

Remark 1.4 In Ye and Zhang (2007), a point of

⋃

r ,b>0

Entr ,b( f )

is called a uniform entropy point for f .

Remark 1.5 In Sect. 3, we give an example of a continuous map f : X → X such that

• f has the shadowing property and so satisfies X = Sh( f ),
•

Ent( f ) \
⋃

r>0

Entr ( f )

is a non-empty set.

Before we state the next theorem, we introduce some definitions.

Definition 1.4 For a continuous map f : X → X and (x, y) ∈ X2,

• (x, y) is called a distal pair for f if

lim inf
i→∞ d( f i (x), f i (y)) > 0,

• (x, y) is called a proximal pair for f if

lim inf
i→∞ d( f i (x), f i (y)) = 0,

• (x, y) is called an asymptotic pair for f if

lim sup
i→∞

d( f i (x), f i (y)) = 0.

• (x, y) is called a scrambled pair for f if

lim sup
i→∞

d( f i (x), f i (y)) > 0 and lim inf
i→∞ d( f i (x), f i (y)) = 0.
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For a continuous map f : X → X and x ∈ X , the ω-limit set ω(x, f ) of x for f
is defined to be the set of y ∈ X such that lim j→∞ f i j (x) = y for some sequence
0 ≤ i1 < i2 < · · · . Note that ω(x, f ) is a closed f -invariant subset of X and satisfies
y → z for all y, z ∈ ω(x, f ). For every x ∈ X , we have ω(x, f ) ⊂ C for some
C ∈ C( f ) and such C satisfies C ⊂ C(x).

Remark 1.6 Let f : X → X be a continuous map.

• For a closed f -invariant subset S of X and e > 0, we say that x ∈ S is an
e-sensitive point for f |S : S → S if for any ε > 0, there is y ∈ S such that
d(x, y) ≤ ε and d( f i (x), f i (y)) > e for some i ≥ 0. We define Sene( f |S) to be
the set of e-sensitive points for f |S and

Sen( f |S) =
⋃

e>0

Sene( f |S).

• A closed f -invariant subset M of X is said to be a minimal set for f if closed
f -invariant subsets of M are only ∅ and M . This is equivalent to M = ω(x, f )
for all x ∈ M .

In Kawaguchi (2017b), the author gave three sufficient conditions for a shadowable
point to be an entropy point. The next theorem refines Corollary 1.1 of Kawaguchi
(2017b).

Theorem 1.3 Let f : X → X be a continuous map. For any x ∈ X and C ∈ C( f )with
ω(x, f ) ⊂ C, if one of the following conditions is satisfied, then C ∈ Cno( f |C(x)).

(1) ω(x, f ) ∩ Sen( f |CR( f )) 	= ∅,
(2) there is y ∈ X such that (x, y) ∈ X2 is a scrambled pair for f ,
(3) ω(x, f ) is not a minimal set for f .

Remark 1.7 For a continuous map f : X → X , y ∈ X is called a minimal point for f
if y ∈ ω(y, f ) and ω(y, f ) is a minimal set for f . Due to Theorem 8.7 of Furstenberg
(1981), we know that for any x ∈ X , there is a minimal point y ∈ X for f such that
(x, y) is a proximal pair for f . If ω(x, f ) is not a minimal set for f , then it follows
that (x, y) is a scrambled pair for f , thus (3) always implies (2).

We consider another local property of dynamical systems so-called h-expansiveness
Bowen (1972). Let f : X → X be a continuous map. For x ∈ X and ε > 0, let

�ε(x) = {y ∈ X : d( f i (x), f i (y)) ≤ ε for all i ≥ 0}

and

h∗
f (ε) = sup

x∈X
h( f ,�ε(x)).

We say that f is h-expansive if h∗
f (ε) = 0 for some ε > 0. The following theorem

gives several conditions equivalent to (non) h-expansiveness under the assumption of
shadowing and chain transitivity.
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Theorem 1.4 Let f : X → X be a continuous map. If f is chain transitive and has
the shadowing property, then the following conditions are equivalent

(1) f is not h-expansive,
(2) for any ε > 0, there is r > 0 such that for every δ > 0, there is a pair

((xi )
k
i=0, (yi )

k
i=0)

of δ-chains of f with (x0, xk) = (y0, yk) and

r ≤ max
0≤i≤k

d(xi , yi ) ≤ ε,

(3) for any ε > 0, there are m ≥ 1 and a closed f m-invariant subset Y of X such that

sup
i≥0

d( f i (x), f i (y)) ≤ ε

for all x, y ∈ Y and there is a factor map

π : (Y , f m) → ({0, 1}N, σ ),

where σ : {0, 1}N → {0, 1}N is the shift map.
(4) for any ε > 0, there is a scrambled pair (x, y) ∈ X2 for f such that

sup
i≥0

d( f i (x), f i (y)) ≤ ε.

In Sect. 4, we use this theorem to obtain a counter-example for a question in Artigue
et al. (2022). We shall make some definitions to precisely state the properties that are
satisfied by the example.

Definition 1.5 Let f : X → X be a continuous map and let ξ = (xi )i≥0 be a sequence
of points in X . For δ > 0, ξ is called a δ-limit-pseudo orbit of f if d( f (xi ), xi+1) ≤ δ

for all i ≥ 0, and

lim
i→∞ d( f (xi ), xi+1) = 0.

For ε > 0, ξ is said to be ε-limit shadowed by x ∈ X if d( f i (x), xi ) ≤ ε for all i ≥ 0,
and

lim
i→∞ d( f i (x), xi ) = 0.

We say that f has the s-limit shadowing property if for any ε > 0, there is δ > 0 such
that every δ-limit-pseudo orbit of f is ε-limit shadowed by some point of X .

Remark 1.8 If f has the s-limit shadowing property, then f satisfies the shadowing
property.
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Definition 1.6 Let f : X → X be a homeomorphism. For x ∈ X and ε > 0, let

	ε(x) = {y ∈ X : d( f i (x), f i (y)) ≤ ε for all i ∈ Z}.

We say that f is

• expansive if there is e > 0 such that 	e(x) = {x} for all x ∈ X ,
• countably-expansive if there is e > 0 such that 	e(x) is a countable set for all

x ∈ X ,
• cw-expansive if there is e > 0 such that	e(x) is totally disconnected for all x ∈ X .

A continuous map f : X → X is said to be transitive (resp.mixing) if for any
non-empty open subsets U , V of X , it holds that f j (U ) ∩ V 	= ∅ for some j > 0
(resp. for all j ≥ i for some i > 0).

Remark 1.9 If f is transitive, then f is chain transitive, and the converse holds when
f has the shadowing property.

In Sect. 4, by usingTheorem1.4,wegive an example of a homeomorphism f : X →
X (Example 4.1) such that

(1) X is totally disconnected and so f is cw-expansive,
(2) f is mixing,
(3) f is h-expansive,
(4) f has the s-limit shadowing property,
(5) f is not countably-expansive,
(6) f satisfies Xe = ∅, where

Xe = {x ∈ X : 	ε(x) = {x} for some ε > 0}.

In Artigue et al. (2020), it is proved that if a homeomorphism f : X → X has the
L-shadowing property, that is, a kind of two-sided s-limit shadowing property, then

f |CR( f ) : CR( f ) → CR( f )

is expansive if and only if f |CR( f ) is countably-expansive if and only if f |CR( f ) is h-
expansive (see Corollary C of Artigue et al. (2020)). Example 4.1 shows that even if a
homeomorphism f : X → X satisfies the s-limit shadowing property, this equivalence
does not hold. The example also gives a negative answer to the following question in
Artigue et al. (2022) (see Question 3 of Artigue et al. (2022)):

Question Is Xe non-empty for every transitive h-expansive and cw-expansive homeo-
morphism f : X → X satisfying the shadowing property?

This paper consists of four sections. In Sect. 2, we collect some definitions, nota-
tions, and facts that are used in this paper. In Sect. 3, we prove Lemmas 1.1 and 1.2;
prove Theorems 1.1, 1.2, and 1.3; and give an example mentioned in Remark 1.5. In
Sect. 4, we prove Theorem 1.4 and give an example mentioned above (Example 4.1)
after proving some auxiliary lemmas.
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2 Preliminaries

In this section, we briefly collect some definitions, notations, and facts that are used
in this paper.

2.1 Odometers, Equicontinuity, and Chain Continuity

An odometer (also called an addingmachine) is defined as follows.Given an increasing
sequence m = (mk)k≥1 of positive integers such that m1 ≥ 1 and mk divides mk+1
for each k = 1, 2, . . . , we define

• X(k) = {0, 1, . . . ,mk − 1} (with the discrete topology),
•

Xm =
⎧
⎨

⎩
(xk)k≥1 ∈

∏

k≥1

X(k) : xk ≡ xk+1 (mod mk) for all k ≥ 1

⎫
⎬

⎭
,

• gm(x)k = xk + 1 (mod mk) for all x = (xk)k≥1 ∈ Xm and k ≥ 1.

We regard Xm as a subspace of the product space
∏

k≥1 X(k). The homeomorphism

gm : Xm → Xm

(or (Xm, gm)) is called an odometer with the periodic structure m.
Let f : X → X be a continuous map and let S be a closed f -invariant subset of X .

We say that f |S : S → S is

• equicontinuous if for every ε > 0, there is δ > 0 such that any x, y ∈ S with
d(x, y) ≤ δ satisfies

sup
i≥0

d( f i (x), f i (y)) ≤ ε,

• chain continuous if for every ε > 0, there is δ > 0 such that any δ-pseudo orbits
(xi )i≥0 and (yi )i≥0 of f |S with x0 = y0 satisfies

sup
i≥0

d(xi , yi ) ≤ ε.

Recall that for a continuous map f : X → X , Co( f ) is defined as the set of C ∈
C( f ) such that C is a periodic orbit or an odometer, that is, (C, f |C ) is topologically
conjugate to an odometer.

Lemma 2.1 For a continuousmap f : X → X, the following conditions are equivalent

(1) C( f ) = Co( f ),
(2) f |CR( f ) : CR( f ) → CR( f ) is an equicontinuous homeomorphism and CR( f )

is totally disconnected,
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(3) f |CR( f ) : CR( f ) → CR( f ) is chain continuous.

Proof We prove the implication (1) �⇒ (2). Since C( f ) = Co( f ),
(A) every C ∈ C( f ) is totally disconnected,
(B) f |CR( f ) is a distal homeomorphism, that is, every (x, y) ∈ CR( f )2 is a distal pair

for f |CR( f ).

Since the quotient space

C( f ) = CR( f )/↔

is totally disconnected, by (A), we obtain that CR( f ) is totally disconnected. By
(B) and Corollary 1.9 of Auslander et al. (2007), we conclude that f |CR( f ) is an
equicontinuous homeomorphism. For a proof of (2) �⇒ (3) (resp. (3) �⇒ (1)),
we refer to Lemma 3.3 (resp.Section 6) of Kawaguchi (2021a). ��

By applying Lemma 2.1 to f |C : C → C , C ∈ C( f ), we obtain the following
corollary.

Corollary 2.1 For a continuous map f : X → X and C ∈ C( f ), the following condi-
tions are equivalent

(1) C ∈ Co( f ),
(2) f |C : C → C is an equicontinuous homeomorphism andC is totally disconnected,
(3) f |C : C → C is chain continuous.

2.2 Factor Maps and Inverse Limit

For two continuous maps f : X → X , g : Y → Y , where X , Y are compact metric
spaces, a continuous map π : X → Y is said to be a factor map if π is surjective and
satisfies π ◦ f = g ◦ π . A factor map π : X → Y is also denoted as

π : (X , f ) → (Y , g).

Given an inverse sequence of factor maps

π = (πn : (Xn+1, fn+1) → (Xn, fn))n≥1,

let

X = {x = (xn)n≥1 ∈
∏

n≥1

Xn : πn(xn+1) = xn for all n ≥ 1},

which is a compact metric space. Then, a continuous map f : X → X is well-defined
by f (x) = ( fn(xn))n≥1 for all x = (xn)n≥1 ∈ X . We call

(X , f ) = lim
π

(Xn, fn)
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the inverse limit system. It is easy to see that f is transitive (resp.mixing) if and only
if fn : Xn → Xn is transitive (resp.mixing) for all n ≥ 1. It is also easy to see that
f has the shadowing property if fn : Xn → Xn has the shadowing property for all
n ≥ 1.

3 Proofs of Theorems 1.1, 1.2, and 1.3

In this section, we prove Lemmas 1.1 and 1.2; prove Theorems 1.1, 1.2, and 1.3; and
give an example mentioned in Remark 1.5.

First, we prove Lemma 1.1.

Proof of Lemma 1.1 If C(x) is not chain stable, then there is r > 0 such that for any
δ > 0, there is a δ-chain x (δ) = (x (δ)

i )
kδ

i=0 of f with x (δ)
0 ∈ C(x) and

d(x (δ)
kδ

,C(x)) ≥ r .

Then, there are a sequence 0 < δ1 > δ2 > · · · and y, z ∈ X such that the following
conditions are satisfied

• lim j→∞ δ j = 0,

• lim j→∞ x
(δ j )

0 = y and lim j→∞ x
(δ j )

kδ j
= z.

It follows that y ∈ C(x), d(z,C(x)) ≥ r > 0 and so z /∈ C(x); and y → z. However,
if y = x , we obtain x → z implying z ∈ C(x), a contradiction. If y 	= x , by x → y
and y → z, we obtain x → z implying z ∈ C(x), a contradiction. Thus, the lemma
has been proved. ��

Next, we prove Lemma 1.2.

Proof of Lemma 1.2 We prove the implication (1) �⇒ (2). Let x ∈ Sh( f ) and
y ∈ C(x) \ {x}. For any ε > 0, since x ∈ Sh( f ), there is δ > 0 such that every
δ-pseudo orbit (xi )i≥0 of f with x0 = x is ε-shadowed by some z ∈ X . Since
y ∈ C(x) \ {x} and so x → y, we have a δ-chain α = (yi )ki=0 of f with y0 = x and
yk = y. For any δ-pseudo orbit β = (zi )i≥0 of f with z0 = y, we consider a δ-pseudo
orbit

ξ = αβ = (xi )i≥0 = (y0, y1, . . . , yk−1, z0, z1, z2, . . . )

of f . Then, since x0 = y0 = x , ξ is ε-shadowed by some z ∈ X and so β is ε-
shadowed by f k(z). Since ε > 0 is arbitrary, we obtain y ∈ Sh( f ), thus (1) �⇒ (2)
has been proved.

Next, we prove the implication (2) �⇒ (3). For a closed subset K of X , if
K ⊂ Sh( f ), then by Lemma 2.4 of Kawaguchi (2017a), for any ε > 0, there is δ > 0
such that every δ-pseudo orbit (xi )i≥0 of f with x0 ∈ K is ε-shadowed by some
y ∈ X . Since C(x) is a closed subset of X , this clearly implies that if C(x) ⊂ Sh( f ),
then f has the shadowing on C(x).
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Finally, we prove the implication (3) �⇒ (1). If f has the shadowing on C(x),
then for any ε > 0, there is δ > 0 such that every δ-pseudo orbit (xi )i≥0 of f with
xi ∈ C(x) for all i ≥ 0 is ε-shadowed by some y ∈ X . Since x ∈ C(x) and C(x) is
chain stable, if γ > 0 is sufficiently small, then for every γ -pseudo orbit ξ = (yi )i≥0
of f with y0 = x , by taking xi ∈ C(x), i > 0, with d(yi ,C(x)) = d(yi , xi ) for all
i > 0, we have that

• d(xi , yi ) ≤ ε for each i > 0,
•

(xi )i≥0 = (x, x1, x2, x3, . . . )

is a δ-pseudo orbit of f with xi ∈ C(x) for all i ≥ 0 and so is ε-shadowed by
some y ∈ X .

It follows that ξ is 2ε-shadowed by y. Since ε > 0 is arbitrary, we obtain x ∈ Sh( f ),
thus (3) �⇒ (1) has been proved. This completes the proof of Lemma 1.2. ��

We give a proof of Theorem 1.1.

Proof of Theorem 1.1 First, we prove the “if” part. LetC ∈ Cno( f |C(x)). Due to Corol-
lary 2.1, since f |C : C → C is not chain continuous, there are p ∈ C and e > 0 such
that for any δ > 0, there are δ-chains (xi )ki=0 and (yi )ki=0 of f |C with x0 = y0 = p
and d(xk, yk) > e. Fix 0 < r < e and take any ε > 0 with r + 2ε < e. Since
x ∈ Sh( f ), there is δ0 > 0 such that every δ0-pseudo orbit (xi )i≥0 of f with x0 = x
is ε-shadowed by some y ∈ X . We fix a pair

((xi )
K
i=0, (yi )

K
i=0)

of δ0-chains f |C with x0 = y0 = p and d(xK , yK ) > e. Since C ⊂ C(x), we have
x → q for some q ∈ C . We also fix a δ0-chain α = (zi )Li=0 of f with z0 = x and
zL = q. Since f |C is chain transitive, by compactness of C , there is M > 0 such
that for any w ∈ C , there is a δ0-chain (wi )

m
i=0 of f |C with w0 = w, wm = p, and

m ≤ M . It follows that for any w ∈ C , there is a pair

(aw, bw) = ((aw
i )

kw

i=0, (b
w
i )

kw

i=0)

of δ0-chains of f |C with aw
0 = bw

0 = w, d(aw
kw

, bw
kw

) > e, and kw ≤ K + M . Given

any N ≥ 1 and s = (si )Ni=1 ∈ {a, b}N , we inductively define a family of δ0-chains

α(s, n) = (c(s, n)i )
k(s,n)
i=0

of f |C , 1 ≤ n ≤ N , by α(s, 1) = sq1 and α(s, n + 1) = s
c(s,n)k(s,n)

n+1 for any 1 ≤ n ≤
N − 1. Then, we consider a family of δ0-chains

α(s) = (c(s)i )
k(s)
i=0 = αα(s, 1)α(s, 2) · · · α(s, N )
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of f , s ∈ {a, b}N . Note that c(s)0 = x and k(s) ≤ L+N (K +M) for all s ∈ {a, b}N ;
and for any s, t ∈ {a, b}N with s 	= t , we have d(c(s)i , c(t)i ) > e for some

0 ≤ i ≤ min{k(s), k(t)} ≤ L + N (K + M).

By the choice of δ0, for every s ∈ {a, b}N , there is x(s) ∈ X such that
d( f i (x(s)), c(s)i ) ≤ ε for all 0 ≤ i ≤ k(s). It follows that

{x(s) : s ∈ {a, b}N }

is an (L + N (K + M), r)-separated subset of Bε(x) = {y ∈ X : d(x, y) ≤ ε}. Since
N ≥ 1 is arbitrary, we obtain

h( f , Bε(x), r) = lim sup
n→∞

1

n
log sn( f , Bε(x), r)

≥ lim sup
N→∞

1

L + N (K + M)
log sL+N (K+M)( f , Bε(x), r)

≥ lim sup
N→∞

1

L + N (K + M)
log 2N

= 1

K + M
log 2 > 0.

Since ε > 0 with r + 2ε < e is arbitrary, we conclude that x ∈ Entr ( f ), proving the
“if” part.

Next, we prove the “only if” part. Let x ∈ Entr ( f ) for some r > 0. Due to
Lemma 2.1, it suffices to show that

f |CR( f |C(x)) : CR( f |C(x)) → CR( f |C(x))

is not chain continuous. For any ε > 0, let

Sε = {y ∈ C(x) : d(y,CR( f |C(x))) ≤ ε}

and

Tε = {y ∈ C(x) : d(y,CR( f |C(x))) ≥ ε}.

Since

CR( f |C(x)) = C(x) ∩ CR( f ),

we have Tε ∩CR( f ) = ∅; therefore, for any p ∈ Tε , we can take a neighborhood Up

of p in X such that

(1) d(a, b) ≤ r and d( f (a), f (b)) ≤ ε for all a, b ∈ Up,
(2) f i (c) /∈ Up for all c ∈ Up and i > 0.
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We take p1, p2, . . . , pM ∈ Tε with Tε ⊂ ⋃M
j=1Upj . Let U = ⋃M

j=1Upj and take
0 < 
 ≤ ε such that

{z ∈ X : d(z, Tε) ≤ 
} ⊂ U .

Since x ∈ C(x) and C(x) is chain stable, we can take a closed neighborhood K of x
in X such that

(3) d(a, b) ≤ ε for all a, b ∈ K ,
(4) d( f i (c),C(x)) ≤ 
 for all c ∈ K and i ≥ 0.

For any q ∈ X and n ≥ 1, let

A(q, n) = {0 ≤ i ≤ n − 1 : f i (q) ∈ U }

and take

g(q, n) : A(q, n) → {Upj : 1 ≤ j ≤ M}

such that f i (q) ∈ g(q, n)(i) for every i ∈ A(q, n). By (2), we have |A(q, n)| ≤ M
for all q ∈ X and n ≥ 1. Note that

|{(A(q, n), g(q, n)) : q ∈ X}| ≤
min{n,M}∑

k=0

(
n

k

)

Mk ≤ (M + 1)nMMM .

for all n ≥ 1. Since x ∈ Entr ( f ), we have

h( f , K , r) = lim sup
n→∞

1

n
log sn( f , K , r) > 0;

therefore,

sn( f , K , r) > (M + 1)nMMM

for some n ≥ 1. This implies that there are u, v ∈ K such that dn(u, v) > r and

(A(u, n), g(u, n)) = (A(v, n), g(v, n)).

We fix 0 ≤ N ≤ n − 1 with d( f N (u), f N (v)) > r and let

(A, g) = (A(u, n), g(u, n)) = (A(v, n), g(v, n)).

If

A ∩ {0 ≤ l ≤ N } = ∅,
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then f l(u), f l(v) /∈ U for all 0 ≤ l ≤ N . By (4) and the choice of 
, for any
0 ≤ l ≤ N , we obtain

{ f l(u), f l(v)} ⊂ {w ∈ X : d(w, Sε) ≤ 
}.

It follows that

max{d( f l(u),CR( f |C(x))), d( f l(v),CR( f |C(x)))} ≤ ε + 
 ≤ 2ε

for all 0 ≤ l ≤ N . Moreover, by u, v ∈ K and (3), we obtain d(u, v) ≤ ε. If

A ∩ {0 ≤ l ≤ N } 	= ∅,

letting

L = max [A ∩ {0 ≤ l ≤ N }],

we have f L(u), f L(v) ∈ g(L) and g(L) ∈ {Upj : 1 ≤ j ≤ M}. By (1), we have
L < N and d( f L+1(u), f L+1(v)) ≤ ε. By

A ∩ {L + 1 ≤ l ≤ N } = ∅,

(4), and the choice of 
, similarly as above, we obtain

max{d( f l(u),CR( f |C(x))), d( f l(v),CR( f |C(x)))} ≤ ε + 
 ≤ 2ε

for all L + 1 ≤ l ≤ N . Since ε > 0 is arbitrary, we conclude that f |CR( f |C(x)) is not
chain continuous, thus the “only if” part has been proved. This completes the proof
of Theorem 1.1. ��

For the proof of Theorem 1.2, we need two lemmas.

Lemma 3.1 Let f : X → X be a continuous map.

(1) For any x, y ∈ X and r > 0, if x ∈ Sh( f ) and y ∈ C(x) ∩ Entr ( f ), then
x ∈ Ents( f ) for all 0 < s < r .

(2) For any x, y ∈ X and r , b > 0, if x ∈ Sh( f ) and y ∈ C(x) ∩ Entr ,b( f ), then
x ∈ Ents,b( f ) for all 0 < s < r .

Proof Let x ∈ Sh( f ) and y ∈ C(x)\{x}. For any 0 < s < r , we fix ε > 0 with
s + 2ε < r . Since x ∈ Sh( f ), there is δ > 0 such that every δ-pseudo orbit of
(xi )i≥0 of f with x0 = x is ε-shadowed by some z ∈ X . Since y ∈ C(x) \ {x}
and so x → y, we have a δ/2-chain (yi )ki=0 of f with y0 = x and yk = y. For
K ∈ K(y), n ≥ 1, and r > 0, we take an (n, r)-separated subset E(K , n, r) of K with
|E(K , n, r)| = sn( f , K , r). If K is sufficiently small, then for any p ∈ E(K , n, r),

(z pi )k+n−1
i=0 = (y0, y1, . . . , yk−1, p, f (p), . . . , f n−1(p))
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is a δ-chain of f with z p0 = y0 = x and so there is z p ∈ X with d( f i (z p), z
p
i ) ≤ ε

for all 0 ≤ i ≤ k + n − 1. It follows that

{z p : p ∈ E(K , n, r)}

is a (k + n, s)-separated subset of Bε(x) = {w ∈ X : d(x, w) ≤ ε} and so

sk+n( f , Bε(x), s) ≥ |E(K , n, r)| = sn( f , K , r),

implying

h( f , Bε(x), s) = lim sup
n→∞

1

k + n
log sk+n( f , Bε(x), s)

≥ lim sup
n→∞

1

k + n
log sn( f , K , r)

= h( f , K , r).

Since ε > 0 with s + 2ε < r is arbitrary, if y ∈ Entr ( f ) (resp. y ∈ Entr ,b( f ) for
some b > 0), we obtain x ∈ Ents( f ) (resp. x ∈ Ents,b( f )). Since 0 < s < r is
arbitrary, the lemma has been proved. ��

Let f : X → X be a continuous map. For δ, r > 0 and n ≥ 1, we say that
two δ-chains (xi )ni=0 and (yi )ni=0 of f is (n, r)-separated if d(xi , yi ) > r for some
0 ≤ i ≤ n. Let

sn( f , X , r , δ)

denote the largest cardinality of a set of (n, r)-separated δ-chains of f . The following
lemma is from Misiurewicz (1986).

Lemma 3.2 (Misiurewicz)

htop( f ) = lim
r→0

lim
δ→0

lim sup
n→∞

1

n
log sn( f , X , r , δ).

We give a proof of Theorem 1.2.

Proof of Theorem 1.2 First, we prove the “if” part. Since

htop( f |C(x)) = h( f ,C(x)) > 0,

we have h( f ,C(x), r) > 0 for some r > 0. Taking 0 < b ≤ h( f ,C(x), r), we obtain
C(x) ∩ Entr ,b( f ) 	= ∅. Since x ∈ Sh( f ), by Lemma 3.1, this implies x ∈ Ents,b( f )
for all 0 < s < r , thus the “if” part has been proved.
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Next, we prove the“only if” part. Let x ∈ Entr0,b( f ) for some r0, b > 0. Then, we
have

h( f , K , r0) = lim sup
n→∞

1

n
log sn( f , K , r0) ≥ b

for all K ∈ K(x). Since C(x) is chain stable, taking 0 < s < r0, we obtain

lim sup
n→∞

1

n
log sn( f ,C(x), s, δ) ≥ b

for all δ > 0. From Lemma 3.2, it follows that

htop( f |C(x) ) = lim
r→0

lim
δ→0

lim sup
n→∞

1

n
log sn( f ,C(x), r , δ)

≥ lim
δ→0

lim sup
n→∞

1

n
log sn( f ,C(x), s, δ)

≥ b > 0,

thus the “only if” part has been proved. This completes the proof of Theorem 1.2. ��
Next, we prove Theorem 1.3. The proof of the following lemma is left to the reader.

Lemma 3.3 Let f : X → X be a continuous map and let C ∈ C( f ). For any ε > 0,
there is δ > 0 such that every δ-chain (xi )ki=0 of f |CR( f ) with x0 ∈ C satisfies
d(xi ,C) ≤ ε for all 0 ≤ i ≤ k.

Proof of Theorem 1.3 Due to Corollary 2.1, it is sufficient to show that each of the three
conditions implies that f |C : C → C is not chain continuous.

(1) Taking y ∈ ω(x, f ) ∩ Sen( f |CR( f )), we have

y ∈ C ∩ Sene0( f |CR( f ))

for some e0 > 0. Taking 0 < e < e0, we obtain that for any δ > 0, there are
δ-chains (xi )ki=0 and (yi )ki=0 of f |CR( f ) with x0 = y0 = x and d(xk, yk) > e. By
Lemma3.3, this implies that f |C is not chain continuous and thusC ∈ Cno( f |C(x)).

(2) Since (x, y) is a scrambled pair for f , we have

lim inf
i→∞ d( f i (x), f i (y)) = 0;

therefore, there are a sequence 0 ≤ i1 < i2 < · · · and z ∈ X such that

lim
j→∞ d( f i j (x), f i j (y)) = 0

and

lim
j→∞ f i j (x) = z,
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which implies z ∈ ω(x, f ) ∩ ω(y, f ) and so ω(y, f ) ⊂ C . By

ω(x, f ) ∪ ω(y, f ) ⊂ C,

we obtain

lim
i→∞ d( f i (x),C) = lim

i→∞ d( f i (y),C) = 0.

On the other hand, since (x, y) is a scrambled pair for f , we have

lim sup
i→∞

d( f i (x), f i (y)) > 0.

These condition clearly imply that f |C is not chain continuous and thus C ∈
Cno( f |C(x)).

(3) Since ω(x, f ) is not a minimal set for f , we have a closed f -invariant subset S
of ω(x, f ) such that

∅ 	= S 	= ω(x, f ).

Fix p ∈ S, q ∈ ω(x, f ), and e > 0 with d(p, q) > e. Since ω(x, f ) ⊂ C and
f |C : C → C is chain transitive, for any δ > 0, there are δ-chains (xi )ki=0 and
(yi )ki=0 of f |C with x0 = y0 = yk = p and xk = q. This implies that f |C is not
chain continuous and thus C ∈ Cno( f |C(x)). ��
Finally, we give an example mentioned in Remark 1.5. For a continuous map

f : X → X , C ∈ C( f ) is said to be terminal if C is chain stable. The proof of
the following lemma is left to the reader.

Lemma 3.4 Let f : X → X be a continuous map. For any x ∈ X and C ∈ C( f ) with
ω(x, f ) ⊂ C, if C is terminal, then

C(x) = { f i (x) : i ≥ 0} ∪ C .

Example 3.1 This example is taken from Kawaguchi (2021b). Let σ : [−1, 1]N →
[−1, 1]N be the shift map and let d be the metric on [−1, 1]N defined by

d(x, y) = sup
i≥1

2−i |xi − yi |

for all x = (xi )i≥1, y = (yi )i≥1 ∈ [−1, 1]N. Let s = (sk)k≥1 be a sequence of
numbers with 1 > s1 > s2 > · · · and limk→∞ sk = 0. Put

S = {0} ∪ {−sk : k ≥ 1} ∪ {sk : k ≥ 1},

a closed subset of [−1, 1]. We define a closed σ -invariant subset X of SN by

X = {x = (xi )i≥1 ∈ SN : |x1| ≥ |x2| ≥ · · · }.
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Let f = σ |X : X → X , Xk = {−sk, sk}N for each k ≥ 1, and let X0 = {0∞}. Then,
we have

CR( f ) = {x = (xi )i≥1 ∈ X : |x1| = |x2| = · · · } = X0 ∪
⋃

k≥1

Xk

and

C( f ) = {X0} ∪ {Xk : k ≥ 1}.

Note that X0 is terminal. For a rapidly decreasing sequence s = (sk)k≥1, we can show
that f satisfies the shadowing property and so X = Sh( f ). Let x = (s1, s2, s3, . . . )
and note that x ∈ X . Since ω(x, f ) = X0 and X0 is terminal, by Lemma 3.4, we
obtain

C(x) = { f i (x) : i ≥ 0} ∪ X0.

By Theorem 1.1, we see that

x /∈
⋃

r>0

Entr ( f ).

We shall show that x ∈ Ent( f ). Let

xk = (s1, s2, . . . , sk, sk, sk, . . . ),

k ≥ 1, andnote that xk ∈ X for each k ≥ 1. For any k ≥ 1, sinceh( f , Xk) ≥ log 2 > 0,
we have h( f , Xk, rk) > 0 and so Xk ∩ Entrk ( f ) 	= ∅ for some rk > 0. For every
k ≥ 1, since Xk ⊂ C(xk), we obtain C(xk) ∩ Entrk ( f ) 	= ∅; therefore, Lemma 3.1
implies that xk ∈ Entsk ( f ) for all 0 < sk < rk . In particular, we have xk ∈ Ent( f )
for all k ≥ 1. Since limk→∞ xk = x , we conclude that x ∈ Ent( f ).

4 Proof of Theorem 1.4 and an example

In this section, we prove Theorem 1.4 and give an example mentioned in Sect. 1.

Proof of Theorem 1.4 First, we prove the implication (1) �⇒ (2). If f is not h-
expansive, then

h∗
f (ε) = sup

x∈X
h( f ,�ε(x)) > 0

for all ε > 0. Given any ε > 0, there exists x ∈ X such that h( f ,�ε/2(x)) > 0 and
so we have h( f ,�ε/2(x), r) > 0 for some r > 0. For any 0 < 
 ≤ r , we take an
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open cover U = {Ui : 1 ≤ i ≤ m} of X such that d(a, b) ≤ 
 for all 1 ≤ i ≤ m and
a, b ∈ Ui . Since

h( f ,�ε/2(x), r) = lim sup
n→∞

1

n
log sn( f ,�ε/2(x), r) > 0,

we have

sn( f ,�ε/2(x), r) > m2

for some n ≥ 1. Then, there are u, v ∈ �ε/2(x) such that dn(u, v) > r , u, v ∈ Ui0 ,
and f n−1(u), f n−1(v) ∈ Uin−1 for some Ui0 ,Uin−1 ∈ U . It follows that

max{d(u, v), d( f n−1(u), f n−1(v))} ≤ 
 ≤ r

and

r < max
0≤i≤n−1

d( f i (u), f i (v)) ≤ ε.

Since 0 < 
 ≤ r is arbitrary, this implies the existence of r > 0 as in (2). Since ε > 0
is arbitrary, (1) �⇒ (2) has been proved.

Next, we prove the implication (2) �⇒ (3). The proof is similar to the proof of
Lemma 3.1 in Artigue et al. (2020). Given any ε > 0, we choose r > 0 as in (2). We
fix 0 < γ < min{ε, r/2}. Since f has the shadowing property, there is δ > 0 such
that every δ-pseudo orbit of f is γ -shadowed by some point of X . By the choice of r ,
we obtain a pair

(α(0), α(1)) = ((xi )
k
i=0, (yi )

k
i=0)

of δ-chains of f with (x0, xk) = (y0, yk) and

r ≤ max
0≤i≤k

d(xi , yi ) ≤ ε.

Then, the chain transitivity of f gives a δ-chain β = (zi )li=0 of f with z0 = xk = yk
and zl = x0 = y0. For any s = (sn)n≥1 ∈ {0, 1}N, we consider a δ-pseudo orbit

	(s) = α(s1)βα(s2)βα(s3)β · · ·

of f . Let m = k + l,

Y = {y ∈ X : 	(s) is γ -shadowed by y for some s ∈ {0, 1}N},

and define a map π : Y → {0, 1}N so that 	(π(y)) is γ -shadowed by y for all y ∈ Y .
By a standard argument, we can show that the following conditions are satisfied

• Y is a closed subset of X ,
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• f m(Y ) ⊂ Y ,
• π is well-defined,
• π is surjective,
• π is continuous,
• π ◦ f m = σ ◦ π , where σ : {0, 1}N → {0, 1}N is the shift map.

It follows that Y is a closed f m-invariant subset of Y and

π : (Y , f m) → ({0, 1}N, σ )

is a factor map. By the definition of 	(s), s ∈ {0, 1}N, we see that

sup
i≥0

d( f i (x), f i (y)) ≤ 3ε

for all x, y ∈ Y . Since ε > 0 is arbitrary, (2) �⇒ (3) has been proved.
We shall prove the implication (3) �⇒ (1). Given any ε > 0, we take m ≥ 1 and

Y as in (3). Take p ∈ Y and note that Y ⊂ �ε(p). It follows that

h∗
f (ε) ≥ h( f ,�ε(p)) ≥ h( f ,Y ) ≥ 1

m
h( f m,Y ) ≥ 1

m
h(σ, {0, 1}N) = 1

m
log 2 > 0.

Since ε > 0 is arbitrary, (3) �⇒ (1) has been proved.
The implication (4) �⇒ (2) is obvious from the definitions. It remains to prove

the implication (3) �⇒ (4). Given any ε > 0, we take m ≥ 1 and Y as in (3). Since

h( f m,Y ) ≥ h(σ, {0, 1}N) = log 2 > 0,

by Corollary 2.4 of Blanchard et al. (2002), there is a scrambled pair (x, y) ∈ Y 2 for
f m . Then, (x, y) is also a scrambled pair for f and satisfies

sup
i≥0

d( f i (x), f i (y)) ≤ ε

because x, y ∈ Y . Since ε > 0 is arbitrary, (4) �⇒ (3) has been proved. This
completes the proof of Theorem 1.4. ��

We use Theorem 1.4 to obtain a counter-example for a question in Artigue et al.
(2022). The example will be given as an inverse limit of the full-shift ({0, 1}Z, σ )with
respect to a factor map

F : ({0, 1}Z, σ ) → ({0, 1}Z, σ ).

We need three auxiliary lemmas. A homeomorphism f : X → X is said to be
expansive if there is e > 0 such that

	e(x) = {x}
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for all x ∈ X and such e is called an expansive constant for f . It is known that for a
homeomorphism f : X → X with an expansive constant e > 0 and x, y ∈ X , if

sup
i≥0

d( f i (x), f i (y)) ≤ e,

then (x, y) is an asymptotic pair for f . The following lemmagives a sufficient condition
for an inverse limit system to be h-expansive.

Lemma 4.1 Let π = (πn : (Xn+1, fn+1) → (Xn, fn))n≥1 be a sequence of factor
maps such that for every n ≥ 1, fn : Xn → Xn is an expansive transitive homeomor-
phism with the shadowing property. Let

(Y , g) = lim
π

(Xn, fn)

and note that g is a transitive homeomorphism with the shadowing property. If g
is not h-expansive, then for any N ≥ 1, there are M ≥ N and a scrambled pair
(xM+1, yM+1) ∈ X2

M+1 for fM+1 such that (πM (xM+1), πM (yM+1)) is an asymptotic
pair for fM .

Proof Let D be a metric on Y . Let dn be a metric on Xn and en > 0 be an expansive
constant for fn for each n ≥ 1. Given any N ≥ 1, we take εN > 0 such that for
any p = (pn)n≥1, q = (qn)n≥1 ∈ Y , D(p, q) ≤ εN implies dn(pn, qn) ≤ en for all
1 ≤ n ≤ N . Since g is not h-expansive, by Theorem 1.4, there is a scrambled pair

(x, y) = ((xn)n≥1, (yn)n≥1) ∈ Y 2

for g with

sup
i≥0

D(gi (x), gi (y)) ≤ εN .

Then, for every 1 ≤ n ≤ N , since

sup
i≥0

dn( f
i
n (xn), f in (yn)) = sup

i≥0
dn(g

i (x)n, g
i (y)n) ≤ en,

(xn, yn) is an asymptotic pair for fn . Since (x, y) is a scrambled pair for g and so
a proximal for g, (xn, yn) is a proximal pair for fn for all n ≥ 1. If (xn, yn) is an
asymptotic pair for fn for all n ≥ 1, then (x, y) is an asymptotic pair for g, which is
a contradiction. Thus, there is m ≥ 1 such that (xm+1, ym+1) is a scrambled pair for
fm+1. Letting

M = min{m ≥ 1 : (xm+1, ym+1) is a scrambled pair for fm+1},

we see that M ≥ N , (xM+1, yM+1) is a scrambled pair for fM+1, and (xM , yM ) is an
asymptotic pair for fM , thus the lemma has been proved. ��
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A map F : X → X is said to be an open map if for any open subset U of X , f (U )

is an open subset of X . Any continuous open map F : X → X satisfies the following
property: for every r > 0, there is δ > 0 such that for any s, t ∈ X with d(s, t) ≤ δ

and u ∈ F−1(s), we have d(u, v) ≤ r for some v ∈ F−1(t).
For a continuous map f : X → X , a sequence (xi )i≥0 of points in X is called a

limit-pseudo orbit of f if

lim
i→∞ d( f (xi ), xi+1) = 0,

and said to be limit shadowed by x ∈ X if

lim
i→∞ d( f i (x), xi ) = 0.

The next lemma is needed for the proof of Lemma 4.3.

Lemma 4.2 Let f : X → X be a homeomorphism and let F : (X , f ) → (X , f ) be a
factor map such that

(1) F is an open map,
(2) d(v, v′) ≥ 1 for all t ∈ X and v, v′ ∈ F−1(t) with v 	= v′.
Suppose that

(3) (xi )i≥0 is a limit-pseudo orbit of f and limit-shadowed by x ∈ X,
(4) (zi )i≥0 is a limit-pseudo orbit of f with zi ∈ F−1(xi ) for all i ≥ 0.

Then, there is z ∈ F−1(x) such that (zi )i≥0 is limit-shadowed by z.

Proof By (3), letting δi = d(xi , f i (x)), i ≥ 0, we have limi→∞ δi = 0. By (1), we
can take a sequence ri > 0, i ≥ 0, such that

• limi→∞ ri = 0,
• for any i ≥ 0, s, t ∈ X with d(s, t) ≤ δi , and u ∈ F−1(s), we have d(u, v) ≤ ri
for some v ∈ F−1(t).

With use of (4), we fix N ≥ 0 satisfying the following conditions

• 0 < ri < 1/2 for all i ≥ N ,
• d(u, v) ≤ ri implies d( f (u), f (v)) ≤ 1/4 for all i ≥ N and u, v ∈ X ,
• d( f (zi ), zi+1) ≤ 1/4 for all i ≥ N .

By δN = d(xN , f N (x)) and zN ∈ F−1(xN ), we obtain wN ∈ F−1( f N (x)) with
d(zN , wN ) ≤ rN . Note that

F( f j (wN )) = f j (F(wN )) = f j ( f N (x)) = f N+ j (x)

for every j ≥ 0. By induction on j , we prove that d(zN+ j , f j (wN )) ≤ rN+ j for all
j ≥ 0. Assume that d(zN+ j , f j (wN )) ≤ rN+ j for some j ≥ 0. Then,

d(zN+ j+1, f j+1(wN )) ≤ d(zN+ j+1, f (zN+ j )) + d( f (zN+ j ), f ( f j (wN )))

≤ 1/4 + 1/4 = 1/2.
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Since

δN+ j+1 = d(xN+ j+1, f N+ j+1(x))

and zN+ j+1 ∈ F−1(xN+ j+1), we have

d(zN+ j+1, w) ≤ rN+ j+1

for some w ∈ F−1( f N+ j+1(x)). Since f j+1(wN ) ∈ F−1( f N+ j+1(x)), by (2), we
obtain

d(zN+ j+1, w
′) ≥ d( f j+1(wN ), w′) − d(zN+ j+1, f j+1(wN ))

≥ 1 − 1/2 = 1/2 > rN+ j+1

for all w′ ∈ F−1( f N+ j+1(x)) with w′ 	= f j+1(wN ). It follows that w = f j+1(wN )

and so

d(zN+ j+1, f j+1(wN )) ≤ rN+ j+1;

therefore, the induction is complete. Let z = f −N (wN ) and note that

f N (F(z)) = F( f N (z)) = F(wN ) = f N (x).

Since f is a homeomorphism, we have F(z) = x , that is, z ∈ F−1(x). Moreover, we
obtain

lim
i→∞ d(zi , f i (z))

= lim
j→∞ d(zN+ j , f N+ j (z)) = lim

j→∞ d(zN+ j , f j (wN )) = lim
j→∞ rN+ j = 0,

thus the lemma has been proved. ��
The following lemma gives a sufficient condition for an inverse limit system to

satisfy the s-limit shadowing property.

Lemma 4.3 Let f : X → X be a homeomorphism and let F : (X , f ) → (X , f ) be a
factor map such that

(1) F is an open map,
(2) d(v, v′) ≥ 1 for all t ∈ X and v, v′ ∈ F−1(t) with v 	= v′.

Let (Xn, fn) = (X , f ) and πn = F : (X , f ) → (X , f ) for all n ≥ 1. Let

(Y , g) = lim
π

(Xn, fn).

If f has the s-limit shadowing property, then g satisfies the s-limit shadowing property.
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Proof Let D be a metric on Y . Given any ε > 0, we take N ≥ 1 and εN > 0 such
that for any p = (pn)n≥1, q = (qn)n≥1 ∈ Y , d(pN , qN ) ≤ εN implies D(p, q) ≤ ε.
Since f has the s-limit shadowing property, there is δN > 0 such that every δN -limit-
pseudo orbit of f is εN -limit shadowed by some point of X . We take δ > 0 such
that D(p, q) ≤ δ implies d(pN , qN ) ≤ δN for all p = (pn)n≥1, q = (qn)n≥1 ∈
Y . Let ξ = (x (i))i≥0 be a δ-limit-pseudo orbit of g. Then, for every i ≥ 0, since
D(g(x (i)), x (i+1)) ≤ δ, we have

d( f (x (i)
N ), x (i+1)

N ) = d(g(x (i))N , x (i+1)
N ) ≤ δN .

Also, since limi→∞ D(g(x (i)), x (i+1)) = 0, we have

lim
i→∞ d( f (x (i)

n ), x (i+1)
n ) = lim

i→∞ d(g(x (i))n, x
(i+1)
n ) = 0

for all n ≥ 1. It follows that (x (i)
N )i≥0 is a δN -limit-pseudo of f and so εN -limit

shadowed by some xN ∈ X . Then, since

lim
i→∞ d( f (x (i)

N ), x (i+1)
N ) = lim

i→∞ d( f i (xN ), x (i)
N ) = 0

and

lim
i→∞ d( f (x (i)

N+1), x
(i+1)
N+1 ) = 0,

by Lemma 4.2, we have

lim
i→∞ d( f i (xN+1), x

(i)
N+1) = 0

for some xN+1 ∈ F−1(xN ). Inductively, we obtain xN+k ∈ X , k ≥ 0, such that

lim
i→∞ d( f i (xN+k), x

(i)
N+k) = 0

and xN+k+1 ∈ F−1(xN+k) for all k ≥ 0. We define y = (yn)n≥1 ∈ Y by

yn =
{
FN−n(xN ) for all 1 ≤ n ≤ N

xn for all n ≥ N
.

Given any i ≥ 0, by

d(gi (y)N , x (i)
N ) = d( f i (yN ), x (i)

N ) = d( f i (xN ), x (i)
N ) ≤ εN ,

we obtain

D(gi (y), x (i)) ≤ ε.
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Moreover, since

lim
i→∞ d(gi (y)n, x

(i)
n ) = lim

i→∞ d( f i (yn), x
(i)
n )

= lim
i→∞ d( f i (FN−n(xN )), x (i)

n )

= lim
i→∞ d(FN−n( f i (xN )), FN−n(x (i)

N )) = 0

for all 1 ≤ n ≤ N ; and

lim
i→∞ d(gi (y)N+k, x

(i)
N+k) = lim

i→∞ d( f i (yN+k), x
(i)
N+k)

= lim
i→∞ d( f i (xN+k), x

(i)
N+k) = 0

for all k ≥ 0, we obtain

lim
i→∞ D(gi (y), x (i)) = 0.

In other words, ξ is ε-limit shadowed by y. Since ε > 0 is arbitrary, we conclude that
g satisfies the s-limit shadowing property, completing the proof of the lemma. ��

Finally, we give the example.

Example 4.1 Let Z2 = {0, 1}. We define a metric d on {0, 1}Z by

d(x, y) = sup
n∈Z

2−|n||xn − yn|

for all x = (xn)n∈Z, y = (yn)n∈Z ∈ {0, 1}Z. Note that the shift map

σ : {0, 1}Z → {0, 1}Z

is an expansive mixing homeomorphism with the shadowing property and so satis-
fies the s-limit shadowing property (see, e.g. Barwell et al. 2012). We define a map
F : {0, 1}Z → {0, 1}Z by for any x = (xn)n∈Z, y = (yn)n∈Z ∈ {0, 1}Z, y = F(x) if
and only if

yn = xn + xn+1

for all n ∈ Z. Note that F gives a factor map

F : ({0, 1}Z, σ ) → ({0, 1}Z, σ ).

Given any x = (xn)n∈Z, y = (yn)n∈Z, z = (zn)n∈Z, w = (wn)n∈Z ∈ {0, 1}Z,
assume that

• (x, y) is an asymptotic pair for σ ,
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• (F(z), F(w)) = (x, y).

Then, there is N ≥ 0 such that xn = yn for all n ≥ N . If zN = wN , we have zn = wn

for all n ≥ N and so (z, w) is an asymptotic pair for σ . If zN 	= wN , we have zn 	= wn

for all n ≥ N and so

lim inf
i→∞ d(σ i (z), σ i (w)) = 1 > 0,

thus (z, w) is a distal pair for σ . In both cases, (z, w) is not a scrambled pair for σ .
For any m ≥ 1 and a = (an)mn=−m ∈ {0, 1}2m+1, we define b = (bn)

m−1
n=−m ∈

{0, 1}2m by

bn = an + an+1

for all −m ≤ n ≤ m − 1. Letting

S(a) = {x = (xn)n∈Z : xn = an for all − m ≤ n ≤ m}

and

T (b) = {x = (xn)n∈Z : xn = bn for all − m ≤ n ≤ m − 1},

we obtain F(S(a)) = T (b), an open subset of {0, 1}Z. Since m ≥ 1 and a =
(an)mn=−m ∈ {0, 1}2m+1 are arbitrary, it follows that F is an open map. Given any
y = (yn)n∈Z ∈ {0, 1}Z, we define ŷ = (ŷn)n∈Z ∈ {0, 1}Z by ŷn = yn + 1 for all
n ∈ Z. Then, for any x ∈ {0, 1}Z, taking y ∈ F−1(x), we have F−1(x) = {y, ŷ}.
Note that d(y, ŷ) = 1 for all y ∈ {0, 1}Z.

Let (Xn, fn) = ({0, 1}Z, σ ) and πn = F : ({0, 1}Z, σ ) → ({0, 1}Z, σ ) for all
n ≥ 1. Let

(Y , g) = lim
π

(Xn, fn)

and let D be a metric on Y . Since {0, 1}Z is totally disconnected and σ : {0, 1}Z →
{0, 1}Z is a mixing homeomorphism,

• Y is totally disconnected,
• g is a mixing homeomorphism.

By Lemmas 4.1 and 4.3, we obtain the following properties

• g is h-expansive,
• g has the s-limit shadowing property.

We shall show that

• g is not countably-expansive,
• g satisfies Ye = ∅, where

Ye = {q ∈ Y : 	ε(q) = {q} for some ε > 0}.
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Let q = (qn)n≥1 ∈ Y and N ≥ 1. Let F−1(x) = {xa, xb} for all x ∈ {0, 1}Z. Then,
for all c = (ck)k≥1 ∈ {a, b}N, we define q(c) = (q(c)n)n≥1 ∈ Y by q(c)n = qn for
all 1 ≤ n ≤ N ; and

q(c)N+k = q(c)ckN+k−1

for all k ≥ 1. Given any ε > 0, if N ≥ 1 is large enough, q(c), c ∈ {a, b}N, satisfies
q(c) ∈ 	ε(q) for all c ∈ {a, b}N. Since

{q(c) : c ∈ {a, b}N}

is an uncountable set, it follows that g is not countably-expansive. Since q ∈ Y and
ε > 0 are arbitrary, it also follows that Ye = ∅.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

References

Anosov, D.V.: Geodesic flows on closed Riemann manifolds with negative curvature. Proc. Steklov Inst.
Math. 90, 235 (1967)

Aoki, N., Hiraide, K.: Topological Theory of Dynamical Systems. Recent Advances. North-Holland Math-
ematical Library, 52, North-Holland Publishing Co., Amsterdam (1994)

Aponte, J., Villavicencio, H.: Shadowable points for flows. J. Dyn. Control Syst. 24, 701–719 (2018)
Arbieto, A., Rego, E.: Positive entropy through pointwise dynamics. Proc. Am. Math. Soc. 148, 263–271

(2020)
Arbieto,A., Rego, E.:On the entropy of continuous flowswith uniformly expansive points and the globalness

of shadowable points with gaps. Bull. Braz. Math. Soc. (N.S.) 53, 853–872 (2022)
Artigue, A., Carvalho, B., Cordeiro, W., Vieitez, J.: Beyond topological hyperbolicity: the L-shadowing

property. J. Differ. Equ. 268, 3057–3080 (2020)
Artigue, A., Carvalho, B., Cordeiro, W., Vieitez, J.: Countably and entropy expansive homeomorphisms

with the shadowing property. Proc. Am. Math. Soc. 150, 3369–3378 (2022)
Auslander, J., Glasner, E., Weiss, B.: On recurrence in zero dimensional flows. Forum Math. 19, 107–114

(2007)
Barwell, A.D., Good, C., Oprocha, P.: Shadowing and expansivity in subspaces. Fund. Math. 219, 223–243

(2012)
Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li–Yorke pairs. J. Reine Angew. Math. 547, 51–68

(2002)
Bowen, R.: Entropy-expansive maps. Trans. Am. Math. Soc. 164, 323–331 (1972)
Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in

Mathematics, vol. 470. Springer, Berlin (1975)
Das, T., Khan, A.G.: Average shadowing and persistence in pointwise dynamics. Topol. Appl. 292, 107629

(2021)
Das, T., Khan, A.G.: Stability theorems in pointwise dynamics. Topol. Appl. 320, 108218 (2022)
Das, P., Das, T., Khan, A.G.: Measure expansivity and specification for pointwise dynamics. Bull. Braz.

Math. Soc. (N.S.) 50, 933–948 (2019)
Das, P.K., Das, T., Khan, A.G.: Pointwise dynamics under orbital convergence. Bull. Braz. Math. Soc.

(N.S.) 51, 1001–1016 (2020)
Dong, M., Lee, K., Morales, C.: Pointwise topological stability and persistence. J. Math. Anal. Appl. 480,

123334 (2019)
Dong, M., Jung, W., Morales, C.: Eventually shadowable points. Qual. Theory Dyn. Syst. 19, 16 (2020)

123



Some Results on Shadowing and Local Entropy Properties of… Page 29 of 29 18

Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University
Press, Princeton (1981)

Jung, W., Lee, K., Morales, C.A.: Pointwise persistence and shadowing. Monatsh. Math. 192, 111–123
(2020)

Kawaguchi, N.: Quantitative shadowable points. Dyn. Syst. 32, 504–518 (2017a)
Kawaguchi, N.: Properties of shadowable points: chaos and equicontinuity. Bull. Braz. Math. Soc. (N.S.)

48, 599–622 (2017b)
Kawaguchi, N.: Maximal chain continuous factor. Discrete Contin. Dyn. Syst. 41, 5915–5942 (2021a)
Kawaguchi, N.: Generic and dense distributional chaoswith shadowing. J. Differ. Equ. Appl. 27, 1456–1481

(2021b)
Koo, N., Lee, K., Morales, C.A.: Pointwise topological stability. Proc. Edinb. Math. Soc. 61, 1179–1191

(2018)
Luo, X.F., Nie, X.X., Yin, J.D.: On the shadowing property and shadowable point of set-valued dynamical

systems. Acta Math. Sin. (Engl. Ser.) 36, 1384–1394 (2020)
Misiurewicz, M.: Remark on the Definition of Topological Entropy. Dynamical Systems and Partial Dif-

ferential Equations (Caracas, 1984), Univ. Simon Bolivar, Caracas, 65–67 (1986)
Morales, C.A.: Shadowable points. Dyn. Syst. 31, 347–356 (2016)
Pilyugin, SYu.: Shadowing in Dynamical Systems. Lecture Notes in Mathematics, vol. 1706. Springer,

Berlin (1999)
Shin, B.: On the set of shadowable measures. J. Math. Anal. Appl. 469, 872–881 (2019)
Ye, X., Zhang, G.: Entropy points and applications. Trans. Am. Math. Soc. 359, 6167–6186 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Some Results on Shadowing and Local Entropy Properties of Dynamical Systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Odometers, Equicontinuity, and Chain Continuity
	2.2 Factor Maps and Inverse Limit

	3 Proofs of Theorems 1.1, 1.2, and 1.3
	4 Proof of Theorem 1.4 and an example
	References




